
Tree Compression with Top Trees

Philip Bille, Inge Li Gørtz, Gad M. Landau, and Oren Weimann

Wednesday, June 5, 13

Outline

• Tree Compression with repetitions

• Previous work

• DAG compression

• Tree grammar compression

• Top tree compression

• Top trees and top tree compression

• Compression analysis

• Compressed navigation

Wednesday, June 5, 13

• Let T be a labeled, rooted tree with N nodes over an alphabet of size σ.

• How to compress T in order to:

• Take advantage of repetitions (subtree repeats or tree pattern repeats)

• Obtain provably good guarantees on compression ratio.

• Support efficient navigation (access, parent, depth, height, size, NCA, ...)

T’ T’

T
T’

T’

T

Tree Compression with Repetitions

Wednesday, June 5, 13

DAG Compression

• Merge subtree repeats into directed acyclic graph (DAG) representing T.

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

a

a

a

a

a

a

a

a

a

c

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

a

a

a

a

a

a

a

a

a

c

• Takes advantage of subtree repeats but not tree pattern repeats.

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

a

a

a

a

a

a

a

a

a

c

• Takes advantage of subtree repeats but not tree pattern repeats.

• Smallest DAG is unique.

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

a

a

a

a

a

a

a

a

a

c

• Takes advantage of subtree repeats but not tree pattern repeats.

• Smallest DAG is unique.

• We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

a

a

a

a

a

a

a

a

a

c

• Takes advantage of subtree repeats but not tree pattern repeats.

• Smallest DAG is unique.

• We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]

• Smallest DAG can be exponentially smaller than N, but may not compress at
all.

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

a

a

a

a

a

a

a

a

a

c

• Takes advantage of subtree repeats but not tree pattern repeats.

• Smallest DAG is unique.

• We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]

• Smallest DAG can be exponentially smaller than N, but may not compress at
all.

• We can support navigational operations in O(log N) time [B.,Landau, Raman,
Sadakane, Satti, Weimann 2011]

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

a

a

a

a

a

a

a

a

a

c

• Takes advantage of subtree repeats but not tree pattern repeats.

• Smallest DAG is unique.

• We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]

• Smallest DAG can be exponentially smaller than N, but may not compress at
all.

• We can support navigational operations in O(log N) time [B.,Landau, Raman,
Sadakane, Satti, Weimann 2011]

• Popular for XML compression. See e.g. [Buneman, Grohe, Koch 2003] [Frick,
Grohe, Koch 2003]

Wednesday, June 5, 13

Tree Grammars

• Encode tree pattern repeats using a grammar that generates T.

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

S → A(A(A(A(a))))
A(x) → a(a,a(c,x)))

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

• Takes advantage of tree pattern repeats.

S → A(A(A(A(a))))
A(x) → a(a,a(c,x)))

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

• Takes advantage of tree pattern repeats.

• NP-hard to find the tree smallest grammar (since even NP-hard for strings).

S → A(A(A(A(a))))
A(x) → a(a,a(c,x)))

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

• Takes advantage of tree pattern repeats.

• NP-hard to find the tree smallest grammar (since even NP-hard for strings).

• Tree grammar can be exponentially smaller than the smallest DAG.

S → A(A(A(A(a))))
A(x) → a(a,a(c,x)))

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

• Takes advantage of tree pattern repeats.

• NP-hard to find the tree smallest grammar (since even NP-hard for strings).

• Tree grammar can be exponentially smaller than the smallest DAG.

• We can support navigation in time proportional to height of grammar.

S → A(A(A(A(a))))
A(x) → a(a,a(c,x)))

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

• Takes advantage of tree pattern repeats.

• NP-hard to find the tree smallest grammar (since even NP-hard for strings).

• Tree grammar can be exponentially smaller than the smallest DAG.

• We can support navigation in time proportional to height of grammar.

• Popular for XML compression. See e.g. [Busatto, Lohrey, Maneth 2004]
[Maneth, Busatto 2004] [Lohrey, Maneth 2006] [Busatto, Lohrey, Maneth
2008] [Lohrey, Maneth, Mennicke 2010]

S → A(A(A(A(a))))
A(x) → a(a,a(c,x)))

Wednesday, June 5, 13

Top Tree Compression

Wednesday, June 5, 13

Top Tree Compression

• New and simple tree compression scheme:

Wednesday, June 5, 13

Top Tree Compression

• New and simple tree compression scheme:

• Linear time construction.

Wednesday, June 5, 13

Top Tree Compression

• New and simple tree compression scheme:

• Linear time construction.

• Takes advantage of tree pattern repeats.

Wednesday, June 5, 13

Top Tree Compression

• New and simple tree compression scheme:

• Linear time construction.

• Takes advantage of tree pattern repeats.

• Compression ratio is always at least a factor of (logσ N)0.19 . Information
theoretic worst-case lower bound is logσ N.

Wednesday, June 5, 13

Top Tree Compression

• New and simple tree compression scheme:

• Linear time construction.

• Takes advantage of tree pattern repeats.

• Compression ratio is always at least a factor of (logσ N)0.19 . Information
theoretic worst-case lower bound is logσ N.

• Can compress exponentially better than the smallest DAG.

Wednesday, June 5, 13

Top Tree Compression

• New and simple tree compression scheme:

• Linear time construction.

• Takes advantage of tree pattern repeats.

• Compression ratio is always at least a factor of (logσ N)0.19 . Information
theoretic worst-case lower bound is logσ N.

• Can compress exponentially better than the smallest DAG.

• Is never more than a log N factor larger than the smallest DAG

Wednesday, June 5, 13

Top Tree Compression

• New and simple tree compression scheme:

• Linear time construction.

• Takes advantage of tree pattern repeats.

• Compression ratio is always at least a factor of (logσ N)0.19 . Information
theoretic worst-case lower bound is logσ N.

• Can compress exponentially better than the smallest DAG.

• Is never more than a log N factor larger than the smallest DAG

• Navigational operations in O(log N) time.

Wednesday, June 5, 13

Top Trees

Wednesday, June 5, 13

Top Trees

• Top tree for T is a decomposition of T into hierarchy of connected subtrees of
T called clusters.

Wednesday, June 5, 13

Top Trees

• Top tree for T is a decomposition of T into hierarchy of connected subtrees of
T called clusters.

• Each cluster overlaps with adjacent clusters in 1 or 2 boundary nodes.

Wednesday, June 5, 13

Top Tree Construction

• Start with edges of T as the bottom of cluster hiearchy (leaves of the top tree)

• Merge pairs of clusters greedily to form new clusters.

• Contract each clusters into an edge.

• Repeat until left with a single edge.

Wednesday, June 5, 13

c

c

c

c

a

a a
a

a a
a

a a

a

a a
a

Wednesday, June 5, 13

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

Wednesday, June 5, 13

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

Wednesday, June 5, 13

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

Wednesday, June 5, 13

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

Wednesday, June 5, 13

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

Wednesday, June 5, 13

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

Wednesday, June 5, 13

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

Wednesday, June 5, 13

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

Wednesday, June 5, 13

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

h1

h1

h1

h1

h1

h1

h1

v1

v2

v1

v1

h2

v1

v2

v2

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

Wednesday, June 5, 13

Top Tree Properties

Wednesday, June 5, 13

Top Tree Properties

• Top tree is a binary tree.

Wednesday, June 5, 13

Top Tree Properties

• Top tree is a binary tree.

• Clusters size increases at each level by a factor of at most 2.

Wednesday, June 5, 13

Top Tree Properties

• Top tree is a binary tree.

• Clusters size increases at each level by a factor of at most 2.

• Greedy merging decrease number of clusters a factor at least 8/7.

Wednesday, June 5, 13

Top Tree Properties

• Top tree is a binary tree.

• Clusters size increases at each level by a factor of at most 2.

• Greedy merging decrease number of clusters a factor at least 8/7.

• Size of top tree is O(N)

Wednesday, June 5, 13

Top Tree Properties

• Top tree is a binary tree.

• Clusters size increases at each level by a factor of at most 2.

• Greedy merging decrease number of clusters a factor at least 8/7.

• Size of top tree is O(N)

• Height of top tree is O(log N)

Wednesday, June 5, 13

Top Tree Compression

Wednesday, June 5, 13

Top Tree Compression

• DAG compress top tree

Wednesday, June 5, 13

Top Tree Compression

• DAG compress top tree (!)

Wednesday, June 5, 13

Top Tree Compression

• DAG compress top tree

• Top tree compression may be viewed as transformation of input tree into
another tree (which compresses well and a supports fast navigation).

(!)

Wednesday, June 5, 13

h1

h1

h1

h1

h1

h1

h1

v1

v2

v1

v1

h2

v1

v2

v2

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

Wednesday, June 5, 13

h1

h1

h1

h1

h1

h1

h1

v1

v2

v1

v1

h2

v1

v2

v2

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

h1

h1

v1

v2

h2

v1

v2

v2

c

a

a a

Wednesday, June 5, 13

Top Tree Compression Analysis

Wednesday, June 5, 13

Top Tree Compression Analysis

• How good is top tree compression?

Wednesday, June 5, 13

Top Tree Compression Analysis

• How good is top tree compression?

• Worst case compression ratio.

Wednesday, June 5, 13

Top Tree Compression Analysis

• How good is top tree compression?

• Worst case compression ratio.

• DAG vs. top tree compression.

Wednesday, June 5, 13

h1

h1

h1

h1

h1

h1

h1

v1

v2

v1

v1

h2

v1

v2

v2

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

h1

h1

v1

v2

h2

v1

v2

v2

c

a

a a

Wednesday, June 5, 13

• Identical clusters in T are represented by identical subtrees in top tree.

h1

h1

h1

h1

h1

h1

h1

v1

v2

v1

v1

h2

v1

v2

v2

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

h1

h1

v1

v2

h2

v1

v2

v2

c

a

a a

Wednesday, June 5, 13

• Identical clusters in T are represented by identical subtrees in top tree.

• Identical subtrees in top tree are merged in top DAG.

h1

h1

h1

h1

h1

h1

h1

v1

v2

v1

v1

h2

v1

v2

v2

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

h1

h1

v1

v2

h2

v1

v2

v2

c

a

a a

Wednesday, June 5, 13

• Identical clusters in T are represented by identical subtrees in top tree.

• Identical subtrees in top tree are merged in top DAG.

• => All clusters represented in top DAG are distinct.

h1

h1

h1

h1

h1

h1

h1

v1

v2

v1

v1

h2

v1

v2

v2

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

h1

h1

v1

v2

h2

v1

v2

v2

c

a

a a

Wednesday, June 5, 13

• Identical clusters in T are represented by identical subtrees in top tree.

• Identical subtrees in top tree are merged in top DAG.

• => All clusters represented in top DAG are distinct.

• => Top tree contains at most O(N/(logσ N)0.19) distinct clusters

h1

h1

h1

h1

h1

h1

h1

v1

v2

v1

v1

h2

v1

v2

v2

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

h1

h1

v1

v2

h2

v1

v2

v2

c

a

a a

Wednesday, June 5, 13

• Identical clusters in T are represented by identical subtrees in top tree.

• Identical subtrees in top tree are merged in top DAG.

• => All clusters represented in top DAG are distinct.

• => Top tree contains at most O(N/(logσ N)0.19) distinct clusters

• => Theorem: Top DAG has size at most O(N/(logσ N)0.19)

h1

h1

h1

h1

h1

h1

h1

v1

v2

v1

v1

h2

v1

v2

v2

c

c

c

c

a

a a

a

a a
a

a a

a

a a

a

h1

h1

v1

v2

h2

v1

v2

v2

c

a

a a

Wednesday, June 5, 13

• How good is top DAG compression vs. DAG compression?

DAG vs. Top DAG

Wednesday, June 5, 13

T (z)

z c

c
z

U

Wednesday, June 5, 13

• Consider any subtree T(z) in T. Suppose z has left child c.

T (z)

z c

c
z

U

Wednesday, June 5, 13

• Consider any subtree T(z) in T. Suppose z has left child c.

• T(z) is represented by a set S of O(log N) clusters in top tree (a subset of off-
path clusters from the smallest cluster U containing T(z) to (z,c)).

T (z)

z c

c
z

U

Wednesday, June 5, 13

• Consider any subtree T(z) in T. Suppose z has left child c.

• T(z) is represented by a set S of O(log N) clusters in top tree (a subset of off-
path clusters from the smallest cluster U containing T(z) to (z,c)).

• Let T(z’) be a subtree repeat of T(z). Then T(z’) is represented by a set S’ of
clusters in top tree identical to S.

T (z)

z c

c
z

U

Wednesday, June 5, 13

• Consider any subtree T(z) in T. Suppose z has left child c.

• T(z) is represented by a set S of O(log N) clusters in top tree (a subset of off-
path clusters from the smallest cluster U containing T(z) to (z,c)).

• Let T(z’) be a subtree repeat of T(z). Then T(z’) is represented by a set S’ of
clusters in top tree identical to S.

• In DAG T(z’) is compressed to a single edge. In top DAG T(z’) each of the
O(log N) clusters in S’ are compressed to an edge.

T (z)

z c

c
z

U

Wednesday, June 5, 13

• Consider any subtree T(z) in T. Suppose z has left child c.

• T(z) is represented by a set S of O(log N) clusters in top tree (a subset of off-
path clusters from the smallest cluster U containing T(z) to (z,c)).

• Let T(z’) be a subtree repeat of T(z). Then T(z’) is represented by a set S’ of
clusters in top tree identical to S.

• In DAG T(z’) is compressed to a single edge. In top DAG T(z’) each of the
O(log N) clusters in S’ are compressed to an edge.

• => Theorem: The top DAG has size O(D・log N)

T (z)

z c

c
z

U

Wednesday, June 5, 13

Compressed Navigation

• Identify nodes in T by preorder number.

• Theorem: Using O(n) space we can support the following operations in O(log
N) time:

• Access(x): Return the label associated with node x.
• Decompress(x): Return the tree T(x).
• Parent(x): Return the parent of node x.
• Depth(x): Return the depth of node x.
• Height(x): Return the height of node x.
• Size(x): Return the number of nodes in T(x).
• Firstchild(x): Return the first child of x.
• NextSibling(x): Return the sibling immediately to the right of x.
• LevelAncestor(x, i): Return the ancestor of x whose distance from x is i.
• NCA(x, y): Return the nearest common ancestor of the nodes x and y

Wednesday, June 5, 13

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

• Store O(1) space information in each node of top DAG (type of merge, height
of cluster, size of cluster, ...)

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

• Store O(1) space information in each node of top DAG (type of merge, height
of cluster, size of cluster, ...)

• Implement operations with top down and bottom up recursive searches in top
DAG.

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

• Store O(1) space information in each node of top DAG (type of merge, height
of cluster, size of cluster, ...)

• Implement operations with top down and bottom up recursive searches in top
DAG.

• Identify nodes by maintaining local preorder number during searches.

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

• Store O(1) space information in each node of top DAG (type of merge, height
of cluster, size of cluster, ...)

• Implement operations with top down and bottom up recursive searches in top
DAG.

• Identify nodes by maintaining local preorder number during searches.

• Use constant time in each node => O(log N) time for operation.

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

• NCA(x,y):

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

• NCA(x,y):

• Top down search for x and y to find smallest cluster C containing x and y.

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

• NCA(x,y):

• Top down search for x and y to find smallest cluster C containing x and y.

• Retrieve local preorder number for NCA(x,y) in C.

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

• NCA(x,y):

• Top down search for x and y to find smallest cluster C containing x and y.

• Retrieve local preorder number for NCA(x,y) in C.

• Bottom up search to map local preorder number to global preorder
number in T.

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

• Size(x)

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

• Size(x)

• Top down search for x to find set of off-path cluster representing T(x).

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

• Size(x)

• Top down search for x to find set of off-path cluster representing T(x).

• Return sum of sizes of these cluster.

C

A B

A B

C
A

B

C

Wednesday, June 5, 13

Summary and Open Problems

Wednesday, June 5, 13

• Top tree compression

• DAG compression of top tree

• Compression ratio at least (logσ N)0.19 and never more than a log N factor
larger than DAG compression

• Navigation in O(log N) time.

Summary and Open Problems

Wednesday, June 5, 13

• Top tree compression

• DAG compression of top tree

• Compression ratio at least (logσ N)0.19 and never more than a log N factor
larger than DAG compression

• Navigation in O(log N) time.

• Open problems

• Improve (logσ N)0.19 worst case compression ratio for top DAG
compression.

• Compressed pattern matching for trees compressed with repetitions.

• Practical implementations.

Summary and Open Problems

Wednesday, June 5, 13

