
Information and Computation 243 (2015) 166–177
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Tree compression with top trees

Philip Bille a,1, Inge Li Gørtz a,2, Gad M. Landau b,3, Oren Weimann b,∗,4

a DTU Compute, Technical University of Denmark, Denmark
b Department of Computer Science, University of Haifa, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 August 2013
Available online 6 January 2015

Keywords:
Tree compression
Top trees
Pattern matching

We introduce a new compression scheme for labeled trees based on top trees. Our 
compression scheme is the first to simultaneously take advantage of internal repeats 
in the tree (as opposed to the classical DAG compression that only exploits rooted 
subtree repeats) while also supporting fast navigational queries directly on the compressed 
representation. We show that the new compression scheme achieves close to optimal 
worst-case compression, can compress exponentially better than DAG compression, is never 
much worse than DAG compression, and supports navigational queries in logarithmic time.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A labeled tree T is a rooted, ordered tree, where each node has a label from an alphabet Σ . Labeled trees appear in 
computer science as tries, dictionaries, parse trees, suffix trees, XML trees, etc. In this paper, we study compression schemes 
for labeled trees that take advantage of repeated substructures and support navigational queries, such as returning the label of 
a node v , the parent of v , the depth of v , the size v ’s subtrees, etc., directly on the compressed representation. We consider 
the following two basic types of repeated substructures (see Fig. 1). The first type is used in DAG compression [1,2] and the 
second in tree grammars [3–7].

Subtree repeat. A rooted subtree is a subgraph of T consisting of a node and all its descendants. A subtree repeat is an 
identical (both in structure and in labels) occurrence of a rooted subtree in T .

Tree pattern repeat. A tree pattern is any connected subgraph of T . A tree pattern repeat is an identical (both in structure 
and in labels) occurrence of a tree pattern in T .

In this paper, we introduce a simple new compression scheme, called top tree compression, that exploits tree pattern 
repeats. Compared to the existing techniques our compression scheme has the following advantages: Let T be a tree of 
size n with nodes labeled from an alphabet of size σ . We support navigational queries in O (log n) time (a similar result 
is not known for tree grammars), the compression ratio is in the worst case at least log0.19

σ n (no such result is known for 

* Corresponding author.
E-mail addresses: phbi@dtu.dk (P. Bille), inge@dtu.dk (I.L. Gørtz), landau@cs.haifa.ac.il (G.M. Landau), oren@cs.haifa.ac.il (O. Weimann).

1 Partially supported by the Danish Agency for Science, Technology and Innovation.
2 Partially supported by the Danish Agency for Science, Technology and Innovation.
3 Partially supported by the National Science Foundation Award 0904246, Israel Science Foundation grant 347/09, Yahoo, Grant No. 2008217 from the 

United States-Israel Binational Science Foundation (BSF) and DFG.
4 Partially supported by the Israel Science Foundation grant 794/13.
http://dx.doi.org/10.1016/j.ic.2014.12.012
0890-5401/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2014.12.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:phbi@dtu.dk
mailto:inge@dtu.dk
mailto:landau@cs.haifa.ac.il
mailto:oren@cs.haifa.ac.il
http://dx.doi.org/10.1016/j.ic.2014.12.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2014.12.012&domain=pdf


P. Bille et al. / Information and Computation 243 (2015) 166–177 167
Fig. 1. A tree T with a subtree repeat T ′ (left), and a tree pattern repeat T ′ (right).

either DAG compression or tree grammars), our scheme can compress exponentially better than DAG compression, and the 
compression ratio is never worse than DAG compression by more than a log n factor.

1.1. Previous work

The previous work on tree compression can be described by three major approaches: using subtree repeats, using tree 
pattern repeats, and using succinct data structures. Below we briefly discuss these approaches and the existing tree com-
pression schemes. Extensive practical work has recently been done on all these tree compression schemes (see e.g., the 
recent survey of Sakr [8]).

DAG compression. Using subtree repeats, a node in the tree T that has a child with subtree T ′ can instead point to any 
other occurrence of T ′ . This way, it is possible to represent T as a Directed Acyclic Graph (DAG). Over all possible DAGs 
that can represent T , the smallest one is unique and can be computed in O (n) time [9]. Its size can be exponentially 
smaller than n. DAG representation of trees are broadly used for identifying and sharing common subexpressions, e.g., in 
programming languages [10] and binary decision diagrams [11]. Compression based on DAGs has also been studied more 
recently in [1,2,12] and a Lempel–Ziv analog of subtree repeats was suggested in [13]. It is possible to support navigational 
queries [14] and path queries [1] directly on the DAG representation in logarithmic time. The problem with subtree repeats 
is that we can miss many internal repeats. Consider for example the case where T is a single path of n nodes with the 
same label. Even though T is highly compressible (we can represent it by just storing the label and the path length) it does 
not contain a single subtree repeat and its minimal DAG is of size n.

Tree grammars. Alternatively, tree grammars are capable of exploiting tree pattern repeats. Tree grammars generalize gram-
mars from deriving strings to deriving trees and were studied in [3–7]. Compared to DAG compression, a tree grammar 
can be exponentially smaller than the minimal DAG [6]. Unfortunately, computing a minimal tree grammar is NP-Hard [15], 
and all known tree grammar based compression schemes can only support navigational queries in time proportional to the 
height of the grammar which can be Ω(n).

Succinct data structures. A different approach to tree compression is succinct data structures that compactly encode trees. 
Jacobson [16] was the first to observe that the naive pointer-based tree representation using Θ(n log n) bits is wasteful. He 
showed that unlabeled trees can be represented using 2n + o(n) bits and support various queries by inspection of Θ(lg n)

bits in the bit probe model. This space bound is asymptotically optimal with the information-theoretic lower bound. Munro 
and Raman [17] showed how to achieve the same bound in the RAM model while using only constant time for queries. 
Such representations are called succinct data structures, and have been generalized to include a richer set of queries such 
as subtree-size queries [17,18] and level-ancestor queries [19]. For labeled trees, Ferragina et al. [20] gave a representation 
using 2n logσ + O (n) bits that supports basic navigational operations, such as find the parent of node v , the i’th child of v , 
and any child of v with label α. Ferragina et al. also introduced the notion of k’th order tree entropy Hk in a restricted 
model. In this model, used by popular XML compressors [21,22], the label of a node is a function of the labels of all its 
ancestors. For such a tree T , Ferragina et al. gave a representation requiring at most nHk(T ) + 2.01n + o(n) bits. Note that 
the above space bounds do not guarantee a compact representation when the input contains many subtree repeats or tree 
pattern repeats. In particular, the total space is never o(n) bits.

1.2. Our results

We propose a new compression scheme for labeled trees, which we call top tree compression. To the best of our knowl-
edge, this is the first compression scheme for trees that (i) takes advantage of tree pattern repeats (like tree grammars) 
but (ii) simultaneously supports navigational queries on the compressed representation in logarithmic time (like DAG com-
pression). In the worst case, we show that (iii) the compression ratio of top tree compression is always at least log0.19

σ n
(compared to the information-theoretic bound of logσ n). This is in contrast to both tree grammars and DAG compression 
that have not yet been proven to have worst-case compression performance comparable to the information-theoretic bound. 
Finally, we compare the performance of top tree compression to DAG compression. We show that top tree compression 
(iv) can compress exponentially better than DAG compression, and (v) is never worse than DAG compression by more than 
a log n factor.



168 P. Bille et al. / Information and Computation 243 (2015) 166–177
The key idea in top tree compression is to transform the input tree T into another tree T such that tree pattern 
repeats in T become subtree repeats in T . The transformation is based on top trees [23–25] – a data structure originally 
designed for dynamic (uncompressed) trees. After the transformation, we compress the new tree T using the classical DAG 
compression resulting in the top DAG T D. The top DAG T D forms the basis for our compression scheme. We obtain our 
bounds on compression (iii), (iv), and (v) by analyzing the size of T D, and we obtain efficient navigational queries (ii) by 
augmenting T D with additional data structures.

To state our bounds, let nG denote the total size (vertices plus edges) of the graph G . We assume a standard word RAM 
model of computation with logarithmic word size. All space complexities refer to the number of words used by the data 
structure. We first show the following worst-case compression bound achieved by the top DAG.

Theorem 1. Let T be any ordered tree with nodes labeled from an alphabet of size σ and let T D be the corresponding top DAG. Then, 
nT D = O (nT / log0.19

σ nT ).

This worst-case performance of the top DAG should be compared to the information-theoretic lower bound of 
Ω(nT / logσ nT ). This lower bound applies already for strings (so it clearly holds for labeled trees). It is obtained by simply 
noticing that there are Ω(σ nT ) string of length nT over an alphabet of size σ , implying a lower bound of Ω(nT logσ) bits 
or Ω(nT / logσ nT ) words. Note that with standard DAG compression the worst-case bound is Θ(nT ) since a single path is 
incompressible using subtree repeats.

Secondly, we compare top DAG compression to standard DAG compression.

Theorem 2. Let T be any ordered tree and let D and T D be the corresponding DAG and top DAG, respectively. For any tree T we have 
nT D = O (log nT ) · nD and there exist families of trees T such that nD = Ω(nT / log nT ) · nT D .

Thus, top DAG compression can be exponentially better than DAG compression (since it’s possible that nD = O (lognT )) 
and it is always within a logarithmic factor of DAG compression. To the best of our knowledge this is the first non-trivial 
bound shown for any tree compression scheme compared to the DAG.

Finally, we show how to represent the top DAG T D in O (nT D) space such that we can quickly answer a wide range of 
queries about T without decompressing.

Theorem 3. Let T be an ordered tree with top DAG T D. There is an O (nT D) space representation of T that supports Access, Depth, 
Height, Size, Parent, Firstchild, NextSibling, LevelAncestor, and NCA in O (lognT ) time. Furthermore, we can Decompress a subtree T ′
of T in time O (lognT + |T ′|).

The operations Access, Depth, Height, Size, Parent, Firstchild, and NextSibling all take a node v in T as input5 and return 
its label, its depth, its height, the size of its subtree, its parent, its first child, and its sibling to the right, respectively. The 
LevelAncestor returns an ancestor at a specified distance from v , and NCA returns the nearest common ancestor to a given 
pair of nodes. Finally, the Decompress operation decompresses and returns any rooted subtree.

2. Top trees and top DAGs

Top trees were introduced by Alstrup et al. [23–25] for maintaining an uncompressed, unordered, and unlabeled tree 
under link and cut operations. We extend them to ordered and labeled trees, and then introduce top DAGs for compression. 
Our construction is related to well-known algorithms for top tree construction, but modified for our purposes. In partic-
ular, we need to carefully order the steps of the construction to guarantee efficient compression, and we disallow some 
combination of cluster merges to ensure fast navigation.

2.1. Clusters

Let v be a node in T with children v1, . . . , vk in left-to-right order. Define T (v) to be the subtree induced by v and 
all proper descendants of v . Define F (v) to be the forest induced by all proper descendants of v . For 1 � s � r � k let 
T (v, vs, vr) be the tree pattern induced by the nodes {v} ∪ T (vs) ∪ T (vs+1) ∪ · · · ∪ T (vr).

A cluster with top boundary node v is a tree pattern of the form T (v, vs, vr), 1 � s � r � k. A cluster with top boundary 
node v and bottom boundary node u is a tree pattern of the form T (v, vs, vr) \ F (u), 1 � s � r � k, where u is a node in 
T (vs) ∪ · · · ∪ T (vr). Clusters can therefore have either one or two boundary nodes. For example, let p(v) denote the parent 
of v then a single edge (v, p(v)) of T is a cluster where p(v) is the top boundary node. If v is a leaf then there is no 
bottom boundary node, otherwise v is a bottom boundary node. Nodes that are not boundary nodes are called internal
nodes.

5 The nodes of T are uniquely identified by their preorder numbers. See Section 4.



P. Bille et al. / Information and Computation 243 (2015) 166–177 169
Fig. 2. Five ways of merging clusters. The • nodes are boundary nodes that remain boundary nodes in the merged cluster. The ◦ nodes are boundary nodes 
that become internal (non-boundary) nodes in the merged cluster. Note that in the last four merges at least one of the merged clusters has a top boundary 
node but no bottom boundary node.

Two edge disjoint clusters A and B whose vertices overlap on a single boundary node can be merged if their union 
C = A ∪ B is also a cluster. There are five ways of merging clusters, as illustrated in Fig. 2. Merges of type (a) and (b) can 
be done if the common boundary node is not a boundary node of any other cluster except A and B . Merges of type (c), (d), 
and (e) can be done only if at least one of A or B does not have a bottom boundary node. The original paper on top 
trees [23–25] contains more ways to merge clusters, but allowing these would lead to a violation of our definition of 
clusters as a tree pattern of the form T (v, vs, vr) \ F (u), which we need for navigational purposes.

2.2. Top trees

A top tree T of T is a hierarchical decomposition of T into clusters. It is an ordered, rooted, labeled, and binary tree 
defined as follows.

• The nodes of T correspond to clusters of T .
• The root of T corresponds to the cluster T itself.
• The leaves of T correspond to the edges of T . The label of each leaf is the pair of labels of the endpoints of its 

corresponding edge (u, v) in T . The two labels are ordered so that the label of the parent appears before the label of 
the child.

• Each internal node of T corresponds to the merged cluster of its two children. The label of each internal node is the 
type of merge it represents (out of the five merging options). The children are ordered so that the left child is the child 
cluster visited first in a preorder traversal of T .

2.3. Constructing the top tree

We now describe a greedy algorithm for constructing a top tree T of T that has height O (log nT ). The algorithm con-
structs the top tree T bottom-up in O (log nT ) iterations starting with the edges of T as the leaves of T . During the 
construction, T is a forest, and we maintain an auxiliary rooted ordered tree T̃ initialized as T̃ := T . The edges of T̃ will 
correspond to the nodes of T and to the clusters of T . The internal nodes of T̃ will correspond to boundary nodes of 
clusters in T , and the leaves of T̃ will correspond to a subset of the leaves of T .

In the beginning, these clusters represent actual edges (v, p(v)) of T . In this case, if v is not a leaf in T then v is the 
bottom boundary node of the cluster and p(v) is the top boundary node. If v is a leaf then there is no bottom boundary 
node.

In each one of the O (log nT ) iterations, a constant fraction of T̃ ’s edges (i.e., clusters of T ) are merged. Each merge is 
performed on two overlapping edges (u, v) and (v, w) of T̃ using one of the five types of merges from Fig. 2: If v is the 
parent of u and the only child of w then a merge of type (a) or (b) contracts these edges in T̃ into the edge (u, w). If v
is the parent of both u and w , and w or u are leaves, then a merge of type (c), (d), or (e) replaces these edges in T̃ with 
either the edge (u, v) or (v, w). In all cases, we create a new node in T whose two children are the clusters corresponding 
to (u, v) and to (v, w).

We prove below that a single iteration shrinks the tree T̃ (and the number of roots in T ) by a constant factor. The 
process ends when T̃ is a single edge. Each iteration is performed as follows:

Step 1: Horizontal Merges. For each node v ∈ T̃ with k � 2 children v1, . . . , vk , for i = 1 to �k/2�, merge the edges (v, v2i−1)

and (v, v2i) if v2i−1 or v2i is a leaf. If k is odd and vk is a leaf and both vk−2 and vk−1 are non-leaves then also merge 
(v, vk−1) and (v, vk).

Step 2: Vertical Merges. For each maximal path v1, . . . , v p of nodes in T̃ such that vi+1 is the parent of vi and v2, . . . , v p−1
have a single child: If p is even merge the following pairs of edges {(v1, v2), (v2, v3)}, {(v3, v4), (v4, v5)}, . . . , {(v p−2, v p−1)}. 



170 P. Bille et al. / Information and Computation 243 (2015) 166–177
If p is odd merge the following pairs of edges {(v1, v2), (v2, v3)}, {(v3, v4), (v4, v5)}, . . . , {(v p−3, v p−2)}, and if (v p−1, v p)

was not merged in Step 1 then also merge {(v p−2, v p−1), (v p−1, v p)}.

Lemma 1. A single iteration shrinks ̃T by a factor of c � 8/7.

Proof. Suppose that in the beginning of the iteration the tree T̃ has n nodes. Any tree with n nodes has at least (n + 1)/2
nodes with less than 2 children. Consider the edges (vi, p(vi)) of T̃ where vi has one or no children. We show that at least 
half of these n/2 edges are merged in this iteration. This will imply that n/4 edges of T̃ are replaced with n/8 edges and so 
the size of T̃ shrinks to 7n/8. To prove it, we charge each edge (vi, p(vi)) that is not merged to a unique edge f (vi, p(vi))

that is merged.

Case 1. Suppose that vi has no children (i.e., is a leaf). If vi has at least one sibling and (vi, p(vi)) is not merged it is 
because vi has no right sibling and its left sibling vi−1 has already been merged (i.e., we have just merged (vi−2, p(vi−2))

and (vi−1, p(vi−1)) in Step 1 where p(vi) = p(vi−1) = p(vi−2)). We also know that at least one of vi−1 and vi−2 must be 
a leaf. We set f (vi, p(vi)) = (vi−1, p(vi−1)) if vi−1 is a leaf, otherwise we set f (vi, p(vi)) = (vi−2, p(vi−2)).

Case 2. Suppose that vi has no children (i.e., is a leaf) and no siblings (i.e., p(vi) has only one child). The only reason for 
not merging (vi, p(vi)) with (p(vi), p(p(vi))) in Step 2 is because (p(vi), p(p(vi))) was just merged in Step 1. In this case, 
we set f (vi, p(vi)) = (p(vi), p(p(vi))). Notice that we haven’t already charged (p(vi), p(p(vi))) in Case 1 because p(vi) is 
not a leaf.

Case 3. Suppose that vi has exactly one child c(vi) and that (vi, p(vi)) was not merged in Step 1. The only reason for not 
merging (vi, p(vi)) with (c(vi), vi) in Step 2 is if c(vi) has only one child c(c(vi)) and we just merged (c(vi), vi) with 
(c(c(vi)), c(vi)). In this case, we set f (vi, p(vi)) = (c(vi), vi). Notice that we haven’t already charged (c(vi), vi) in Case 1
because c(vi) is not a leaf. We also haven’t charged (c(vi), vi) in Case 2 because vi has only one child. �

Since each iteration can be done in linear time and shrinks T̃ by a factor > 1 we obtain the following.

Corollary 1. Given a tree T , the greedy top tree construction creates a top tree of size O (nT ) and height O (lognT ) in O (nT ) time.

The next lemma follows from the construction of the top tree and Lemma 1.

Lemma 2. For any node c in the top tree corresponding to a cluster C of T , the number of nodes in the subtree T (c) is O (|C |).

2.4. Top DAGs

The top DAG of T , denoted T D, is the minimal DAG representation of the top tree T . It can be computed in O (nT ) time 
from T using the algorithm of [9]. The entire top DAG construction can thus be done in O (nT ) time.

3. Compression analysis

3.1. Worst-case bounds for top DAG compression

We now prove Theorem 1. Let T be an ordered tree with nT nodes labeled from an alphabet of size σ , let T be its 
top tree and T D be its top DAG. We call two rooted subtrees of T identical if they have the same structure and labels, 
otherwise they are called distinct. To show that the size of T D is at most O (nT / log0.19

σ nT ) is suffices to show that T has 
only O (nT / log0.19

σ nT ) distinct rooted subtrees.
Recall that each node in the top tree T corresponds to a cluster in T . A leaf of T corresponds to a cluster of a single 

edge of T and is labeled by this edges endpoints (so there are O (σ 2) possible labels). An internal node is labeled by the 
type of merge that formed it (there are five merging options so there are five possible labels).

The bottom-up construction of T starts with the leaves of T . By Lemma 1 each level in the top tree reduces the number 
of clusters by a factor c = 8/7, while at most doubling the size of the current clusters (the size of a cluster is the number 
of nodes in the corresponding tree pattern). After round i we are therefore left with at most O (nT /ci) clusters, each of size 
at most 2i + 1.

To bound the total number of distinct rooted subtrees, we partition the clusters into small clusters and large clusters. The 
small clusters are those created in rounds 1 to j = log2(0.5 log4σ 2 (nT )) = O (log2 logσ nT ) and the large clusters are those 
created in the remaining rounds from j + 1 to h. The total number of large clusters is at most

h∑
O

(
nT /ci) = O

(
nT /c j+1) = O

(
nT /log0.19

σ nT
)
.

i= j+1



P. Bille et al. / Information and Computation 243 (2015) 166–177 171
In particular, there are at most O (nT / log0.19
σ nT ) nodes of T that correspond to large clusters. So clearly there are at most 

O (nT / log0.19
σ nT ) distinct subtrees rooted at these nodes.

Next, we bound the total number of distinct subtrees of T rooted at nodes corresponding to small clusters. Each such 
subtree is of size at most 2 j + 1 and is a binary tree whose nodes have labels from an alphabet of size at most σ 2 + 5. The 
total number of distinct labeled binary trees of size at most x is given by

x∑
i=1

(
σ 2 + 5

)i · Ci−1 =
x∑

i=1

O
((

σ 2 + 5
)i · 4i) = O

((
4σ 2)x+1)

,

where Ci denotes the ith Catalan number. Since x = 2 j + 1, this number is bounded by O ((4σ 2)2 j+2) = O (σ 4√nT ) =
O (n3/4

T ). In the last equality we assumed that σ < n1/16
T . If σ > n1/16

T then the lemma trivially holds because 
O (nT /(log0.19

σ nT )) = O (nT ). We get that the total number of distinct subtrees of T rooted at small clusters is therefore 
also O (nT / log0.19

σ nT ). This completes the proof of Theorem 1.

3.2. Comparison to subtree sharing

We now prove Theorem 2. To do so we first show two useful properties of top trees and top DAGs.
Let T be a tree with top tree T . For any internal node z in T , we say that the subtree T (z) is represented by a set 

of clusters {C1, . . . , C�} from T if T (z) = C1 ∪ · · · ∪ C� . Here G = X1 ∪ · · · ∪ X� denotes the graph with node set V (G) =⋃
i=1,...,k V (Xi) and edge set E(G) = ⋃

i=1,...,k E(Xi). Since each edge in T is a cluster in T we can always trivially represent 
T (z) by at most |T (z)| − 1 clusters. We prove that there always exists a set of clusters, denoted Sz , of size O (log nT ) that 
represents T (z).

Let z be any internal node in T and let z1 be its leftmost child. Since z is internal we have that z is the top boundary 
node of the leaf cluster Lz = (z, z1) in T . Let U be the smallest cluster in T containing all nodes of T (z). We have that Lz
is a descendant leaf of U in T . Consider the path P z in T from U to Lz . An off-path cluster of P z is a cluster C that is not 
on P z , but whose parent cluster is on P z . We define

Sz = {
C

∣∣ C is off-path cluster of P z and the tree pattern C is a subtree of T (z)
} ∪ {Lz}.

Since the length of P z is O (log nT ) the number of clusters in Sz is O (log nT ). We want to prove that 
⋃

C∈Sz
C = T (z). By 

definition of Sz we have that all nodes in 
⋃

C∈Sz
C are in T (z). For the other direction, we first prove the following lemma. 

Let E(C) denote the set of edges in T of a cluster C .

Lemma 3. Let C be an off-path cluster of P z. Then either E(C) ⊆ E(T (z)) or E(C) ∩ E(T (z)) = ∅.

Proof. We will show that any cluster in T containing edges from both T (z) and T \ T (z) contains both (p(z), z) and (z, z1), 
where z1 is the leftmost child of z and p(z) is the parent of z. Let C be a cluster containing edges from both T (z) and 
T \ T (z). Consider the subtree T (C) and let C ′ be the smallest cluster in T (C) containing edges from both T (z) and T \ T (z). 
That is, C ′ is the cluster found by descending down from C towards a child with both types of edges as long as such a child 
exists. Then C ′ must be a merge of type (a) or (b), where the higher cluster A only contains edges from T \ T (z) and the 
bottom cluster, B , only contains edges from T (z). Also, z is the top boundary node of B and the bottom boundary node 
of A. Clearly, A contains the edge (p(z), z), since all clusters are connected tree patterns. A merge of type (a) or (b) is only 
possible when B contains all children of its top boundary node. Thus B contains the edge (z, z1). It follows that C ′ (and 
therefore C since it is an ancestor of C ′) contains both (p(z), z) and (z, z1).

We have Lz = (z, z1) and therefore all clusters in T containing (z, z1) lie on the path from Lz to the root. The path P z is 
a subpath of this path, and thus no off-path clusters of P can contain (z, z1). Therefore no off-path clusters of P can contain 
edges from both T (z) and T \ T (z). �

Any edge from T (z) (except (z, z1)) contained in a cluster on P must be contained in an off-path cluster of P . Lemma 3
therefore implies that T (z) = ⋃

C∈Sz
C and the following corollary.

Corollary 2. Let T be a tree with top tree T . For any internal node z in T , the subtree T (z) can be represented by a set of O (lognT )

clusters in T .

Next we prove that our bottom-up top tree construction guarantees that two identical subtrees T (z), T (z′) are rep-
resented by two identical sets of clusters Sz, Sz′ . Two sets of clusters are identical (denoted Sz = Sz′ ) if there is a 1–1
correspondence between the clusters in Sz and Sz′ , such that two clusters mapped to each other are identical tree patterns 
in T (have the same structure and labels).

Lemma 4. Let T be a tree with top tree T . Let T (z) and T (z′) be identical subtrees in T . Then, Sz = Sz′ .



172 P. Bille et al. / Information and Computation 243 (2015) 166–177
Proof. Consider the tree T̃ at some iteration of the construction of the top tree. We will say that an edge e in T̃ belongs to
T (z) (resp. T (z′)) if the cluster corresponding to e only contains edges from T (z) (resp. T (z′)) in the original tree. Let Lz be 
the cluster in T̃ containing the edge L = (z, z1), where z1 is the leftmost child of z. Define Lz′ similarly.

We will say that a cluster C 
= Lz is added to Sz in the iteration where its parent on P z is created, and we say that Lz is 
added to Sz right before the first round. Similarly for clusters in Sz .

We will show that new clusters only are added to Sz (resp. Sz′ ) if Lz (resp. Lz′ ) is merged with an edge belonging to 
T (z) (resp. T (z′)), and that these merges are identical for the two subtrees in each iteration.

Recall that U is the smallest cluster in T containing all nodes of T (z) and that P is the path of clusters in T from U
to L. By definition, all clusters on the path P contain L. This implies that new off-path clusters are only constructed when Lz
(resp. Lz′ ) is merged. Merges of identical edges belonging to T (z) and T (z′) are the same in the two subtrees of T̃ , since we 
merge first horizontally, and then vertically bottom-up. By the same argument if Lz is merged with an edge belonging to 
T (z) then Lz′ is merged with the corresponding edge from T (z′). For a merge with an edge belonging to T (z) (resp. T (z′)) 
and an edge not belonging to T (z) (resp. T (z′)), one of the edges must be Lz (resp. Lz′ ). If Lz is merged in this iteration, 
but Lz′ is not, then Lz is merged with an edge not belonging to T (z) (and vice versa). Thus, after the iteration all edges 
belonging to T (z) in T̃ are identical to the edges belonging to T (z′) in T̃ .

New off-path clusters are only constructed when Lz (resp. Lz′ ) are merged. It only adds new clusters to Sz (resp. Sz′ ) if 
it is a merge with an edge belonging to T (z) (resp. T (z′)). Since these merges are identical for the two subtrees in each 
iteration, and Lz is merged with an edge belonging to T (z) iff Lz′ is merged with the corresponding edge belonging to T (z′), 
we have Sz = Sz′ . �
Theorem 4. For any tree T , nT D = O (log nT ) · nD .

Proof. Denote an edge in the DAG as shared if it is in a shared subtree of T . We denote the edges in the DAG D that are 
shared as red edges, and the edges that are not shared as blue. Let rD and bD be the number of red and blue edges in the 
DAG D , respectively.

A cluster in the top tree T is red if it only contains red edges from D , blue if it only contains blue edges from D , and 
purple if it contains both. Since clusters are connected subtrees we have the property that if cluster C is red (resp. blue), 
then all clusters in the subtree T (C) are red (resp. blue). Let r, b, and p be the number of red, blue, and purple clusters in 
the top DAG T D, respectively.

First we bound the number of red clusters in the top DAG T D. Consider a shared subtree T (z) from the DAG com-
pression. T (z) is represented by at most O (log nT ) clusters in T , and all these contain only edges from T (z). Thus all the 
clusters in Sz are red. It follows from Lemma 4 that all the clusters representing T (z) (and their subtrees in T ) are identical 
for all copies of T (z). Therefore each of these will appear only once in the top DAG T D.

The clusters representing T (z) are edge-disjoint connected subtrees of T (z). It follows from Lemma 2 that |T (C)| =
O (|C |) for each cluster in Sz . Therefore the total size of the subtrees of the clusters representing T (z) in T is O (|T (z)|). As 
argued above these are only represented once in the top DAG T D. Thus the number of red clusters r = O (rD).

To bound the number of blue clusters in the top DAG, we first note that the blue clusters form rooted subtrees in the 
top tree. Let C be the root of such a blue subtree in T . Then C is a connected component of blue edges in T . It follows 
from Lemma 2 that |T (C)| = O (|C |). Thus the number of blue clusters b = O (bD).

It remains to bound the number p of purple clusters (clusters containing both shared and non-shared edges). The number 
of purple clusters in the top DAG T D is bounded by the number of purple clusters in the top tree T . For any purple 
cluster we have that all its ancestors in T are also purple. Consider the set P of purple clusters in T that have no purple 
descendants. Each of the clusters in P have a blue leaf cluster in its subtree. These blue leaf clusters are all distinct, and 
since the corresponding edges are not shared in the DAG D , we have |P | � bD . Each cluster in P is the endpoint of a purple 
path from the root (and the union of these paths contains all purple clusters in T ). Since the height of T is O (log nT )

the number of nodes on each path is at most O (log nT ). It follows that the number of purple clusters in T (and thus also 
in T D) is at most |P | · O (log nT ) = O (bD log nT ).

The number of edges in the T D is thus b + r + p = O (bD + rD + bD log nT ) = O (nD log nT ). �
Lemma 5. There exist trees T , such that nD = Ω(nT / log nT ) · nT D .

Proof. Caterpillars and paths (where all nodes have identical labels) have nT D = O (log nT ), whereas nD = nT (see 
Fig. 3). �
4. Supporting navigational queries

In this section we prove Theorem 3. Let T be a tree with top DAG T D. To uniquely identify nodes of T we refer to them 
by their preorder numbers. For a node of T with preorder number x we want to support the following queries.

Access(x): Return the label associated with node x.
Decompress(x): Return the tree T (x).



P. Bille et al. / Information and Computation 243 (2015) 166–177 173
Fig. 3. A top DAG T D and a DAG D(T ) of (a) a path and (b) a complete binary tree. All labels are identical. On a path (and also a caterpillar and a star) 
the size of T D is O (lognT ) whereas the size of D(T ) is O (nT ). On a complete binary tree (b) both T D and D(T ) are of size O (lognT ).

Parent(x): Return the parent of node x.
Depth(x): Return the depth of node x.
Height(x): Return the height of node x.
Size(x): Return the number of nodes in T (x).
Firstchild(x): Return the first child of x.
NextSibling(x): Return the sibling immediately to the right of x.
LevelAncestor(x, i): Return the ancestor of x whose distance from x is i.
NCA(x, y): Return the nearest common ancestor of the nodes x and y.

4.1. The data structure

In order to enable the above queries, we augment the top DAG T D of T with some additional information. Consider 
a cluster C in T D. Recall that if C is a leaf in T D then C is a single edge in T and C stores the labels of this edge’s 
endpoints. Otherwise, C is a cluster of T obtained by merging two clusters: the cluster A corresponding to C ’s left child 
and the cluster B corresponding to C ’s right child. Consider a preorder traversal of C . Let �(B) denote the first node visited 
in this traversal that is also a node in B . Let r(B) (resp. r(A)) denote the last node visited that is also a node in B (resp. 
in A). We augment each cluster C with:

• The integers r(A), �(B), and r(B).
• The type of merge that was applied to A and B to form C . If C is a leaf cluster then the labels of its corresponding 

edge’s endpoints in T .
• The height and size of C (i.e., of the tree pattern C in T ).
• The distance from the top boundary node of C to the top boundary nodes of A and B .

Since we use constant space for each cluster of T D, the total space remains O (nT D).

Local preorder numbers. All of our queries are based on traversals of the augmented top DAG T D. During the traversal we 
identify nodes by computing preorder numbers local to the cluster that we are currently visiting. Specifically, let u be a 
node in the cluster C . Define the local preorder number of u, denoted uC , to be the position of u in a preorder traversal of C . 
The following lemma states that in O (1) time we can compute u A and uB from uC and vise versa.

Lemma 6. Let c be an internal node of T D that corresponds to the cluster C of T obtained by merging the cluster A (corresponding to 
c’s left child) and the cluster B (corresponding to c’s right child). For any node u in C , given uC we can tell in constant time if u is in A
(and obtain u A ) in B (and obtain uB ) or in both. Similarly, if u is in A or in B we can obtain uC in constant time from u A or uB .

Proof. If C is a merge of A and B of type (a) or (b) then

• uC = 1 iff u is the top boundary node of A and C and u A = 1.
• uC ∈ [2, �(B) − 1] iff u is an internal node of A and u A < l(B). In this case u A = uC .
• uC = �(B) iff u is the shared boundary node of A and B , u A = �(B), and uB = 1.
• uC ∈ [�(B) + 1, r(B)] iff u is an internal node in B . In this case uB = uC − �(B) + 1.
• uC ∈ [r(B) + 1, r(A)] iff u is an internal node in A and u A > l(B). In this case u A = uC − r(B) + �(B).



174 P. Bille et al. / Information and Computation 243 (2015) 166–177
Otherwise, if C is a merge of A and B of type (c), (d), or (e) then

• uC = 1 iff u is the shared boundary node of A, B , and C and u A = uB = 1.
• uC ∈ [2, r(A)] iff u is an internal node in A. In this case u A = uC .
• uC ∈ [r(A) + 1, r(B)] iff u is an internal node in B . In this case uB = uC − r(A) + 1. �

4.2. Implementation of the procedures

We now show how to implement the queries using local preorder numbers in top-down and bottom-up traversals of 
T D.

4.2.1. Access and depth
The queries Access(x) and Depth(x) ask for the label and depth of the node whose preorder number in T is x. They are 

both performed by a single top-down search of T D starting from its root and ending with the leaf cluster containing x. 
Since the depth of T D is O (log nT ) the total time is O (log nT ).

Access. At each cluster C on the top-down search we compute the local preorder number xC . Initially, the root cluster 
corresponds to the entire T so we set xT = x. Let C be a cluster on the way. If C is a leaf cluster we return the label of the 
top boundary node if xC = 1 and the label of the single internal node if xC = 2. If on the other hand C is an internal cluster 
with child clusters A and B , we continue the search in the child cluster containing xC . We compute the new local preorder 
number according to Lemma 6. If xC is the shared boundary node between A and B we continue the search in either A
or B .

Depth. The only difference between Depth(x) and Access(x) is that during the top-down search we also sum the distances 
between the top boundary nodes of the visited clusters. Let d be this distance. At the leaf cluster at the end of the search 
we return d if xC = 1 and d + 1 if xC = 2. Since the distances are stored the total time remains O (log nT ).

4.2.2. Firstchild, level ancestor, parent, and NCA
We answer these queries by a top-down search to find the local preorder number in a relevant cluster C , and then a 

bottom-up search to compute the corresponding preorder number in T .

Firstchild. We compute Firstchild(x) in two steps.

Step 1: Top-down Search. We do a top-down search to find the first cluster with top boundary node x. We use local preorder 
numbers as in the algorithm for Access. Let C be a cluster in the search. If xC = 1 we stop the search. Otherwise we know 
that xC > 1. If C is a leaf cluster we stop and report that x does not have a first child since it is a leaf in T . If on the other 
hand C is an internal cluster with child clusters A and B , we continue the search in the child cluster containing xC . If xC

is the shared boundary node between A and B we always continue the search in B . This ensures that we continue to the 
cluster containing the children of x (recall that B is the deeper cluster in merges of type (a) and (b)). Combined with the 
condition that we stop the search in the first cluster C where x is the top boundary node (and therefore the last merge 
before we stop must be of type (a) or (b)), this implies that all children of x are in C .

Step 2: Bottom-up Search. Let C be the cluster found in Step 1. Since all children of x are in C , the node with local preorder 
number 2 in C is the first child of x. We do a bottom-up search from C to the root cluster to compute the preorder number 
in T of the node with xC = 2.

Level Ancestor and Parent. Notice that Parent(x) can be computed as LevelAncestor(x, 1). Since LevelAncestor(x, 0) = x we focus 
on LevelAncestor(x, i) for i � 1. This is done in three steps:

Step 1: Compute Depth. Compute the depth of LevelAncestor(x, i) as d = Depth(x) − i.

Step 2: Top-down Search. We do a top-down search to find the cluster with top boundary node y of depth d such that x is 
a descendant of y (we will show that such a cluster exists). During the search we maintain the depth of the current top 
boundary node as in the algorithm for Depth. At each cluster C in the search we also compute a local preorder number x′

C
to guide the search. The idea is that x′

C either corresponds to x or to an ancestor of x within C . Initially, for the root cluster 
T we set x′

T = x. Let C be an internal cluster in the search with top boundary node v and with children A and B . If the 
depth of v is d we stop the search. Otherwise, we proceed as follows.

1. If C is of type (a) or (b), x′
C is in B , and the shared boundary node of A and B has depth > d, we continue the search 

in A and set x′
A to be the bottom boundary of A.

2. In all other cases, we continue the search in the child cluster containing x′
C , and compute the new local preorder 

number for x′ .
C



P. Bille et al. / Information and Computation 243 (2015) 166–177 175
Note that if the shared boundary node in case 1 has depth d we continue the search in B . Combined with the assumption 
that i > 0, it inductively follows that y becomes the top boundary node at some cluster during the top-down search. Hence, 
at some cluster in the top-down search the depth of the top boundary node is d.

Step 3: Bottom-up Search. Let C be the cluster whose top boundary node v has depth d found in Step 2. We do a bottom-up 
search to compute the preorder number of v in T . Finally, we report the result as y.

Nearest Common Ancestor. We compute NCA(x, y) in the following steps. We assume w.l.o.g. that x 
= y in the following since 
NCA(x, x) = x.

Step 1: Top-down Search. We do a top-down search to find the first cluster, whose top boundary node is nca(x, y) (this cluster 
always exists since x 
= y). At each cluster C in the search we compute local preorder numbers x′

C and y′
C . The idea is that 

x′
C and y′

C are either x or y or ancestors of x and y and their depth is at least the depth of nca(x, y). Initially, for the root 
cluster T we set x′

T = x and y′
T = y. Let C be a cluster visited during the search. If C is a leaf cluster we stop the search. 

Otherwise, C is an internal cluster with children A and B . We proceed as follows.

1. If x′
C and y′

C are in the same child cluster, we continue the search in that cluster, and compute new local preorder 
numbers for x′

C and y′
C .

2. If C is of type (a) or (b) and x′
C and y′

C are in different child clusters we continue the search in A. We update the local 
preorder number of the node in B to be the bottom boundary of A.

3. If C is of type (c), (d), or (e) and x′
C and y′

C are in different child clusters we stop the search.

Step 2: Bottom-up Search. Let C be the cluster computed in Step 1. We do a bottom-up search to compute the preorder 
number of the top boundary node of C in the entire tree T , and return the result.

4.2.3. Decompress, height, size, and next sibling
To answer these queries, the key idea is to compute a small set of clusters representing T (x). This set will be a subset 

of the set Sx defined in Section 3.2 and will contain all the relevant information.
We need the following definitions. Let u be a node in T . We say that u is on the spine path in a cluster C if u is the top 

boundary node in C , or u is on the path from the top boundary node in C to the bottom boundary node in C . Since clusters 
are connected subtrees we immediately have the following.

Lemma 7. Let C = A ∪ B be a cluster with left child A and right child B. A node u in T is on the spine path of C iff one of the following 
cases are true:

• C is of type (c) and u is on the spine path in A.
• C is of type (d) and u is on the spine path in B.
• C is of type (a) and u is on the spine path in A or B.
• u is the top boundary node of C.

Let x be any internal node in T . As in Section 3.2, let L be the leftmost leaf cluster in T D such that x is the top boundary 
node and let P be the path of clusters from the smallest cluster U containing all nodes of T (x) to L. We also define M
to be the highest cluster on P that has x as the top boundary node, i.e., M is the highest cluster on P that only contains 
edges from T (x). Recall that Sx is the set of O (log nT ) off-path clusters of P that represent T (x). We partition Sx into the 
set Ŝx that contains all clusters in Sx that are descendants of M and the set qSx that contains the remaining clusters. We 
characterize these sets as follows.

Lemma 8. Let B be an off-path cluster of P with parent C and sibling A. Then

1. B is in ̂Sx iff B is a descendant of M.
2. B is in qSx iff C is a merge of type (a) or (b), B is the right child of C , and x is on the spine path of A.

Proof. For the first property, first note that if B is in ̂Sx it is by definition a descendant of M . Conversely, if B is a descendant 
of M , we have that E(B) ⊆ E(M) ⊆ E(T (x)). By definition of Ŝx , we have that B is in Ŝx .

Next consider property 2. Suppose that B is in qSx . Then, by Lemma 3 and the definition of Sx we have that E(B) ⊆
E(T (x)). Furthermore, since C is a proper ancestor of M , C contains edges from both T (x) and T \ T (x), and therefore A
must also contain edges from both T and T \ T (x).

Assume for contradiction that C is of type (c), (d), or (e). Then, the top boundary node v of C is also the top boundary 
node in A and B . Since x 
= v by definition of M , we have by Lemma 3 that E(B) ∩ E(T (x)) = ∅ and thus B cannot be in qSx .

Hence, assume that C is of type (a) or (b). Assume for contradiction that B is the left child of C . Since all clusters on 
P contain E(L) and C contains edges from both T (x) and T \ T (x), we have that the top boundary node of B is a proper 
ancestor of x. Hence, B cannot be in qSx .



176 P. Bille et al. / Information and Computation 243 (2015) 166–177
Finally, if B is of type (a) or (b) and is the right child of C , then E(B) ⊆ E(T (x)) iff the top boundary node v of B is 
a descendant of x. But v is a descendant of x iff x is on the spine path of A. Hence, B is in qSx iff x is on the spine path 
of A. �

In the following we show how to efficiently compute qSx using the procedure FindRepresentatives. We then use 
FindRepresentatives to implement the remaining procedures.

FindRepresentatives. Procedure FindRepresentatives(x) computes the set qSx and cluster M in two steps.

Step 1: Top-down Search. We do a top-down search to find the cluster M , i.e., the highest cluster on P that has x as the top 
boundary node. If no such node exists, then x is a leaf node in T .

Step 2: Bottom-up Search. We do a bottom-up search from M and add clusters according to Lemma 8 as follows. Initially, set 
S = ∅. Let A be a cluster on the path with sibling B and parent C .

1. If C is of type (a) or (b) and A is the left child of C , add B to S .
2. If one of the following conditions are true, stop the traversal:

• C is of type (c) and A is the right child of C .
• C is of type (d) and A is the left child of C .
• C is of type (e) or (b).

Note that, as long as we continue the bottom-up search and consider clusters on the path, we have that x is on the spine 
path of these clusters. This is because we continue the bottom-up search according to the cases of Lemma 7. It follows from 
Lemma 8 that the clusters we add to S are exactly the clusters in the set representing T (x). The total time is O (log nT ).

Decompress. To compute Decompress(x), we use FindRepresentatives(x) to compute the sets of cluster qSx and M . We con-
struct T (x) from qSx (and M) and the path P computed during the traversal of T D. First, we decompress all clusters in qSx
(and M) by unfolding their subDAG and constructing their corresponding subtree of T . We then combine these subtrees 
using the merge information stored for each cluster in P .

In total we use O (log nT ) time for FindRepresentatives(x) and computing the path P . The total time to decompress a 
cluster T D by unfolding is linear in its size. Hence, the total time used is O (log nT + |T (x)|).

Height. First we compute the set of clusters qSx and cluster M using FindRepresentatives(x). Define the local height of a cluster 
to be the length of the path from the top boundary node to the bottom boundary node if it is an internal cluster, and the 
height of the cluster if it is a leaf cluster. We compute the height of T (x) as the sum of the local heights of all clusters in qSx
plus the height of M . This correctly computes the height since all clusters in qSx are merged with their siblings by type (a) 
or (b). Since the height and the distance from top boundary node to bottom boundary node for each cluster in T D is stored 
we use O (log nT ) time in total.

Size. Similar to height. We sum the sizes of clusters in qSx and M and subtract |qSx| (to exclude shared boundary nodes). This 
also uses O (log nT ) time.

Nextsibling. We compute NextSibling(x) directly from Size(x) since NextSibling(x) = x + Size(x).

5. Conclusion and open problems

We have presented the new top tree compression scheme, and shown that it achieves close to optimal worst-case 
compression, can compress exponentially better than DAG compression, is never much worse than DAG compression, and 
supports navigational queries in logarithmic time. We conclude with some open problems.

• Surprisingly, top tree compression is the first compression scheme for trees that achieves any provable non-trivial 
compression guarantee compared to the classical DAG compression. We wonder how other tree compression schemes 
compare to DAG compression and if it is possible to construct a tree compression scheme that exploits tree pattern 
repeats and always compresses better than a logarithmic factor of the DAG compression.

• Pattern matching in compressed strings is a well-studied and well-developed area with numerous results, see e.g., the 
surveys [26–28]. Pattern matching in compressed trees (especially within tree compression schemes that exploit tree 
pattern repeats) is a wide open area.

• We wonder if top tree compression is practical. In preliminary experiments we have compared our top DAG compression 
with standard DAG compression on typical XML datasets that were previously used in papers on DAG compression. The 
experiments match our theoretical expectations, i.e., that most trees compress better with top tree compression, and 
only balanced trees compress slightly better with standard DAG compression.

Acknowledgment

We would like to thank the anonymous reviewer for the important and helpful comments.



P. Bille et al. / Information and Computation 243 (2015) 166–177 177
References

[1] P. Buneman, M. Grohe, C. Koch, Path queries on compressed XML, in: Proc. 29th VLDB, 2003, pp. 141–152.
[2] M. Frick, M. Grohe, C. Koch, Query evaluation on compressed trees, in: Proc. 18th LICS, 2003, pp. 188–197.
[3] G. Busatto, M. Lohrey, S. Maneth, Grammar-based tree compression, Tech. rep., EPFL, 2004.
[4] G. Busatto, M. Lohrey, S. Maneth, Efficient memory representation of XML document trees, Inf. Syst. 33 (4–5) (2008) 456–474.
[5] M. Lohrey, S. Maneth, R. Mennicke, Tree structure compression with repair, Arxiv preprint, arXiv:1007.5406.
[6] M. Lohrey, S. Maneth, The complexity of tree automata and XPath on grammar-compressed trees, Theor. Comput. Sci. 363 (2) (2006) 196–210.
[7] S. Maneth, G. Busatto, Tree transducers and tree compressions, in: Proc. 7th FOSSACS, 2004, pp. 363–377.
[8] S. Sakr, XML compression techniques: a survey and comparison, J. Comput. Syst. Sci. 75 (5) (2009) 303–322.
[9] P.J. Downey, R. Sethi, R.E. Tarjan, Variations on the common subexpression problem, J. ACM 27 (1980) 758–771.

[10] S.S. Muchnick, Advanced Compiler Design Implementation, Morgan Kaufmann, 1997.
[11] C. Meinel, T. Theobald, Algorithms and Data Structures in VLSI Design: OBDD-Foundations and Applications, Springer, 1998.
[12] M. Lohrey, S. Maneth, E. Noeth, XML compression via DAGs, in: Proceedings of the 16th International Conference on Database Theory, ACM, 2013, 

pp. 69–80.
[13] J. Adiego, G. Navarro, P. de la Fuente, Lempel–Ziv compression of highly structured documents, J. Am. Soc. Inf. Sci. Technol. 58 (4) (2007) 461–478.
[14] P. Bille, G. Landau, R. Raman, S. Rao, K. Sadakane, O. Weimann, Random access to grammar-compressed strings, in: Proc. 22nd SODA, 2011, pp. 373–389.
[15] M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, A. Shelat, The smallest grammar problem, IEEE Trans. Inf. Theory 

51 (7) (2005) 2554–2576.
[16] G. Jacobson, Space-efficient static trees and graphs, in: Proc. 30th FOCS, 1989, pp. 549–554.
[17] J.I. Munro, V. Raman, Succinct representation of balanced parentheses and static trees, SIAM J. Comput. 31 (3) (2001) 762–776.
[18] D. Benoit, E. Demaine, I. Munro, R. Raman, V. Raman, S. Rao, Representing trees of higher degree, Algorithmica 43 (2005) 275–292.
[19] R. Geary, R. Raman, V. Raman, Succinct ordinal trees with level-ancestor queries, in: Proc. 15th SODA, 2004, pp. 1–10.
[20] P. Ferragina, F. Luccio, G. Manzini, S. Muthukrishnan, Compressing and indexing labeled trees, with applications, J. ACM 57 (2009) 1–33.
[21] J. Cheney, Compressing XML with multiplexed hierarchical PPM models, in: Proc. 11th IEEE Data Compression Conf., DCC, 2001, pp. 163–172.
[22] H. Liefke, D. Suciu, Xmill: an efficient compressor for XML data, in: Proc. 2000 ACM SIGMOD Int. Conf. on Manag. of Data, SIGMOD, 2000, pp. 153–164.
[23] S. Alstrup, J. Holm, K. de Lichtenberg, M. Thorup, Minimizing diameters of dynamic trees, in: Proc. 24th ICALP, 1997, pp. 270–280.
[24] S. Alstrup, J. Holm, M. Thorup, Maintaining center and median in dynamic trees, in: Proc. 7th SWAT, 2000, pp. 46–56.
[25] S. Alstrup, J. Holm, K.D. Lichtenberg, M. Thorup, Maintaining information in fully-dynamic trees with top trees, ACM Trans. Algorithms 1 (2003) 

243–264.
[26] L. Gasieniec, M. Karpinski, W. Plandowski, W. Rytter, Efficient algorithms for Lempel–Ziv encoding, in: Proc. 4th SWAT, 1996, pp. 392–403.
[27] W. Rytter, Grammar compression, LZ-encodings, and string algorithms with implicit input, in: Proc. 31st ICALP, 2004, pp. 15–27.
[28] M. Lohrey, Algorithmics on SLP-compressed strings: a survey, Groups Complex. Cryptol. 4 (2) (2012) 241–299.

http://refhub.elsevier.com/S0890-5401(14)00164-3/bib424B473033s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib464B473033s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib4275736174746F30346772616D6D6172426173656474726565s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib424C4D3038s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib4C6F687265794574416Cs1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib4C4D3036s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib4D423034s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib73616B7232303039786D6Cs1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib44535431393830s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib73746576656E31393937616476616E636564s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib6D65696E656C31393938616C676F726974686D73s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib6C6F6872657932303133786D6Cs1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib6C6F6872657932303133786D6Cs1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib4C5A476F6E7A616C6Fs1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib534F444132303131s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib434C4C2B3035s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib434C4C2B3035s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib4A61636F62736F6Es1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib4D756E726F52616D616E3031s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib42656E6F69744574416C3035s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib4765617279303473756363696E63746F7264696E616Cs1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib466572726167696E61464F435332303035s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib584D4C32s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib584D4C31s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib41484C5431393937s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib41485432303030s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib546F705472656573s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib546F705472656573s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib47617369656E69656331393936s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib52797474657232303034s1
http://refhub.elsevier.com/S0890-5401(14)00164-3/bib4C6F6872657932303132s1

	Tree compression with top trees
	1 Introduction
	1.1 Previous work
	1.2 Our results

	2 Top trees and top DAGs
	2.1 Clusters
	2.2 Top trees
	2.3 Constructing the top tree
	2.4 Top DAGs

	3 Compression analysis
	3.1 Worst-case bounds for top DAG compression
	3.2 Comparison to subtree sharing

	4 Supporting navigational queries
	4.1 The data structure
	4.2 Implementation of the procedures
	4.2.1 Access and depth
	4.2.2 Firstchild, level ancestor, parent, and NCA
	4.2.3 Decompress, height, size, and next sibling


	5 Conclusion and open problems
	Acknowledgment
	References


