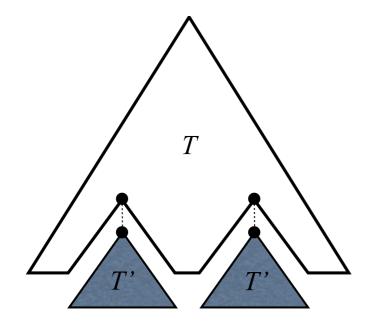
Tree Compression with Top Trees

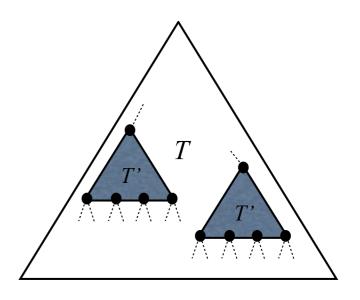
Philip Bille, Inge Li Gørtz, Gad M. Landau, and Oren Weimann

Outline

- Tree Compression with repetitions
- Previous work
 - DAG compression
 - Tree grammar compression
- Top tree compression
 - Top trees and top tree compression
 - Compression analysis
 - Compressed navigation

Tree Compression with Repetitions



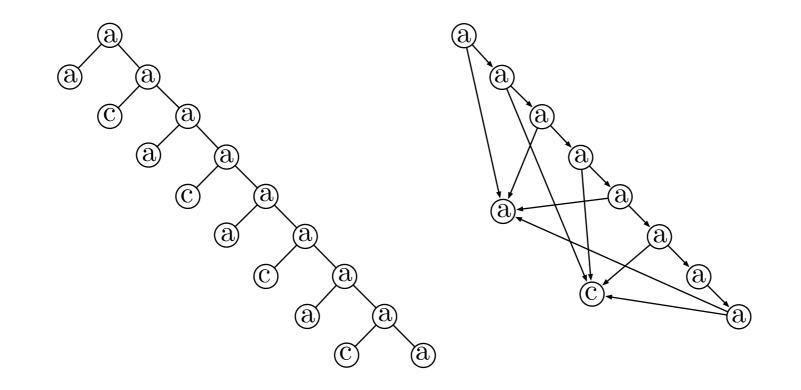


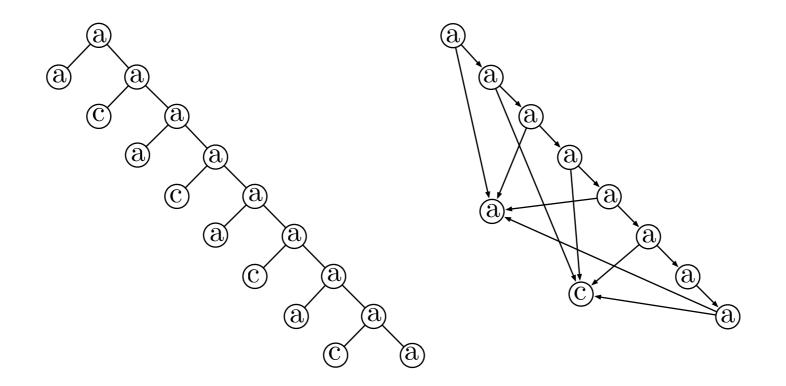
- Let T be a labeled, rooted tree with N nodes over an alphabet of size σ .
- How to compress T in order to:
 - Take advantage of repetitions (subtree repeats or tree pattern repeats)
 - Obtain provably good guarantees on compression ratio.
 - Support efficient navigation (access, parent, depth, height, size, NCA, ...)

DAG Compression

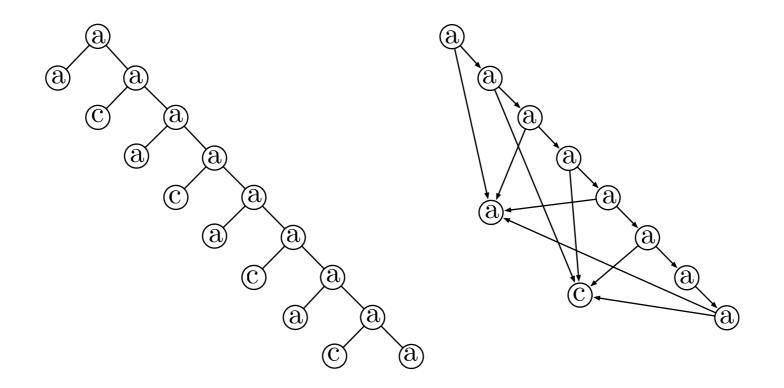
• Merge subtree repeats into directed acyclic graph (DAG) representing T.



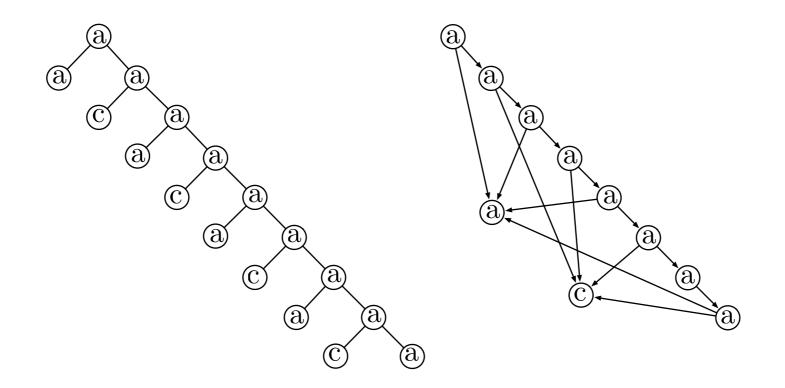




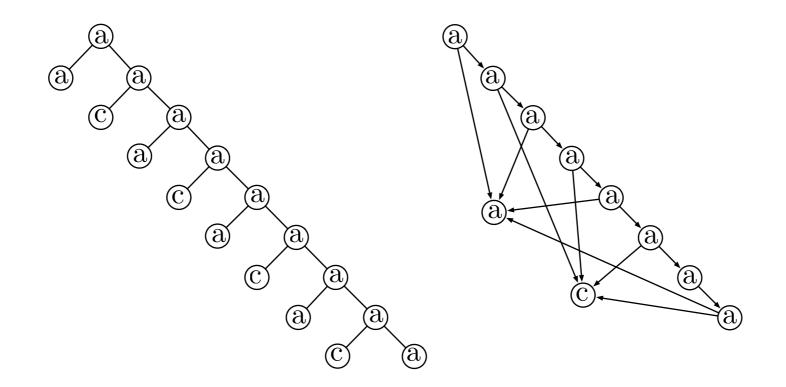
• Takes advantage of subtree repeats but not tree pattern repeats.



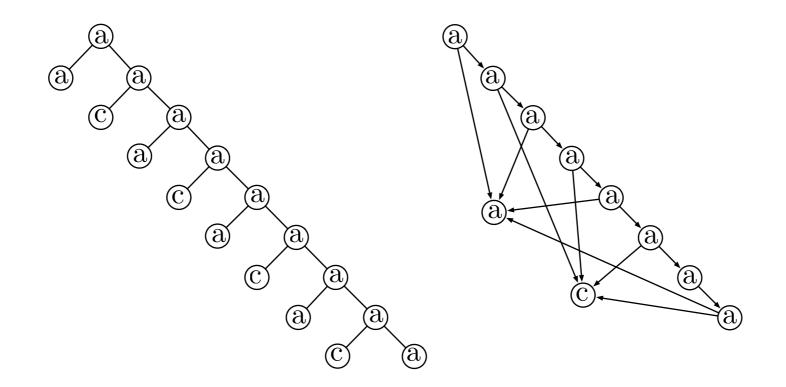
- Takes advantage of subtree repeats but not tree pattern repeats.
- Smallest DAG is unique.



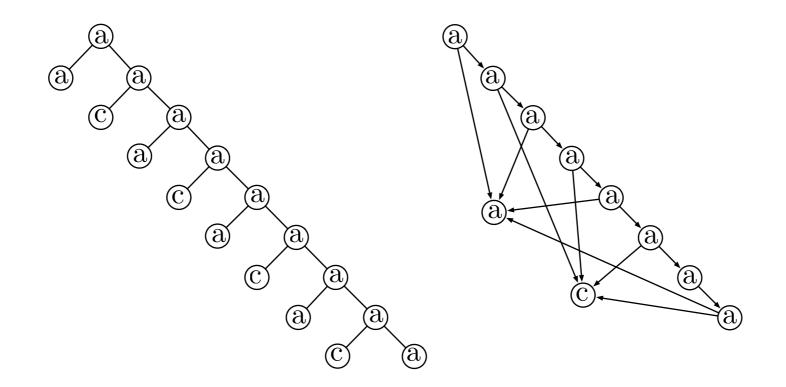
- Takes advantage of subtree repeats but not tree pattern repeats.
- Smallest DAG is unique.
- We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]



- Takes advantage of subtree repeats but not tree pattern repeats.
- Smallest DAG is unique.
- We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]
- Smallest DAG can be exponentially smaller than N, but may not compress at all.



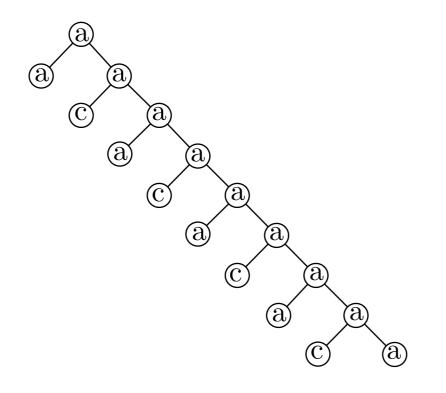
- Takes advantage of subtree repeats but not tree pattern repeats.
- Smallest DAG is unique.
- We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]
- Smallest DAG can be exponentially smaller than N, but may not compress at all.
- We can support navigational operations in O(log N) time [B.,Landau, Raman, Sadakane, Satti, Weimann 2011]

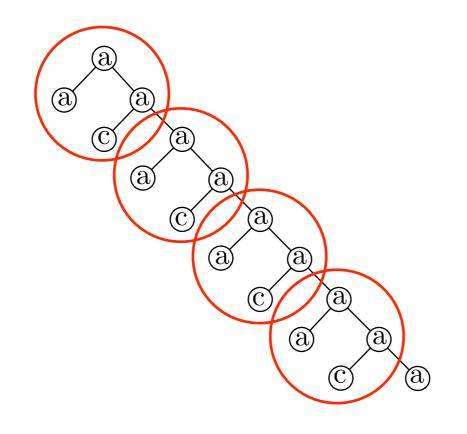


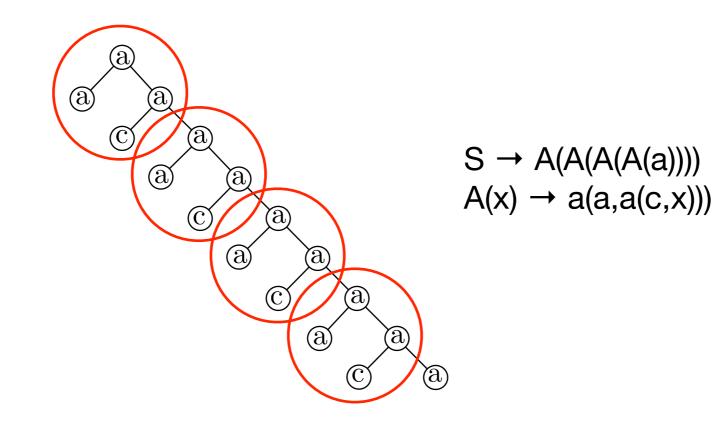
- Takes advantage of subtree repeats but not tree pattern repeats.
- Smallest DAG is unique.
- We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]
- Smallest DAG can be exponentially smaller than N, but may not compress at all.
- We can support navigational operations in O(log N) time [B.,Landau, Raman, Sadakane, Satti, Weimann 2011]
- Popular for XML compression. See e.g. [Buneman, Grohe, Koch 2003] [Frick, Grohe, Koch 2003]

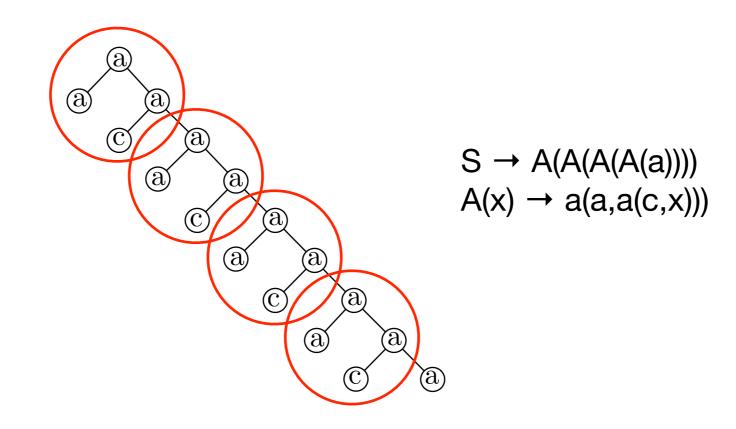
Tree Grammars

• Encode tree pattern repeats using a grammar that generates T.

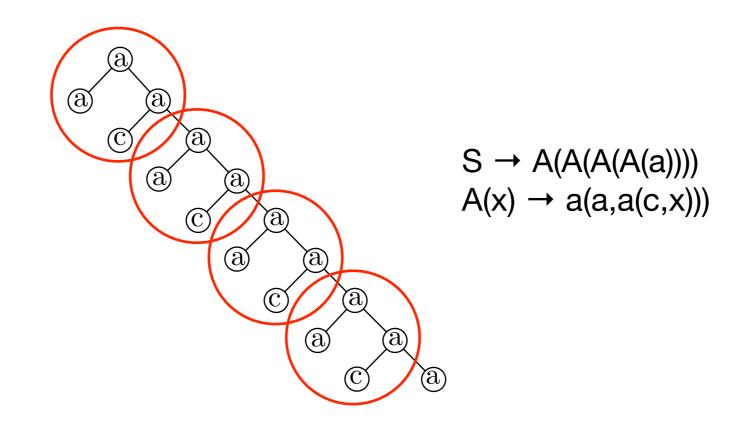








• Takes advantage of tree pattern repeats.



- Takes advantage of tree pattern repeats.
- NP-hard to find the tree smallest grammar (since even NP-hard for strings).



- Takes advantage of tree pattern repeats.
- NP-hard to find the tree smallest grammar (since even NP-hard for strings).
- Tree grammar can be exponentially smaller than the smallest DAG.



- Takes advantage of tree pattern repeats.
- NP-hard to find the tree smallest grammar (since even NP-hard for strings).
- Tree grammar can be exponentially smaller than the smallest DAG.
- We can support navigation in time proportional to height of grammar.



- Takes advantage of tree pattern repeats.
- NP-hard to find the tree smallest grammar (since even NP-hard for strings).
- Tree grammar can be exponentially smaller than the smallest DAG.
- We can support navigation in time proportional to height of grammar.
- Popular for XML compression. See e.g. [Busatto, Lohrey, Maneth 2004] [Maneth, Busatto 2004] [Lohrey, Maneth 2006] [Busatto, Lohrey, Maneth 2008] [Lohrey, Maneth, Mennicke 2010]

• New and simple tree compression scheme:

- New and simple tree compression scheme:
 - Linear time construction.

- New and simple tree compression scheme:
 - Linear time construction.
 - Takes advantage of tree pattern repeats.

- New and simple tree compression scheme:
 - Linear time construction.
 - Takes advantage of tree pattern repeats.
 - Compression ratio is always at least a factor of (log_σ N)^{0.19}. Information theoretic worst-case lower bound is log_σ N.

- New and simple tree compression scheme:
 - Linear time construction.
 - Takes advantage of tree pattern repeats.
 - Compression ratio is always at least a factor of (log_σ N)^{0.19}. Information theoretic worst-case lower bound is log_σ N.
 - Can compress exponentially better than the smallest DAG.

- New and simple tree compression scheme:
 - Linear time construction.
 - Takes advantage of tree pattern repeats.
 - Compression ratio is always at least a factor of (log_σ N)^{0.19}. Information theoretic worst-case lower bound is log_σ N.
 - Can compress exponentially better than the smallest DAG.
 - Is never more than a log N factor larger than the smallest DAG

- New and simple tree compression scheme:
 - Linear time construction.
 - Takes advantage of tree pattern repeats.
 - Compression ratio is always at least a factor of (log_σ N)^{0.19}. Information theoretic worst-case lower bound is log_σ N.
 - Can compress exponentially better than the smallest DAG.
 - Is never more than a log N factor larger than the smallest DAG
 - Navigational operations in O(log N) time.

Top Trees

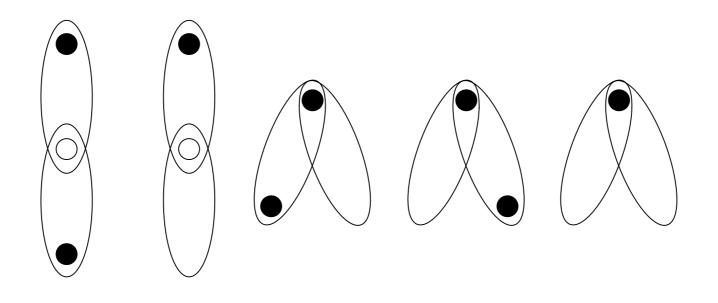
Top Trees

• Top tree for T is a decomposition of T into hierarchy of connected subtrees of T called *clusters*.

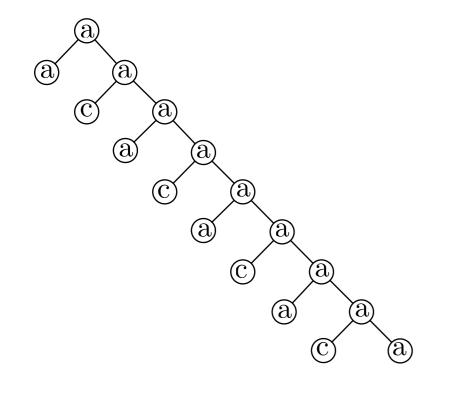
Top Trees

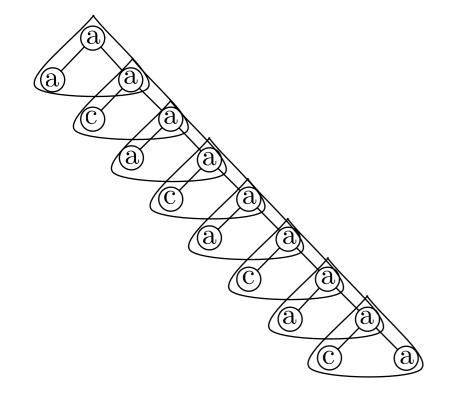
- Top tree for T is a decomposition of T into hierarchy of connected subtrees of T called *clusters*.
- Each cluster overlaps with adjacent clusters in 1 or 2 boundary nodes.

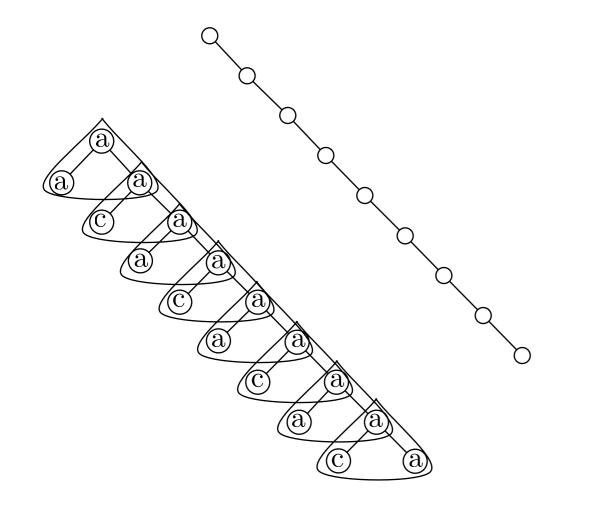
Top Tree Construction

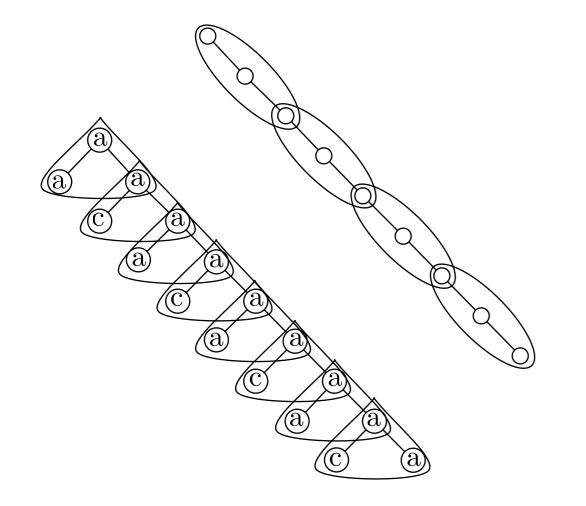


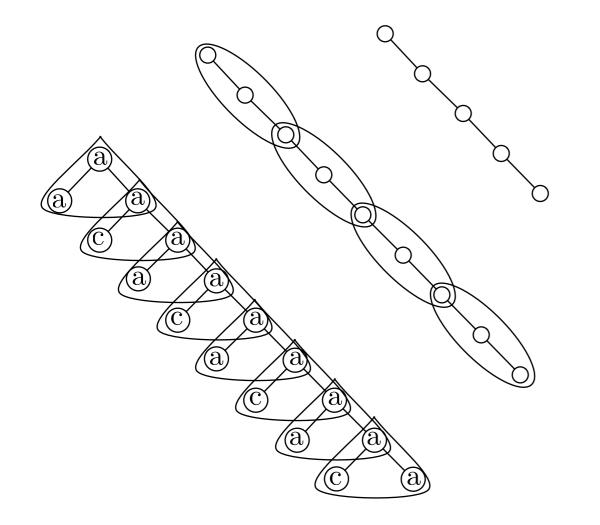
- Start with edges of T as the bottom of cluster hiearchy (leaves of the top tree)
- Merge pairs of clusters greedily to form new clusters.
- Contract each clusters into an edge.
- Repeat until left with a single edge.

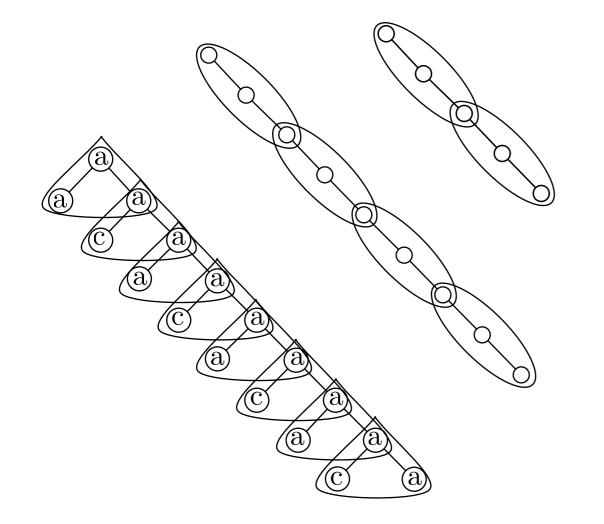


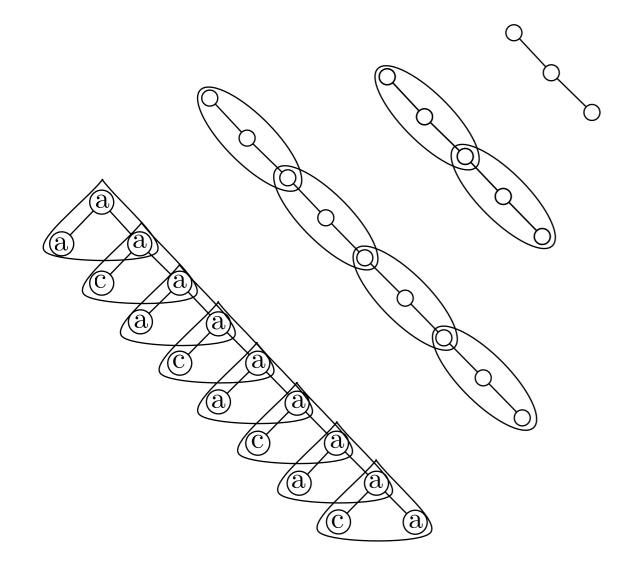


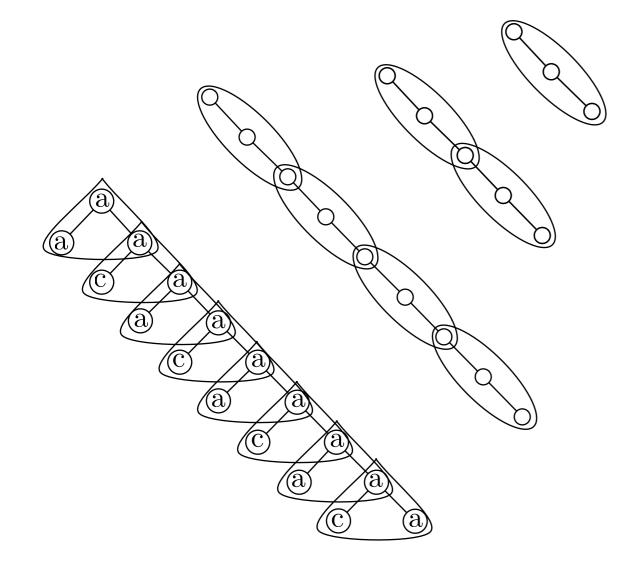


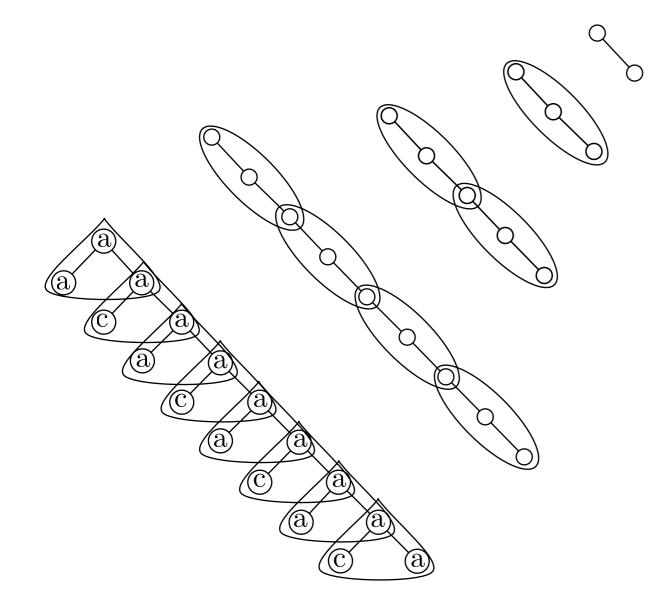


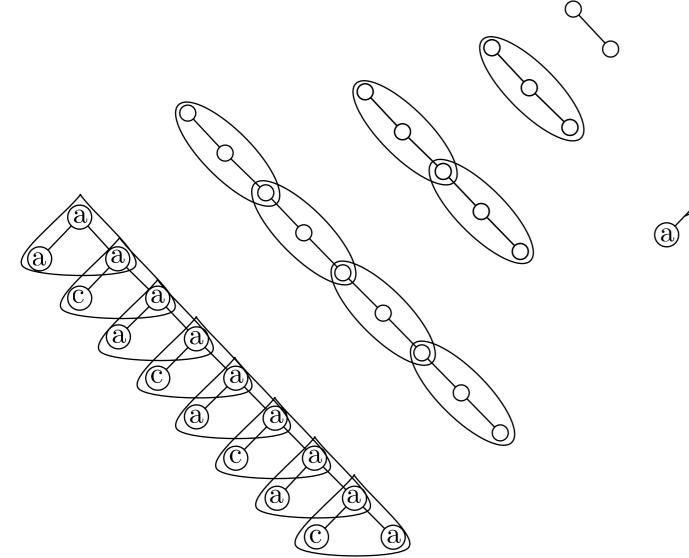


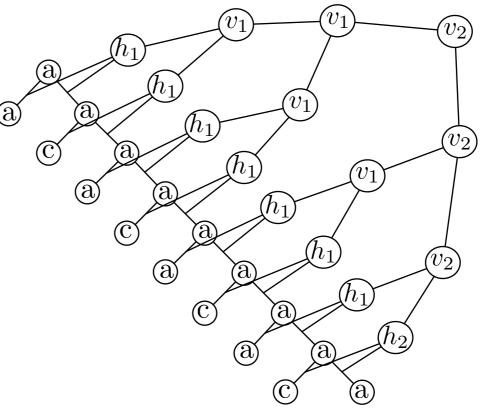












• Top tree is a binary tree.

- Top tree is a binary tree.
- Clusters size increases at each level by a factor of at most 2.

- Top tree is a binary tree.
- Clusters size increases at each level by a factor of at most 2.
- Greedy merging decrease number of clusters a factor at least 8/7.

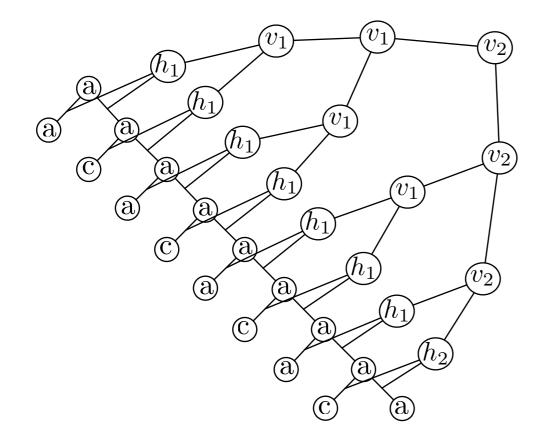
- Top tree is a binary tree.
- Clusters size increases at each level by a factor of at most 2.
- Greedy merging decrease number of clusters a factor at least 8/7.
- Size of top tree is O(N)

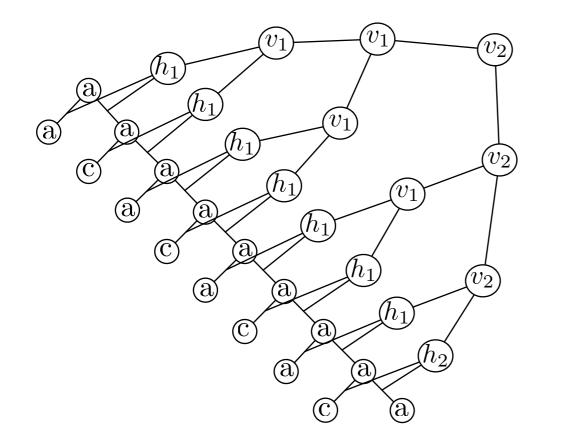
- Top tree is a binary tree.
- Clusters size increases at each level by a factor of at most 2.
- Greedy merging decrease number of clusters a factor at least 8/7.
- Size of top tree is O(N)
- Height of top tree is O(log N)

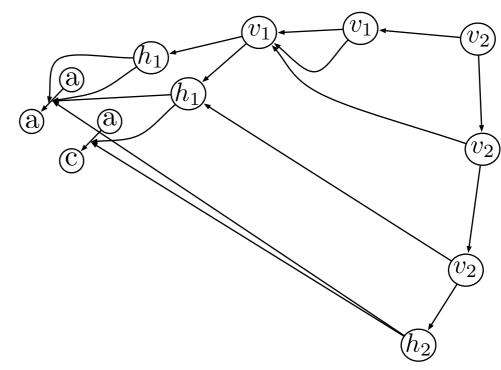
• DAG compress top tree

• DAG compress top tree (!)

- DAG compress top tree (!)
- Top tree compression may be viewed as *transformation* of input tree into another tree (which compresses well and a supports fast navigation).



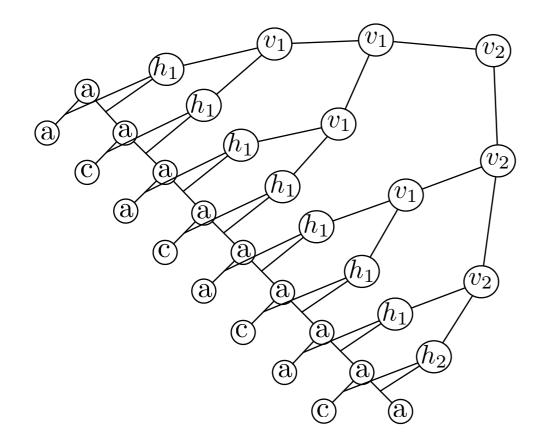


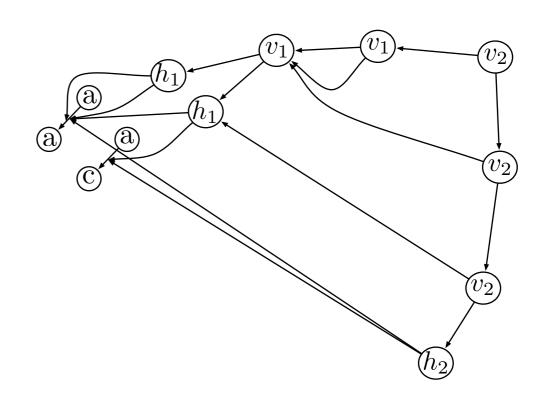


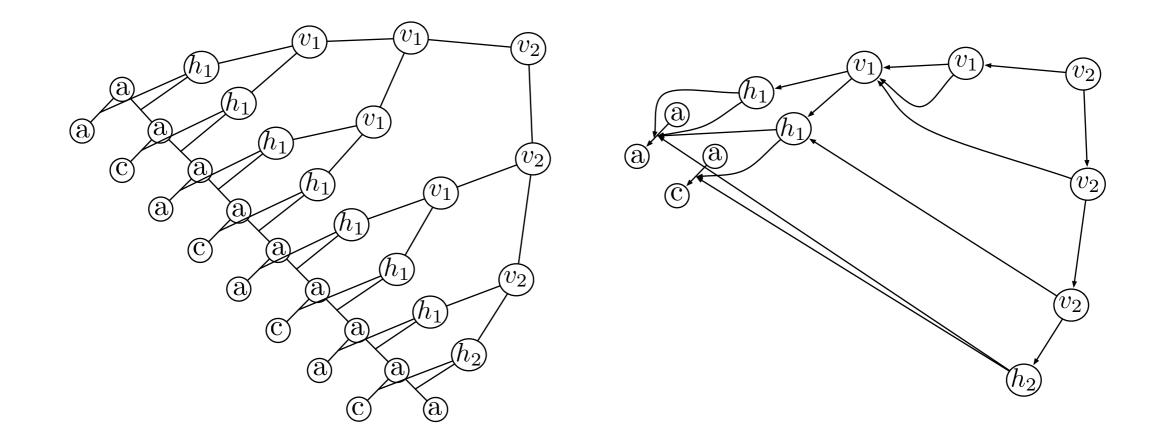
• How good is top tree compression?

- How good is top tree compression?
- Worst case compression ratio.

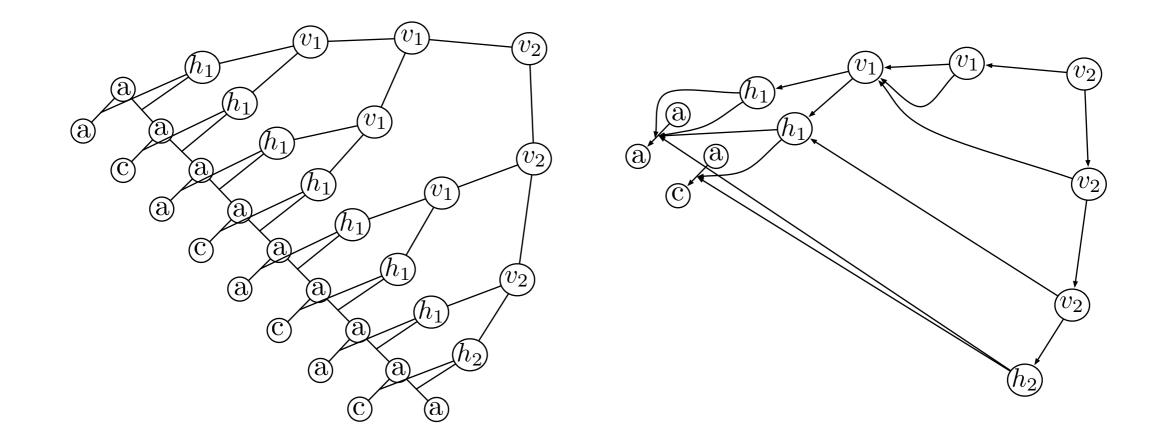
- How good is top tree compression?
- Worst case compression ratio.
- DAG vs. top tree compression.



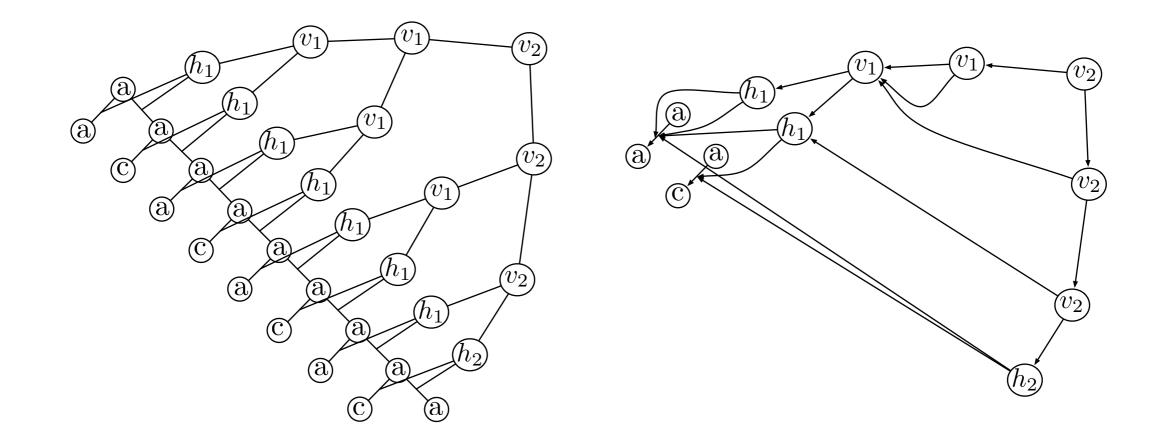




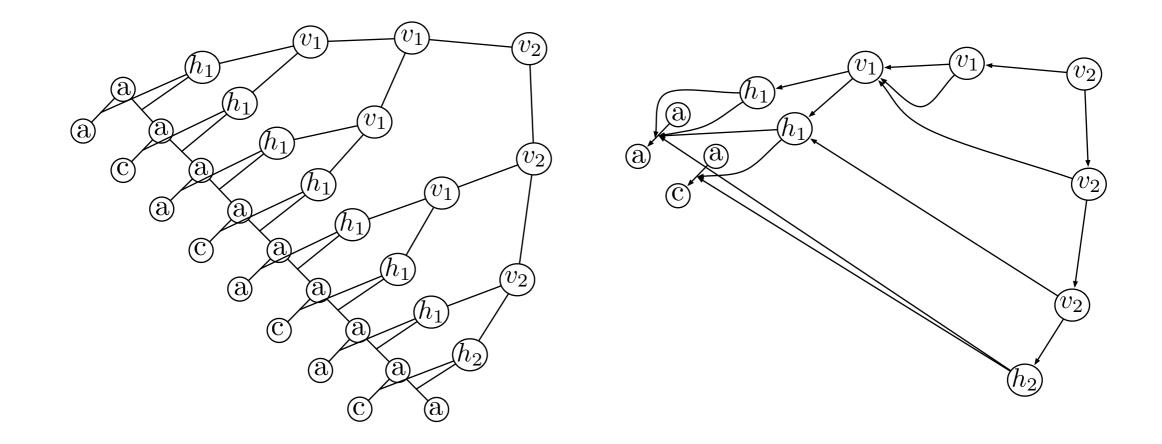
• Identical clusters in T are represented by identical subtrees in top tree.



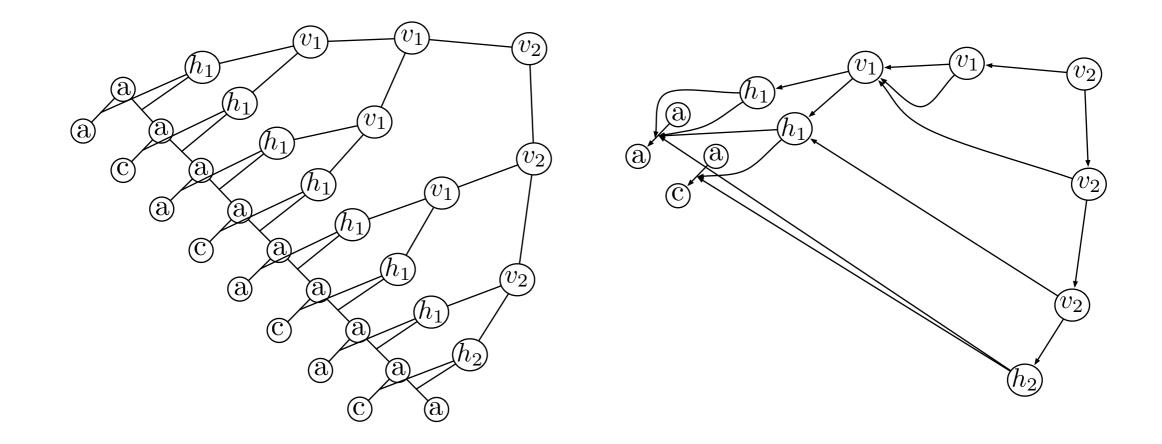
- Identical clusters in T are represented by identical subtrees in top tree.
- Identical subtrees in top tree are merged in top DAG.



- Identical clusters in T are represented by identical subtrees in top tree.
- Identical subtrees in top tree are merged in top DAG.
- => All clusters represented in top DAG are *distinct*.



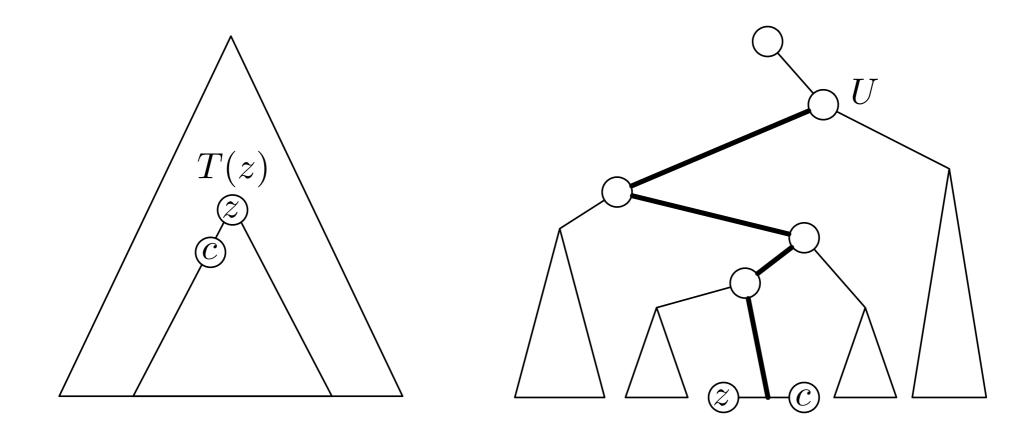
- Identical clusters in T are represented by identical subtrees in top tree.
- Identical subtrees in top tree are merged in top DAG.
- => All clusters represented in top DAG are *distinct*.
- => Top tree contains at most $O(N/(\log_{\sigma} N)^{0.19})$ distinct clusters

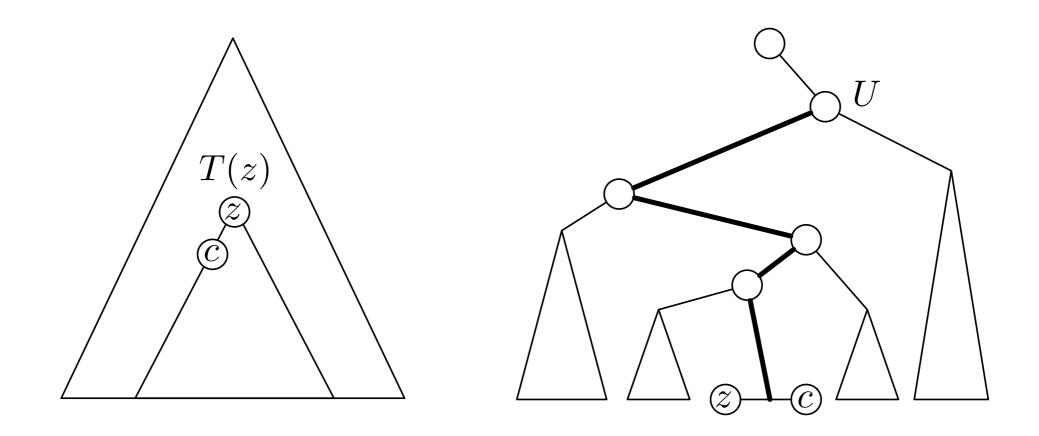


- Identical clusters in T are represented by identical subtrees in top tree.
- Identical subtrees in top tree are merged in top DAG.
- => All clusters represented in top DAG are *distinct*.
- => Top tree contains at most $O(N/(\log_{\sigma} N)^{0.19})$ distinct clusters
- => Theorem: Top DAG has size at most $O(N/(\log_{\sigma} N)^{0.19})$

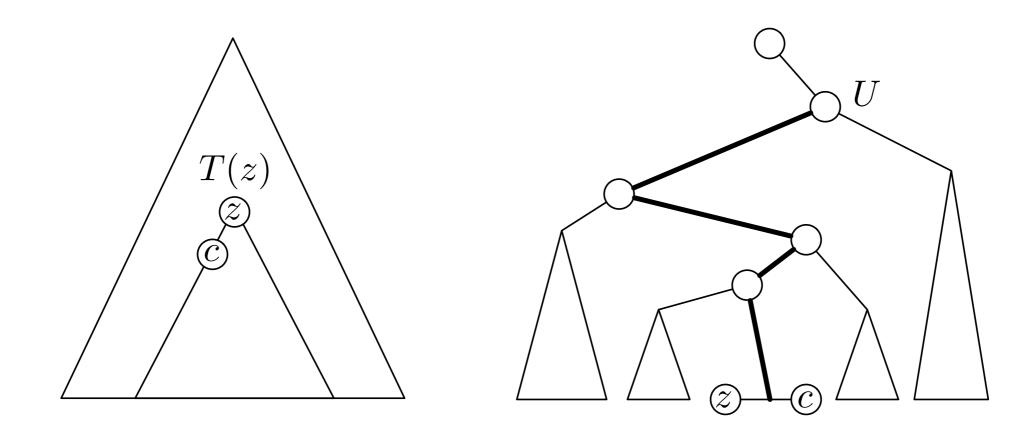
DAG vs. Top DAG

• How good is top DAG compression vs. DAG compression?

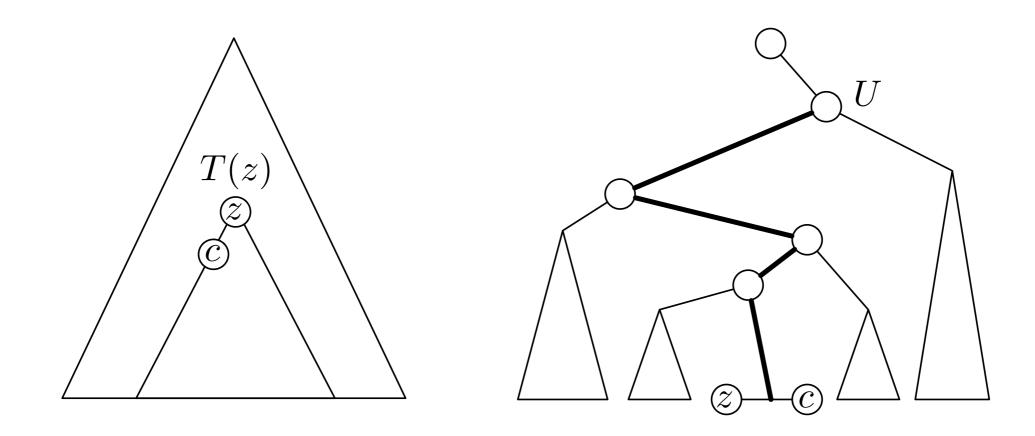




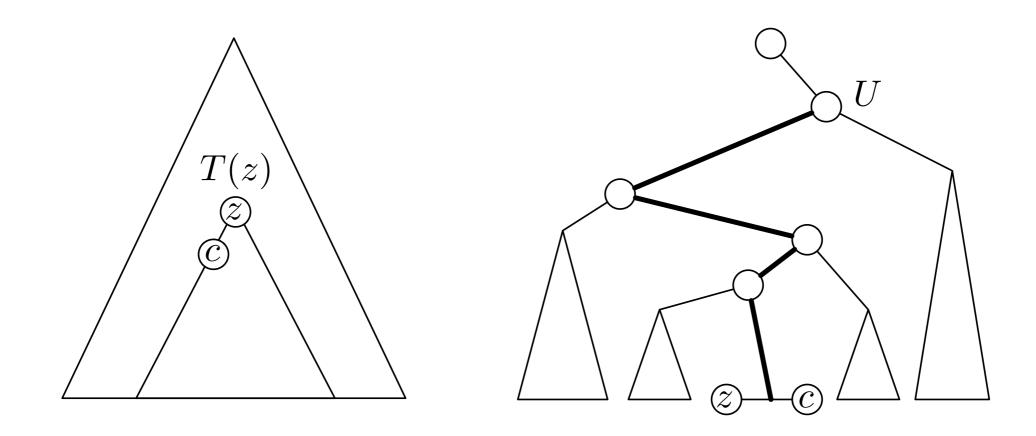
• Consider any subtree T(z) in T. Suppose z has left child c.



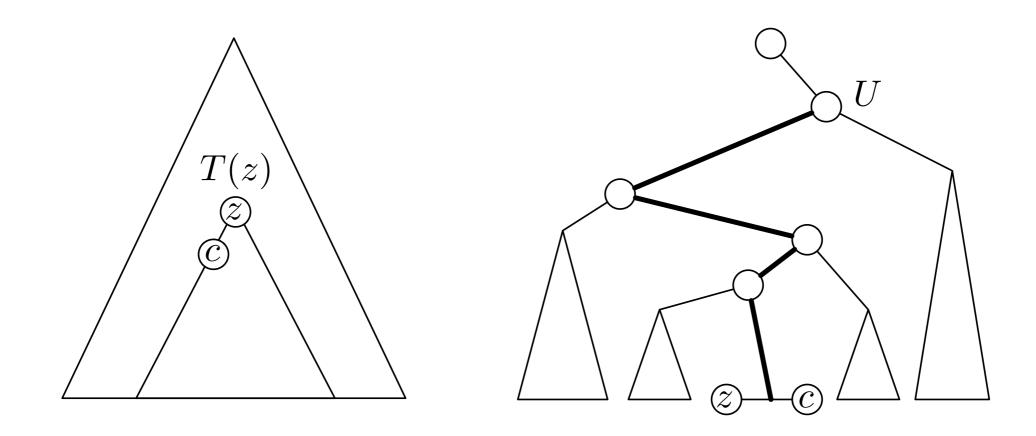
- Consider any subtree T(z) in T. Suppose z has left child c.
- T(z) is represented by a set S of O(log N) clusters in top tree (a subset of *off- path* clusters from the smallest cluster U containing T(z) to (z,c)).



- Consider any subtree T(z) in T. Suppose z has left child c.
- T(z) is represented by a set S of O(log N) clusters in top tree (a subset of *off- path* clusters from the smallest cluster U containing T(z) to (z,c)).
- Let T(z') be a subtree repeat of T(z). Then T(z') is represented by a set S' of clusters in top tree identical to S.



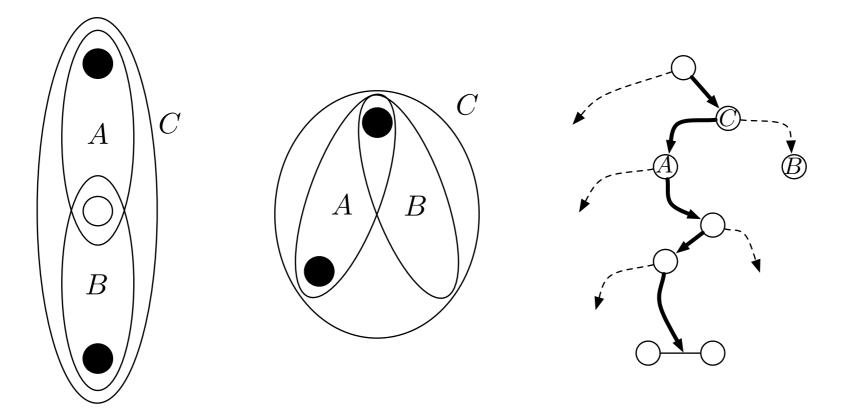
- Consider any subtree T(z) in T. Suppose z has left child c.
- T(z) is represented by a set S of O(log N) clusters in top tree (a subset of *off- path* clusters from the smallest cluster U containing T(z) to (z,c)).
- Let T(z') be a subtree repeat of T(z). Then T(z') is represented by a set S' of clusters in top tree identical to S.
- In DAG T(z') is compressed to a single edge. In top DAG T(z') each of the O(log N) clusters in S' are compressed to an edge.

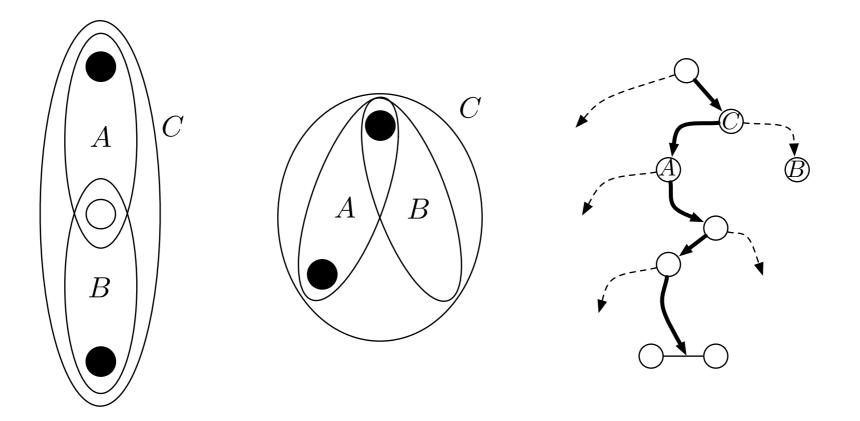


- Consider any subtree T(z) in T. Suppose z has left child c.
- T(z) is represented by a set S of O(log N) clusters in top tree (a subset of *off- path* clusters from the smallest cluster U containing T(z) to (z,c)).
- Let T(z') be a subtree repeat of T(z). Then T(z') is represented by a set S' of clusters in top tree identical to S.
- In DAG T(z') is compressed to a single edge. In top DAG T(z') each of the O(log N) clusters in S' are compressed to an edge.
- => Theorem: The top DAG has size $O(D \cdot \log N)$

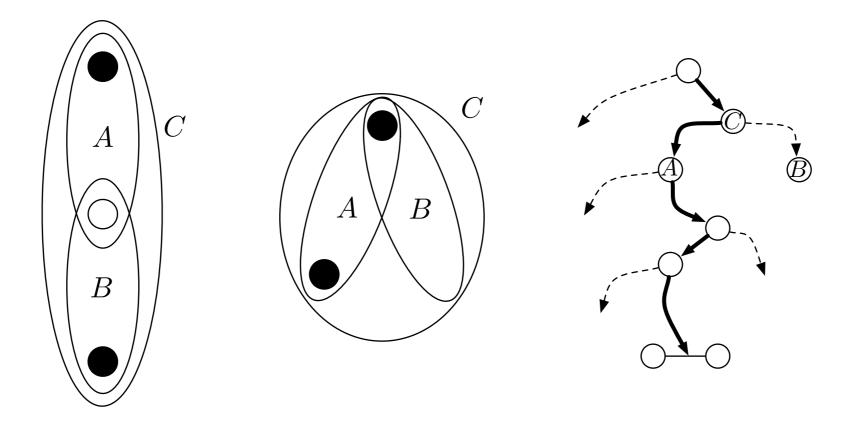
Compressed Navigation

- Identify nodes in T by preorder number.
- Theorem: Using O(n) space we can support the following operations in O(log N) time:
 - Access(x): Return the label associated with node x.
 - Decompress(x): Return the tree T(x).
 - Parent(x): Return the parent of node x.
 - Depth(x): Return the depth of node x.
 - Height(x): Return the height of node x.
 - Size(x): Return the number of nodes in T(x).
 - Firstchild(x): Return the first child of x.
 - NextSibling(x): Return the sibling immediately to the right of x.
 - LevelAncestor(x, i): Return the ancestor of x whose distance from x is i.
 - NCA(x, y): Return the nearest common ancestor of the nodes x and y

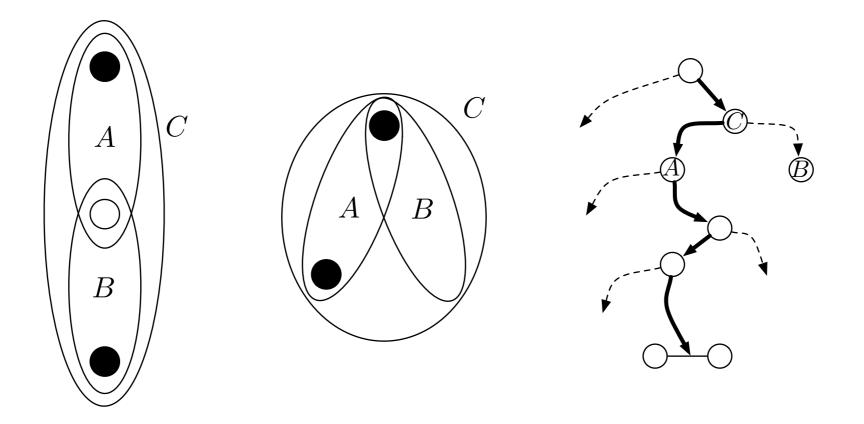




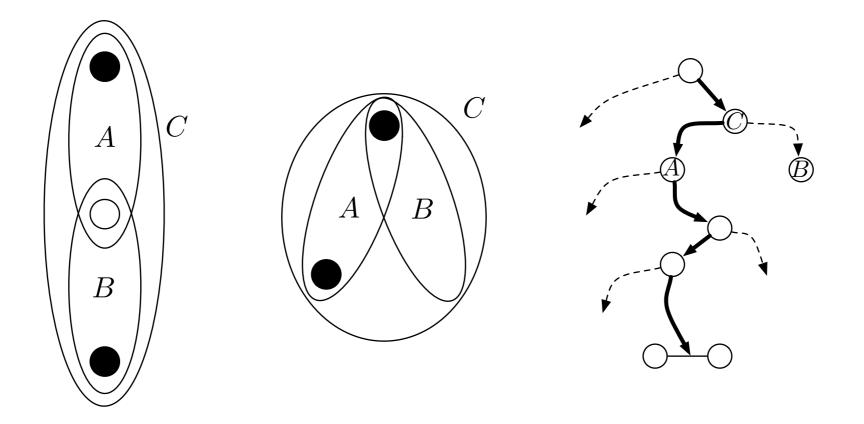
 Store O(1) space information in each node of top DAG (type of merge, height of cluster, size of cluster, ...)



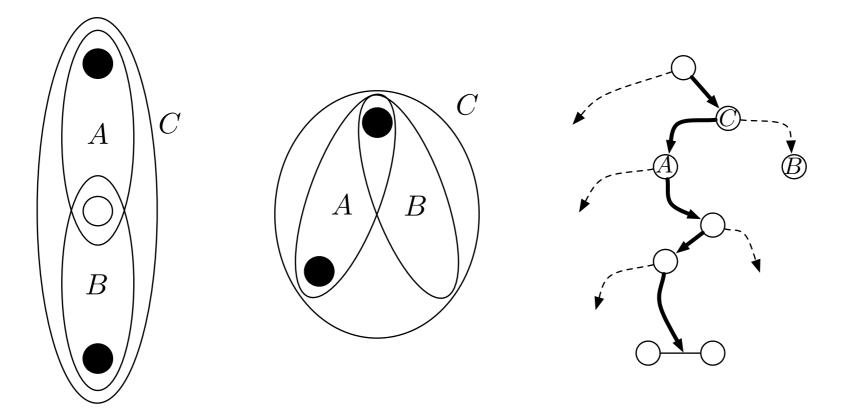
- Store O(1) space information in each node of top DAG (type of merge, height of cluster, size of cluster, ...)
- Implement operations with top down and bottom up recursive searches in top DAG.

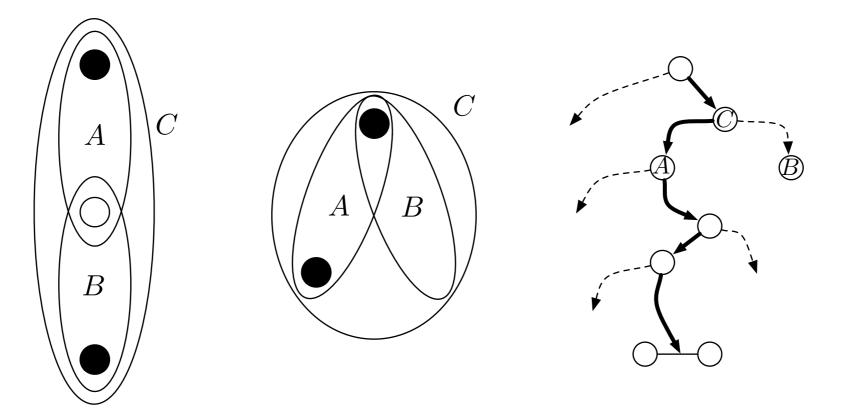


- Store O(1) space information in each node of top DAG (type of merge, height of cluster, size of cluster, ...)
- Implement operations with top down and bottom up recursive searches in top DAG.
- Identify nodes by maintaining *local preorder number* during searches.

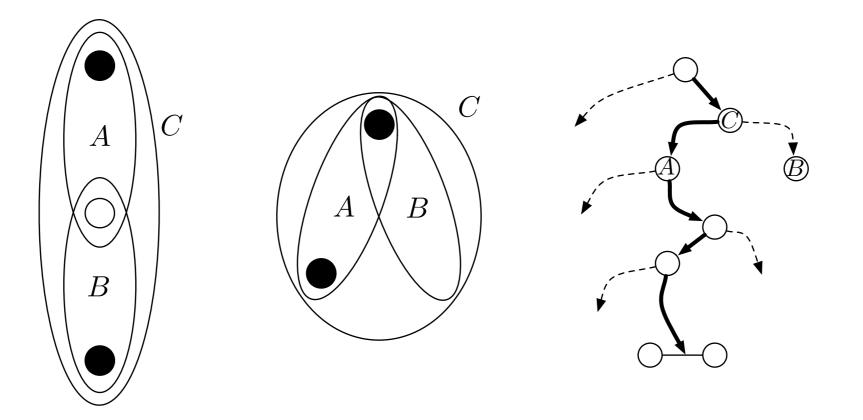


- Store O(1) space information in each node of top DAG (type of merge, height of cluster, size of cluster, ...)
- Implement operations with top down and bottom up recursive searches in top DAG.
- Identify nodes by maintaining *local preorder number* during searches.
- Use constant time in each node => O(log N) time for operation.

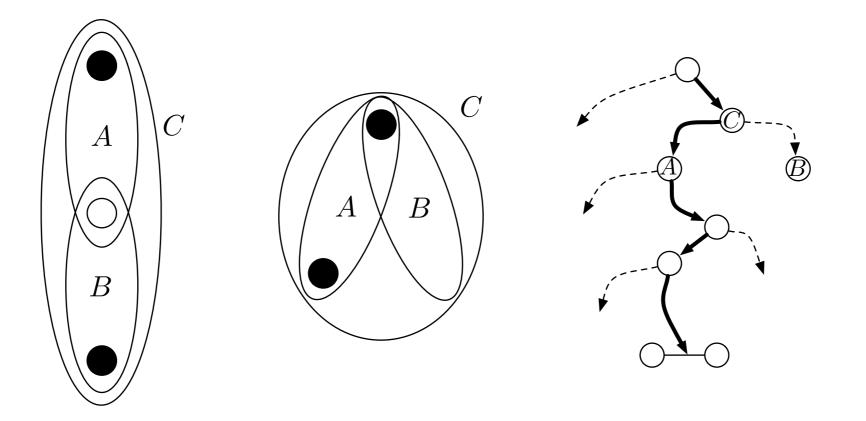




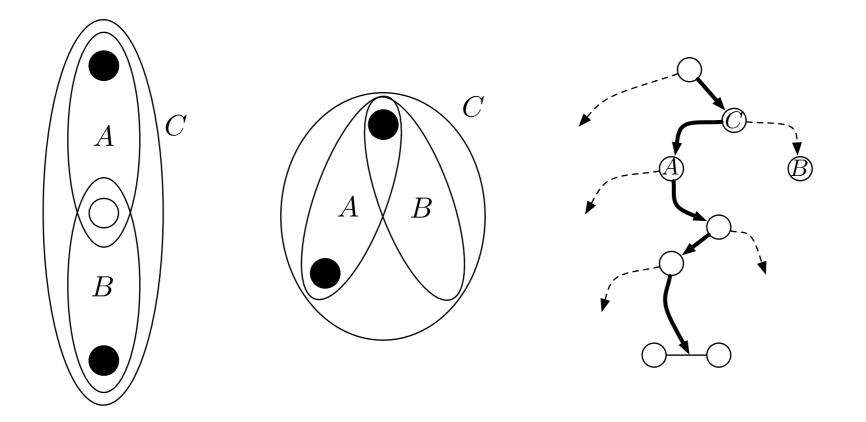
• NCA(x,y):



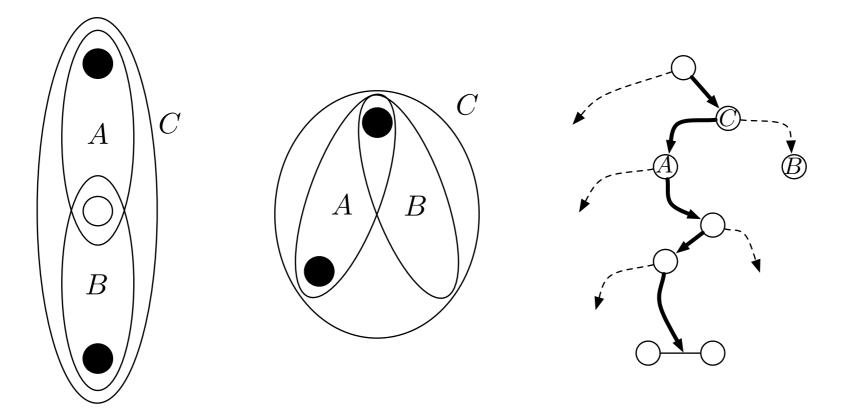
- NCA(x,y):
 - Top down search for x and y to find smallest cluster C containing x and y.

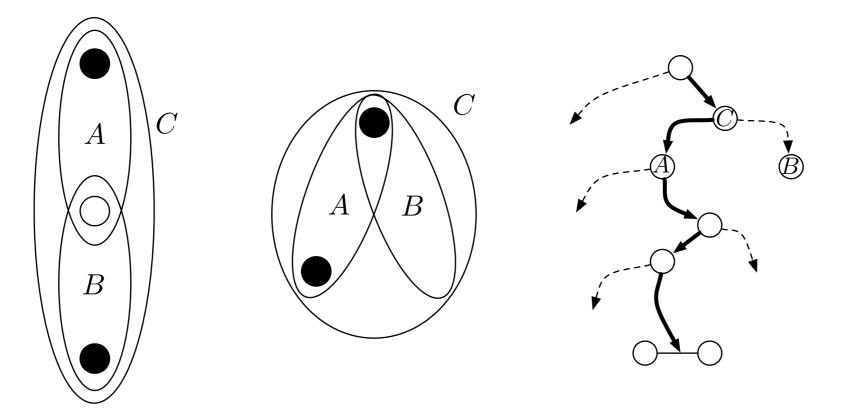


- NCA(x,y):
 - Top down search for x and y to find smallest cluster C containing x and y.
 - Retrieve local preorder number for NCA(x,y) in C.

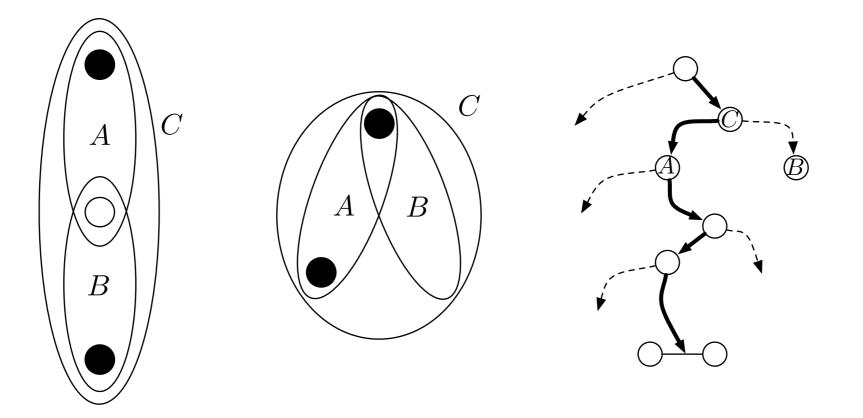


- NCA(x,y):
 - Top down search for x and y to find smallest cluster C containing x and y.
 - Retrieve local preorder number for NCA(x,y) in C.
 - Bottom up search to map local preorder number to global preorder number in T.

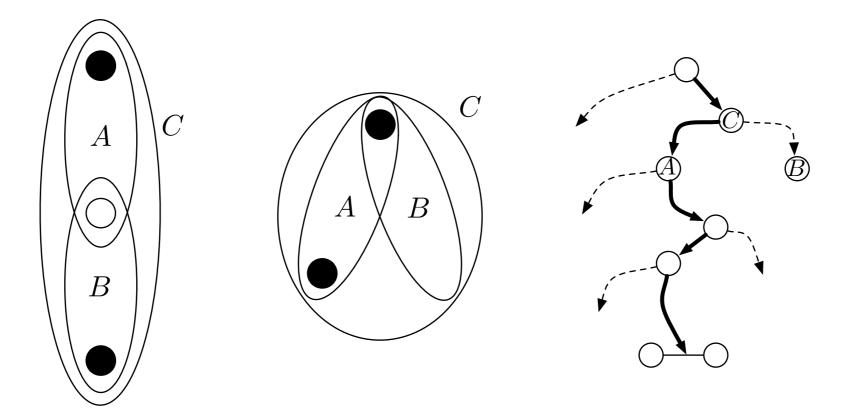




• Size(x)



- Size(x)
 - Top down search for x to find set of off-path cluster representing T(x).



- Size(x)
 - Top down search for x to find set of off-path cluster representing T(x).
 - Return sum of sizes of these cluster.

Summary and Open Problems

Summary and Open Problems

- Top tree compression
 - DAG compression of top tree
 - Compression ratio at least $(\log_{\sigma} N)^{0.19}$ and never more than a log N factor larger than DAG compression
 - Navigation in O(log N) time.

Summary and Open Problems

- Top tree compression
 - DAG compression of top tree
 - Compression ratio at least (log_σ N)^{0.19} and never more than a log N factor larger than DAG compression
 - Navigation in O(log N) time.
- Open problems
 - Improve (log_σ N)^{0.19} worst case compression ratio for top DAG compression.
 - Compressed pattern matching for trees compressed with repetitions.
 - Practical implementations.