ree Compression with Top Trees

Philip Bille, Inge Li Goartz, Gad M. Landau, and Oren Weimann

Wednesday, June 5, 13

Outline

e Tree Compression with repetitions
® Previous work
e DAG compression
* Tree grammar compression
¢ Top tree compression
e Top trees and top tree compression
e Compression analysis

e Compressed navigation

Wednesday, June 5, 13

Tree Compression with Repetitions

e Let T be a labeled, rooted tree with N nodes over an alphabet of size o.

e How to compress T in order to:
e Take advantage of repetitions (subtree repeats or tree pattern repeats)
e Obtain provably good guarantees on compression ratio.

e Support efficient navigation (access, parent, depth, height, size, NCA, ...)

Wednesday, June 5, 13

DAG Compression

e Merge subftree repeats into directed acyclic graph (DAG) representing T.

Wednesday, June 5, 13

Wednesday, June 5, 13

Wednesday, June 5, 13

e Takes advantage of subtree repeats but not tree pattern repeats.

Wednesday, June 5, 13

e Takes advantage of subtree repeats but not tree pattern repeats.

e Smallest DAG is unique.

Wednesday, June 5, 13

e Takes advantage of subtree repeats but not tree pattern repeats.
e Smallest DAG is unique.

e \We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]

Wednesday, June 5, 13

e Takes advantage of subtree repeats but not tree pattern repeats.
e Smallest DAG is unique.

e \We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]

e Smallest DAG can be exponentially smaller than N, but may not compress at
all.

Wednesday, June 5, 13

e Takes advantage of subtree repeats but not tree pattern repeats.
e Smallest DAG is unique.

e \We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]

e Smallest DAG can be exponentially smaller than N, but may not compress at
all.

e \We can support navigational operations in O(log N) time [B.,Landau, Raman,
Sadakane, Satti, Weimann 2011]

Wednesday, June 5, 13

e Takes advantage of subtree repeats but not tree pattern repeats.
e Smallest DAG is unique.

e \We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]

e Smallest DAG can be exponentially smaller than N, but may not compress at
all.

e \We can support navigational operations in O(log N) time [B.,Landau, Raman,
Sadakane, Satti, Weimann 2011]

e Popular for XML compression. See e.g. [Buneman, Grohe, Koch 2003] [Frick,
Grohe, Koch 2003]

Wednesday, June 5, 13

Tree Grammars

e Encode tree pattern repeats using a grammar that generates T.

Wednesday, June 5, 13

Wednesday, June 5, 13

Wednesday, June 5, 13

S — A(A(A(A(a)))
A(x) — a(a,a(c,x)))

Wednesday, June 5, 13

S — A(A(A(A(a)))
A(x) — a(a,a(c,x)))

e Takes advantage of tree pattern repeats.

Wednesday, June 5, 13

S — A(A(A(A(a)))
A(x) — a(a,a(c,x)))

e Takes advantage of tree pattern repeats.

e NP-hard to find the tree smallest grammar (since even NP-hard for strings).

Wednesday, June 5, 13

S — A(A(A(A(a)))
A(x) — a(a,a(c,x)))

e Takes advantage of tree pattern repeats.
e NP-hard to find the tree smallest grammar (since even NP-hard for strings).

e Tree grammar can be exponentially smaller than the smallest DAG.

Wednesday, June 5, 13

S — A(A(A(A(a)))
A(x) — a(a,a(c,x)))

e Takes advantage of tree pattern repeats.
e NP-hard to find the tree smallest grammar (since even NP-hard for strings).
e Tree grammar can be exponentially smaller than the smallest DAG.

¢ \We can support navigation in time proportional to height of grammar.

Wednesday, June 5, 13

S — A(A(A(A(a)))
A(x) — a(a,a(c,x)))

e Takes advantage of tree pattern repeats.
e NP-hard to find the tree smallest grammar (since even NP-hard for strings).
e Tree grammar can be exponentially smaller than the smallest DAG.

¢ \We can support navigation in time proportional to height of grammar.

e Popular for XML compression. See e.qg. [Busatto, Lohrey, Maneth 2004]
[Maneth, Busatto 2004] [Lohrey, Maneth 2006] [Busatto, Lohrey, Maneth
2008] [Lohrey, Maneth, Mennicke 2010]

Wednesday, June 5, 13

Top Tree Compression

Wednesday, June 5, 13

Top Tree Compression

e New and simple tree compression scheme:

Wednesday, June 5, 13

Top Tree Compression

e New and simple tree compression scheme:

e | inear time construction.

Wednesday, June 5, 13

Top Tree Compression

e New and simple tree compression scheme:
¢ | inear time construction.

e Takes advantage of tree pattern repeats.

Wednesday, June 5, 13

Top Tree Compression

e New and simple tree compression scheme:
¢ | inear time construction.
e Takes advantage of tree pattern repeats.

e Compression ratio is always at least a factor of (logs N)°-'9. Information
theoretic worst-case lower bound is logs N.

Wednesday, June 5, 13

Top Tree Compression

e New and simple tree compression scheme:
¢ | inear time construction.
e Takes advantage of tree pattern repeats.

e Compression ratio is always at least a factor of (logs N)°-'9. Information
theoretic worst-case lower bound is logs N.

e Can compress exponentially better than the smallest DAG.

Wednesday, June 5, 13

Top Tree Compression

e New and simple tree compression scheme:
¢ | inear time construction.
e Takes advantage of tree pattern repeats.

e Compression ratio is always at least a factor of (logs N)°-'9. Information
theoretic worst-case lower bound is logs N.

e Can compress exponentially better than the smallest DAG.

* |[s never more than a log N factor larger than the smallest DAG

Wednesday, June 5, 13

Top Tree Compression

e New and simple tree compression scheme:
¢ | inear time construction.
e Takes advantage of tree pattern repeats.

e Compression ratio is always at least a factor of (logs N)°-'9. Information
theoretic worst-case lower bound is logs N.

e Can compress exponentially better than the smallest DAG.
* |[s never more than a log N factor larger than the smallest DAG

e Navigational operations in O(log N) time.

Wednesday, June 5, 13

Top Trees

Wednesday, June 5, 13

Top Trees

e Top tree for T is a decomposition of T into hierarchy of connected subtrees of
T called clusters.

Wednesday, June 5, 13

Top Trees

e Top tree for T is a decomposition of T into hierarchy of connected subtrees of
T called clusters.

e Each cluster overlaps with adjacent clusters in 1 or 2 boundary nodes.

Wednesday, June 5, 13

Top Tree Construction

AR

e Start with edges of T as the bottom of cluster hiearchy (leaves of the top tree)
* Merge pairs of clusters greedily to form new clusters.
e Contract each clusters into an edge.

e Repeat until left with a single edge.

Wednesday, June 5, 13

Wednesday, June 5, 13

Wednesday, June 5, 13

Wednesday, June 5, 13

Wednesday, June 5, 13

Wednesday, June 5, 13

Wednesday, June 5, 13

Wednesday, June 5, 13

Wednesday, June 5, 13

Wednesday, June 5, 13

Wednesday, June 5, 13

Top Tree Properties

Wednesday, June 5, 13

Top Tree Properties

e Top tree is a binary tree.

Wednesday, June 5, 13

Top Tree Properties

e Top tree is a binary tree.

e Clusters size increases at each level by a factor of at most 2.

Wednesday, June 5, 13

Top Tree Properties

e Top tree is a binary tree.
e Clusters size increases at each level by a factor of at most 2.

e Greedy merging decrease number of clusters a factor at least 8/7.

Wednesday, June 5, 13

Top Tree Properties

e Top tree is a binary tree.
e Clusters size increases at each level by a factor of at most 2.

e Greedy merging decrease number of clusters a factor at least 8/7.

e Size of top tree is O(N)

Wednesday, June 5, 13

Top Tree Properties

e Top tree is a binary tree.
e Clusters size increases at each level by a factor of at most 2.

e Greedy merging decrease number of clusters a factor at least 8/7.

e Size of top tree is O(N)

e Height of top tree is O(log N)

Wednesday, June 5, 13

Top Tree Compression

Wednesday, June 5, 13

Top Tree Compression

e DAG compress top tree

Wednesday, June 5, 13

Top Tree Compression

e DAG compress top tree (!)

Wednesday, June 5, 13

Top Tree Compression

e DAG compress top tree (!)

¢ Top tree compression may be viewed as transformation of input tree into
another tree (which compresses well and a supports fast navigation).

Wednesday, June 5, 13

Wednesday, June 5, 13

Wednesday, June 5, 13

Top Tree Compression Analysis

Wednesday, June 5, 13

Top Tree Compression Analysis

e How good is top tree compression?

Wednesday, June 5, 13

Top Tree Compression Analysis

e How good is top tree compression?

¢ \Worst case compression ratio.

Wednesday, June 5, 13

Top Tree Compression Analysis

e How good is top tree compression?
¢ \Worst case compression ratio.

e DAG vs. top tree compression.

Wednesday, June 5, 13

Wednesday, June 5, 13

¢ |dentical clusters in T are represented by identical subtrees in top tree.

Wednesday, June 5, 13

¢ |dentical clusters in T are represented by identical subtrees in top tree.

e |[dentical subtrees in top tree are merged in top DAG.

Wednesday, June 5, 13

¢ |dentical clusters in T are represented by identical subtrees in top tree.
e |[dentical subtrees in top tree are merged in top DAG.

e —> All clusters represented in top DAG are distinct.

Wednesday, June 5, 13

¢ |dentical clusters in T are represented by identical subtrees in top tree.
e |dentical subtrees in top tree are merged in top DAG.
e —> All clusters represented in top DAG are distinct.

e => Top tree contains at most O(N/(logs N)%19) distinct clusters

Wednesday, June 5, 13

¢ |dentical clusters in T are represented by identical subtrees in top tree.
e |dentical subtrees in top tree are merged in top DAG.

e —> All clusters represented in top DAG are distinct.

e => Top tree contains at most O(N/(logs N)°-19) distinct clusters

e => Theorem: Top DAG has size at most O(N/(logs N)°-19)

Wednesday, June 5, 13

DAG vs. Top DAG

e How good is top DAG compression vs. DAG compression?

Wednesday, June 5, 13

Wednesday, June 5, 13

e Consider any subtree T(z) in T. Suppose z has left child c.

Wednesday, June 5, 13

e Consider any subtree T(z) in T. Suppose z has left child c.

® T(2) is represented by a set S of O(log N) clusters in top tree (a subset of off-
path clusters from the smallest cluster U containing T(z) to (z,c)).

Wednesday, June 5, 13

e Consider any subtree T(z) in T. Suppose z has left child c.

® T(2) is represented by a set S of O(log N) clusters in top tree (a subset of off-
path clusters from the smallest cluster U containing T(z) to (z,c)).

e Let T(Z’) be a subtree repeat of T(z). Then T(z’) is represented by a set S’ of
clusters in top tree identical to S.

Wednesday, June 5, 13

e Consider any subtree T(z) in T. Suppose z has left child c.

® T(2) is represented by a set S of O(log N) clusters in top tree (a subset of off-
path clusters from the smallest cluster U containing T(z) to (z,c)).

e Let T(Z’) be a subtree repeat of T(z). Then T(z’) is represented by a set S’ of
clusters in top tree identical to S.

e In DAG T(Z’) is compressed to a single edge. In top DAG T(z’) each of the
O(log N) clusters in S’ are compressed to an edge.

Wednesday, June 5, 13

e Consider any subtree T(z) in T. Suppose z has left child c.

® T(2) is represented by a set S of O(log N) clusters in top tree (a subset of off-
path clusters from the smallest cluster U containing T(z) to (z,c)).

e Let T(Z’) be a subtree repeat of T(z). Then T(z’) is represented by a set S’ of
clusters in top tree identical to S.

e In DAG T(Z’) is compressed to a single edge. In top DAG T(z’) each of the
O(log N) clusters in S’ are compressed to an edge.

e => Theorem: The top DAG has size O(D * log N)

Wednesday, June 5, 13

Compressed Navigation

¢ |dentify nodes in T by preorder number.

e Theorem: Using O(n) space we can support the following operations in O(log
N) time:
e Access(x): Return the label associated with node x.
e Decompress(x): Return the tree T(x).

e Parent(x): Return the parent of node x.
e Depth(x): Return the depth of node x.

e Height(x): Return the height of node x.

¢ Size(x): Return the number of nodes in T(x).

e Firstchild(x): Return the first child of x.

e NextSibling(x): Return the sibling immediately to the right of x.

¢ | evelAncestor(x, i): Return the ancestor of x whose distance from x is i.
e NCA(X, y): Return the nearest common ancestor of the nodes x and y

Wednesday, June 5, 13

® -0 = @

Wednesday, June 5, 13

C 9 o
s
I
& o
; E

e Store O(1) space information in each node of top DAG (type of merge, height
of cluster, size of cluster, ...)

Wednesday, June 5, 13

C 9 o
s
[4
& o
; E

e Store O(1) space information in each node of top DAG (type of merge, height
of cluster, size of cluster, ...)

¢ Implement operations with top down and bottom up recursive searches in top
DAG.

Wednesday, June 5, 13

C 9 o
s
I
& o
s E

e Store O(1) space information in each node of top DAG (type of merge, height
of cluster, size of cluster, ...)

¢ Implement operations with top down and bottom up recursive searches in top
DAG.

¢ |dentify nodes by maintaining /ocal preorder number during searches.

Wednesday, June 5, 13

C 9 o
s
I
& o
s E

e Store O(1) space information in each node of top DAG (type of merge, height
of cluster, size of cluster, ...)

¢ Implement operations with top down and bottom up recursive searches in top
DAG.

¢ |dentify nodes by maintaining /ocal preorder number during searches.

e Use constant time in each node => O(log N) time for operation.

Wednesday, June 5, 13

® -0 = @

Wednesday, June 5, 13

® -0 = @

e NCA(X,y):

Wednesday, June 5, 13

C 9 o
s
I
& o
. E

e NCA(X,y):

e Top down search for x and y to find smallest cluster C containing x and .

Wednesday, June 5, 13

C 9 o
s
I
& o
s E

e NCA(X,y):
e Top down search for x and y to find smallest cluster C containing x and .

e Retrieve local preorder number for NCA(x,y) in C.

Wednesday, June 5, 13

C 9 o
s
[4
& o
; E

e NCA(X,y):
e Top down search for x and y to find smallest cluster C containing x and .
e Retrieve local preorder number for NCA(x,y) in C.

e Bottom up search to map local preorder number to global preorder
number in T.

Wednesday, June 5, 13

® -0 = @

Wednesday, June 5, 13

e Size(x)

Wednesday, June 5, 13

C 9 o
s
I
& o
. E

e Size(x)

e Top down search for x to find set of off-path cluster representing T(x).

Wednesday, June 5, 13

C 9 o
@Q ®
I
© =
; E

e Size(x)
e Top down search for x to find set of off-path cluster representing T(x).

e Return sum of sizes of these cluster.

Wednesday, June 5, 13

Summary and Open Problems

Wednesday, June 5, 13

Summary and Open Problems

¢ Top tree compression
e DAG compression of top tree

e Compression ratio at least (logs N)°-1® and never more than a log N factor
larger than DAG compression

e Navigation in O(log N) time.

Wednesday, June 5, 13

Summary and Open Problems

¢ Top tree compression
e DAG compression of top tree

e Compression ratio at least (logs N)°-1® and never more than a log N factor
larger than DAG compression

e Navigation in O(log N) time.
e Open problems

e Improve (logs N)%1° worst case compression ratio for top DAG
compression.

e Compressed pattern matching for trees compressed with repetitions.

¢ Practical implementations.

Wednesday, June 5, 13

