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Replacement Paths and Distance Sensitivity Oracles
via Fast Matrix Multiplication∗

OREN WEIMANN, University of Haifa
RAPHAEL YUSTER, University of Haifa

A distance sensitivity oracle of an n-vertex graph G = (V,E) is a data structure that can report shortest
paths when edges of the graph fail. A query (u ∈ V, v ∈ V, S ⊆ E) to this oracle returns a shortest u-to-v
path in the graph G′ = (V,E \ S). We present randomized (Monte Carlo) algorithms for constructing a
distance sensitivity oracle of size Õ(n3−α) for |S| = O(lgn/ lg lgn) and any choice of 0 < α < 1. For real
edge-lengths, the oracle is constructed in O(n4−α) time and a query to this oracle1 takes Õ(n2−2(1−α)/|S|)
time. For integral edge-lengths in {−M, . . . ,M}, using the current ω < 2.376 matrix multiplication ex-
ponent, the oracle is constructed in O(Mn3.376−α) time with Õ(n2−(1−α)/|S|) query, or alternatively in
O(M0.681n3.575−α) time with Õ(n2−2(1−α)/|S|) query.

Distance sensitivity oracles generalize the replacement paths problem in which u and v are known in
advance and |S| = 1. In other words, if P is a shortest path from u to v in G, then the replacement paths
problem asks to compute, for every edge e on P , a shortest u-to-v path that avoids e. Our new technique
for constructing distance sensitivity oracles using fast matrix multiplication also yields the first sub-cubic
time algorithm for the replacement paths problem when the edge-lengths are small integers. In particular,
it yields a randomized (Monte Carlo) Õ(Mn2.376 + M

2
3 n2.584) time algorithm for the replacement paths

problem assuming M ≤ n0.624.

Finally, we mention that both our replacement paths algorithm and our distance sensitivity oracle can be
made to work, in the same time and space bounds, for the case of failed vertices rather than edges, That is,
when S is a set of vertices and we seek a shortest u-to-v path in the graph obtained from G by removing all
vertices in S and their adjacent edges.
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1. INTRODUCTION
Resilience to failures is an important requirement of modern networks. In a failure
event, some of the network’s vertices and edges may be temporarily unavailable. As a
consequence, structural information of the network such as its connectivity and dis-
tance metric might change and should be updated efficiently. In this paper we focus
on maintaining distances in a directed weighted graph where one or more vertices or
edges are unavailable due to failure. Specifically, we would like to answer queries of
the form (u, v, S) seeking a shortest u-to-v path that avoids all the edges (or vertices) in
S. A data structure that can support such queries is called a distance sensitivity oracle.

Existing Oracles. For the case of a single edge or vertex fault (when |S| = 1),
Demetrescu et al. [Demetrescu et al. 2008] presented a distance sensitivity oracle that
can be constructed in Õ(mn2) time and O(n2 lg n) space and has constant query time.
Bernstein and Karger improved the preprocessing to O(n2

√
m) [Bernstein and Karger

2008] and then further to Õ(mn) [Bernstein and Karger 2009], with unchanged con-
stant query time. For the case of two failures (two vertices or two edges), Duan and
Pettie [Duan and Pettie 2009] construct an oracle in polynomial time and Õ(n2) space,
whose query time is O(lg n).

For more than two edge-failures, Chechik et al. [Chechik et al. 2010] showed that
if we are willing to settle for approximate distances, then for any integer k > 1, an
oracle of size O(|S|kn1+1/k lg(nM)) (where M is the heaviest edge-length in the graph)
constructed in polynomial time can handle |S| edge failures in Õ(|S|) query time. Their
oracle returns distances with stretch (approximation ratio) (8k − 2)(f + 1), and only
works for edge-faults. For exact distances however, the only known solution is the naive
one: upon query (u, v, S) remove all edges of S and run a shortest paths algorithm (e.g.,
Dijkstra) from u to v in O(n2) time. Our goal in this paper is thus to construct an oracle
that answers queries in sub-quadratic time.

We also mention the related problem of maintaining distance queries while updating
the graph (deleting and inserting edges and vertices). Demetrescu and Italiano [Deme-
trescu and Italiano 2004] presented a data structure to maintain distance queries in
constant time with Õ(n2) amortized update. Their algorithm was slightly improved by
Thorup [Thorup 2004]. For unweighted undirected graphs, Roditty and Zwick [Roditty
and Zwick 2004] obtained a (1 + ε)-approximation algorithm with an expected amor-
tized update time of Õ(mn/t) and worst-case query time of O(t). Thorup [Thorup 2005]
obtained O(n2.75) worst case updates.

Replacement Paths. The replacement paths problem is an important restricted
version of distance sensitivity oracles with one edge fault, where we know the vertices
u and v in advance. Given vertices u and v, let P be a shortest u-to-v path in the orig-
inal graph G. The replacement paths problem asks to compute, for every edge e in P ,
a shortest u-to-v path that avoids e. This generalization of the fundamental shortest
paths problem is strongly motivated by two applications. In auction theory, the replace-
ment paths problem is used to compute the Vickrey pricing of edges owned by selfish
agents [Nisan and Ronen 2001; Hershberger and Suri 2001]. Another application is
that of computing the k shortest simple paths between a pair of vertices. This prob-
lem reduces to running k executions of a replacement paths algorithm, and has many
applications itself [Eppstein 1999].

The naive solution to the replacement paths problem is to remove each edge e on
P , one at a time, and compute a shortest s-to-t path each time. This can be done
in O(mn + n2 lg n) time. Except for the slight improvement of Gotthilf and Lewen-
stein [Gotthilf and Lewenstein 2009] to O(mn + n2 lg lg n), no faster algorithms are
known for weighted, directed graphs. Similarly, the fastest algorithm for finding k

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 2012.



Replacement Paths and Distance Sensitivity Oracles via Fast Matrix Multiplication 0:3

shortest simple paths, given by Yen [Yen 1971] and Lawler [Lawler 1972], uses k re-
placement path computations and therefore runs in O(k(mn + n2 lg lg n)) time. Her-
shberger et al. [Hershberger et al. 2003] gave an Ω(m

√
n) lower bound for both these

problems in the path-comparison model of Karger et al. [Karger et al. 1993].
Overcoming the o(mn) bound for the replacement paths problem (and the o(kmn)

bound for k shortest simple paths) has received a lot of attention recently. There were
two directions taken. The first was to consider special graph classes. For undirected
graphs, the problem is significantly easier. Malik et al. [Malik et al. 1989] presented
an Õ(m) time algorithm for the replacement paths problem, that was later extended
to avoid vertices rather than edges [Nardelli et al. 2003]. Nardelli et al. [Nardelli
et al. 2001] gave an O(mα(m,n)) time algorithm for the problem, in a stronger model
of computation, using the linear time single source shortest paths algorithm of Tho-
rup [Thorup 1999]. For directed unweighted graphs, Roditty and Zwick [Roditty and
Zwick 2005] gave an Õ(m

√
n) time randomized algorithm. Finally, for the class of di-

rected planar graphs, Emek et al. [Emek et al. 2008] gave an O(n lg3 n) time algorithm,
improved in [Klein et al. 2009] and later in [Wulff-Nilsen 2010] to O(n lg n).

The second way of overcoming the o(mn) bound was to settle for approximate dis-
tances. Roditty [Roditty 2007] showed that approximation can in fact beat the O(kmn)

bound for k shortest simple paths. In particular, Roditty presented an Õ(km
√
n)-time

3/2-approximation algorithm for finding the k shortest simple s-to-t paths in directed
graphs with positive edge lengths. Bernstein [Bernstein 2010] improved this to a
(1 + ε)-approximation algorithm requiring Õ(km/ε) time. Bernstein also gave the first
approximation algorithm for the replacement paths problem. His replacement paths
algorithm is a (1 + ε)-approximation running in Õ(m lg(nC/c)/ε) time, where C is the
largest edge length in the graph and c is the smallest.

Our Results. Our main result is a randomized algorithm for constructing a sub-
cubic space distance sensitivity oracle that answers queries (u, v, S) with |S| =
o(lg n/ lg lg n) in sub-quadratic (notably, sub-Dijkstra) time. The exact bounds are
stated by the following theorem.

THEOREM 1.1. For any 0 < α < 1 and any 1 ≤ f ≤ (1 − α) lg n/ lg lg n,
there is a distance sensitivity oracle of size Õ(n3−α) for avoiding a set S (of either
edges or vertices) with |S| ≤ f on an n-vertex directed graph. For real edge-lengths,
the oracle is constructed in O(n4−α) time and a query takes Õ(n2−2(1−α)/f ) time.
For integral edge-lengths in {−M, . . . ,M}, the oracle is constructed in O(Mn3.376−α)

time with Õ(n2−(1−α)/f ) query time, or alternatively in O(M0.681n3.575−α) time with
Õ(n2−2(1−α)/f ) query time.

As a special case of our distance sensitivity oracle, we obtain a randomized algorithm
for solving the replacement paths problem in the following time bounds.

COROLLARY 1.2. The replacement paths problem can be solved in Õ(Mnω +

M
2
3n1+

2
3ω) time on an n-vertex directed graph with integral edge-lengths in

{−M, . . . ,M}.

This algorithm is the first sub-cubic time algorithm for the replacement paths prob-
lem for weighted graphs and the first to use fast matrix multiplication. Since the
FOCS’10 conference version of this paper [Weimann and Yuster 2010], Vassilevska-
Williams in SODA’11 [Vassilevska-Williams 2011] has managed to reduce the time
complexity of the replacement paths problem to Õ(Mnω). Her solution uses some of
the ideas that we present here as well as some new and elegant ideas. However, it is
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not known how to extend her solution to a distance sensitivity oracle (even not when
|S| = 1).

Finally, we mention that both our replacement paths algorithm and our distance
sensitivity oracle can be made to work, in the same time bounds, for the case of failed
vertices rather than edges. To make the presentation simpler, the paper focuses on
the case of failed edges. In Section 5 we explain why the case of failed vertices can be
handled similarly (in the same bounds of Theorem 1.1).

Technique. There are two extremes for a naive distance sensitivity oracle: The first
is to do no preprocessing at all and then upon query (u, v, S) compute a shortest u-to-v
path in the graph (V,E \ S) from scratch. The second extreme is to do all the work
in the preprocessing by computing in advance the answer to each one of the nO(|S|)

possible queries (u, v, S).
In order to avoid computing the answer to every possible (u, v, S) we would like to

generate random subgraphs Gj that have the following property: For every possible
(u, v, S) one of the graphs Gj contains none of the edges in S but all of the edges of a
shortest path P between u and v in the graph (V,E \ S). This can be achieved with
high probability if the path P is short. To handle long paths P , we choose a random
subset of verticesB such that with high probability every such long path P decomposes
into short subpaths with endpoints in B. These subpaths are captured by the all-pairs
distances between vertices of B. To compute these B×B distances, we use fast matrix
multiplication and tweak an algorithm of Yuster and Zwick [Yuster and Zwick 2005]
so that it computes all |B|2 distances faster than computing each distance individually.
This is all done in the preprocessing.

In query time, in order to find the u-to-v shortest path that avoids S, we construct a
new graph GS with only the vertices V S = B ∪{u, v}. The (unbounded) edge-lengths of
this graph correspond to the minimal V S×V S distances in all Gjs that contain none of
the edges in S. The problem then boils down to computing a u-to-v shortest path in this
new graph GS . To do so, we can use a (costly) shortest path algorithm that can handle
unbounded (and negative) lengths. We reweigh the original graph so that Dijkstra’s
algorithm can be used instead on any GS .

Roadmap. We begin in Section 2 with a high level outline of our distance sensitivity
oracle, and give a detailed description and analysis in Section 3 leading to the bounds
of Theorem 1.2. In Section 4 we show how to use the oracle to solve the replacement
paths problem, and in Section 5 we show how to modify the oracle to handle failed
vertices rather than edges. We conclude in Section 6.

2. OUTLINE OF THE DISTANCE SENSITIVITY ORACLE
2.1. The Preprocessing
In the preprocessing step, given some 0 < α < 1 and f ≥ 1, we first generate the
random subgraphs G1, . . . , Gr where r = Õ(fn1−α). These graphs are generated inde-
pendently as follows: Each random subgraph Gj is obtained from G by removing every
edge with probability n(α−1)/f .

Preparing for short paths. Let FS denote the set of graphs Gj that do not contain any
edge from the set S. We would like to have the property that for every possible query
(u, v, S) at least one of the graphs Gj ∈ FS contains all the edges of a shortest path P
between u and v in the graph (V,E \ S). This way, upon query (u, v, S), we could report
P as the minimal u-to-v shortest path in all Gj ∈ FS . The query would be fast since
with high probability |FS | is at most O(f lg n) for any S. It turns out that the property
indeed holds for every P that is sufficiently short (shorter than n(1−α)/f ). The problem
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is how to handle the long P s. For these P s, the desired property is not guaranteed to
hold with high probability. It does however hold for short subpaths of P .

Preparing for long paths. We define an interval of a long P as a subpath of P con-
sisting of n(1−α)/f consecutive vertices, so every P induces at most n (overlapping)
intervals. We show that with high probability, the edges of any interval induced by P
are all present in at least one Gj ∈ FS . However, we cannot assure that all the inter-
vals of P are in the same Gj . To overcome this, we pick a random subset B ⊆ V of
|B| = Õ(fn1+(α−1)/f ) vertices. We show that with high probability each of the O(n2f+3)
possible intervals2 has at least one vertex in B. This way, every P decomposes into
disjoint intervals whose endpoints are both in B. Upon query, we will find P using the
all-pairs distances between vertices of B in every Gj ∈ FS . To this end, we precompute
the all-pairs B ×B distances for every Gj ∈ {G1, . . . , Gr}. There are two options (lead-
ing to the different construction times in Theorem 1.1): Either we store only the B×B
distances of Gj in a |B| × |B| matrix Bj , or we store the all-pairs V × V distances of Gj
in an n× n matrix Aj .

Computing the matrices Aj or Bj and Dj . If we choose to construct the matrix Aj ,
then we can do so with a classical O(n3)-time all-pairs shortest paths (APSP) algo-
rithm. When the edge-lengths are small integers in {−M, . . . ,M} we instead use the
APSP O(M0.681n2.575)-time algorithm of Zwick [Zwick 2002] (with rectangular matrix
mult.).

If however we choose to construct the matrix Bj , then we can do so using the algo-
rithm of Yuster and Zwick [Yuster and Zwick 2005]: Given Gj , it constructs in Õ(Mnω)
time, an n × n matrix Dj which has the property that the distance in Gj between any
pair of vertices u, v is equal to min`∈V {Dj [u, `]+Dj [`, v]} and can therefore be computed
from Dj in O(n) time. The entire B × B distances can thus be naively computed from
Dj in O(|B|2n) time. We present an even faster way of doing this. We first extract from
D the rows (D1) and columns (D2) that correspond to B. We then prove that it is safe
to only consider entries in D1 and D2 whose absolute value is bounded by Mn(1−α)/f .
Finally, the distance product D1?D2, that gives us exactly the B×B distances we need,
is computed using the Alon et al. [Alon et al. 1997] algorithm for distance product of
matrices with an associated bound on the entries.

This concludes the preprocessing; for every j = 1, . . . , r our distance sensitivity oracle
stores the graphs Gj and either the matrix Aj or the matrices Bj and Dj .

2.2. The Query
Upon query (u, v, S) we seek the shortest u-to-v path P in the graph (V,E \ S). We
first compute the set FS of all graphs Gj that do not contain any edge from S. This is
done by going over G1, . . . , Gr and checking each one in O(f) time. We then compute
the u-to-v distance in all Gj ∈ FS . This finds P in case P is short, and is done in O(n)
time if we use the matrix Dj or in O(1) time if we use the matrix Aj . To handle long
P s, we construct a dense distance graph GS : Its set of vertices is V S = B ∪ {u, v}, and
the weight of the edge (x, y) is minGj∈FS{distance from x to y in Gj}. A shortest u-to-v
path in GS will give us the required path P with high probability.

Constructing the graph GS . To construct GS , we need the V S×V S distances in every
Gj ∈ FS . If we used Aj then we already have these distances in Aj . However, if we

2 The number of possible queries (u, v, S) (and thus the number of possible paths P ) is O(n2f+2) since there
are n options for u, n options for v, and n2f options for S (a subset of f edges from a set of O(n2) edges).
Since each of the O(n2f+2) paths induces n intervals we have a total of at most O(n2f+3) possible intervals.
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0:6 Oren Weimann and Raphael Yuster

used Bj and Dj instead, then we have the B ×B distances in Bj and we just need the
{u} × B and the B × {v} distances. Each one of these distances is computed in O(n)
time using Dj .

To answer the query, all that is left is to compute the u-to-v distance in the graph
GS . Notice that the edge-lengths of GS may be positive or negative, and they are no
longer bounded. Therefore, we can not directly use Dijkstra’s single source shortest
paths (SSSP) algorithm. To circumvent this, we use the well known method of feasible
price functions [Johnson 1977] that transforms a shortest-path problem involving pos-
itive and negative lengths into one involving only nonnegative lengths, which can then
be solved using Dijkstra’s SSSP algorithm. We show that the SSSP distances in the
original graph G (from any source) serve as a feasible price function for every possible
GS .

We next fill out the missing details and analysis of the above outline. We focus on
computing the length of the path P ; the actual path can be easily found in the same
time bounds.

3. A DISTANCE SENSITIVITY ORACLE
In this section we give a detailed description of our distance sensitivity oracle. Upon
query (u, v, S) with |S| ≤ f , the oracle outputs the length of a shortest u-to-v path that
avoids all the edges in the set S. Our goal is to construct an oracle in the bounds of
Theorem 1.2.

3.1. The Preprocessing
In preprocessing, we first generate the subgraphsG1, . . . , Gr whereGj is obtained from
G by removing every edge with probability n(α−1)/f . We choose r = 42fn1−α lg n, and
since G may have n2 edges, generating these subgraphs requires O(rn2) = Õ(fn3−α)
time and space. Recall that FS denotes the set of graphs Gj that do not contain any
edge in S, and let fS = |FS |. We start with the following lemma, stating that with high
probability fS is roughly f lg n for all possible S.

LEMMA 3.1. The probability that 21f lg n < fS < 70f lg n for all possible S ⊆ E
(where |S| ≤ f ) is at least 1− 2/nf .

PROOF. We first show that for a specific S, the probability that fS > 21f lg n is
at least 1 − 1/n3f . To see this, notice that the expectation of fS is precisely E[fS ] =
r(n(α−1)/f )f = 42f lg n. So by Chernoff ’s bound (cf. [Alon and Spencer 2000]) we know
that

Pr[fS < E[fS ]− 21f lg n] < e
−(21f lgn)2

2E[fS ] <
1

n3f
.

We therefore have, by union bound over all possible O(n2f ) subsets of edges of size at
most f , that with high (1 − 1/nf ) probability fS > 21f lg n. Similarly, by Chernoff ’s
bound (stating that for a ≥ (2/3)E[fS ] we have Pr[fS < E[fS ] + a] < e−2E[fS ]/27) we get
that

Pr[fS < E[fS ] + 28f lg n] < e−2E[fS ]/27 <
1

n3f
.

So again, by union bound, we have that with high (1 − 1/nf ) probability fS < 70f lg n
for all possible S ⊆ E (where |S| ≤ f ). To conclude, with probability at least 1 − 2/nf

we get that 21f lg n < fS < 70f lg n for all possible S ⊆ E (where |S| ≤ f ).

Given some specific set of edges S, let P denote a shortest path from u to v in the
graph (V,E \S). The path P induces less than n (overlapping) intervals. An interval of
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P is a subpath consisting of n(1−α)/f consecutive vertices. We say that an interval of P
survives if all the edges of this interval are present in some Gj ∈ FS (recall that FS is
the set of graphs Gj that do not contain any edge from the set S). We now show that all
the possible intervals survive with high probability as stated by the following lemma.
The number of possible intervals is less than n2f+3 as each one of the (at most) n2f+2

possible queries (u, v, S) corresponds to a path P that induces less than n intervals.

LEMMA 3.2. The probability that all possible O(n2f+3) intervals survive is at least
1− 3/nf .

PROOF. Consider some specific (u, v, S), and some Gj ∈ FS . Let P denote a shortest
path from u to v in the graph (V,E \S) and let I be some interval of P . The probability
that all the |I| − 1 edges of I survived in Gj is precisely (1 − n(α−1)/f )|I|−1 ≥ (1 −
n(α−1)/f )n

(1−α)/f−1 > 1/e. So the probability that I does not survive in any Gj ∈ FS is
less than (1−1/e)fS . If we assume that fS > 21f lg n then (1−1/e)fS < (1−1/e)21f lgn <
(1/e)6f lgn < 1/n6f . In particular, by union bound, we will get that with probability
(1 − 1/n4f−3) all the possible intervals, whose number is less than n2f+3, survive. By
Lemma 3.1, the probability that all fSs are indeed such that fS > 21 lg n is at least
(1−2/nf ). We get that the probability that all intervals survive is at least 1−1/n4f−3−
2/nf > 1− 3/nf .

After establishing that all intervals survive, we need to show that with high prob-
ability every interval has at least one vertex in B. We choose B to be a random
subset of 6fn1+(α−1)/f lg n vertices of G. Notice that this is where the bound of f ≤
(1− α) lg n/ lg lg n is crucial for otherwise we would get |B| > n.

LEMMA 3.3. With probability at least 1 − 1/nf every interval contains some vertex
in B.

PROOF. Since B is chosen randomly, the probability that a specific vertex v does
not belong to B is exactly 1 − |B|/n = 1 − 6fn(α−1)/f lg n. So an entire interval does
not belong to B with probability (1 − 6fn(α−1)/f lg n)n

(1−α)/f

< 1/n6f . There are at
most n2f+3 intervals overall, so by union bound we get that with probability at least
1− 1/n4f−3 ≥ 1− 1/nf every interval contains a vertex in B.

Having generated the graphs G1, . . . , Gr and the set B, we now either construct the
matrices A1, . . . , Ar (where Aj is the n × n matrix storing the all-pairs distances be-
tween all vertices of Gj) or the matrices B1, . . . , Br (where Bj is the |B| × |B| matrix
storing the all-pairs distances between vertices of B in the graph Gj). If we choose
to construct the matrix Aj , then we can do so with a classical O(n3)-time APSP algo-
rithm. When the edge-lengths are small integers in {−M, . . . ,M} we instead use the
APSP O(M0.681n2.575)-time algorithm of Zwick [Zwick 2002].

COROLLARY 3.4. The graphs G1, . . . , Gr and the matrices A1, . . . , Ar can all
be constructed in total Õ(n3−α) space, and O(n4−α) time for real edge-lengths or
O(M0.681n3.575−α) time for edge-lengths in {−M, . . . ,M}.

If instead we wish to compute B1, . . . , Br and D1, . . . , Dr, then this can be done faster
than computing A1, . . . , Ar. For two vertices u, v in Gj let c(u, v) denote the least num-
ber of edges on a shortest path from u to v in the graph Gj and let δ(u, v) denote the
distance from u to v.

LEMMA 3.5 ([YUSTER AND ZWICK 2005]). Given an n-vertex graph Gj , the Yuster
and Zwick algorithm constructs in Õ(Mnω) time, an n×n matrix Dj with the following
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0:8 Oren Weimann and Raphael Yuster

properties: For any pair of vertices u, v there exists a vertex k on a shortest path realizing
c(u, v) so that Dj [u, k] = δ(u, k), Dj [k, v] = δ(k, v), and Dj [u, k] +Dj [k, v] = δ(u, v).

In order to compute Bj , we first run the Yuster and Zwick algorithm on Gj construct-
ing the matrix Dj as in Lemma 3.5. Consider the sub-matrix D1

j of Dj which consists
of taking only the rows that correspond to B. Let D2

j be the sub-matrix of Dj that con-
sists only of the columns that correspond to B. It is easy to see that Bj is exactly the
distance product D1

j ? D
2
j (the distance product C = A ? B of two matrices A and B is

defined as C[i, j] = mink{A[i, k]+B[k, j]}). To compute the distance product D1
j ?D

2
j we

use the following result, first stated by Alon et al. [Alon et al. 1997], following a related
idea of Yuval [Yuval 1976]. The value ω(r, s, t) is the matrix multiplication exponent of
multiplying an nr × ns matrix with an ns × nt matrix.

LEMMA 3.6 ([ALON ET AL. 1997]). IfA is a nr×ns matrix andB is a ns×nt matrix,
both with elements taken from {−L, . . . , L}∪{+∞}, then the distance product A?B can
be computed in Õ(Lnω(r,s,t)) time.

We would like to compute D1
j ? D

2
j using the bounds of Lemma 3.6. The problem

is that the elements of D1
j and D2

j are not bounded, in fact L can be as large as Mn.
However, we claim that we only need to consider elements ofD1

j andD1
j whose absolute

value is less than L = Mn(1−α)/f ; the rest of the elements can be replaced by +∞. This
idea, together with Lemmas 3.5 and 3.6, give the following.

LEMMA 3.7. Every matrix Bj can be computed in time Õ(Mnω +

Mn(1−α)/fnω(1+(α−1)/f,1,1+(α−1)/f)).

PROOF. We need to show that any element of D1
j and D2

j whose absolute value
is greater than Mn(1−α)/f can be thought of as +∞. To see this, consider a shortest
path between two vertices x, y ∈ B. Recall that we assume every interval of n(1−α)/f
vertices has at least one vertex in B. Therefore, we are only interested in the x-to-y
shortest path if the number of its edges c(x, y) ≤ n(1−α)/f . In this case, by Lemma 3.5,
there must be some k ≤ n such that c(x, k) ≤ n(1−α)/f , and c(k, y) ≤ n(1−α)/f , and
Dj [x, k] + Dj [y, k] is the length of the x-to-y shortest path. Since the absolute value of
every edge-length is bounded by M , we get that Dj [x, k] ≤ Mn(1−α)/f and Dj [y, k] ≤
Mn(1−α)/f . So the corresponding entries in D1

j and D2
j are bounded by Mn(1−α)/f .

By Lemma 3.7, we can compute all the Bj-matrices in total time

Õ(rMnω + rMn(1−α)/fnω(1+(α−1)/f,1,1+(α−1)/f)).

Recalling that r = Õ(fn1−α), that f = Õ(1), that α ≤ 1, that ω ≥ 2, and that ω(x, 1, x) ≤
ωx+ 1− x (See, e.g., Huang and Pan [Huang and Pan 1998]), we have that Õ(rMnω +

rMn(1−α)/fnω(1+(α−1)/f,1,1+(α−1)/f)) = Õ(Mn1−α+ω). The size of each Bj is |B|2 so the
total space required for all Bjs is O(r · |B|2) = Õ(n3−α+(2α−2)/f ). In the process, we also
generate all the matrices Dj . The size of each Dj is n2 so the total space required for
all Djs is O(r · n2) = Õ(n3−α). We thus conclude the description of the preprocessing
with the following corollary.

COROLLARY 3.8. The graphs G1, . . . , Gr, the matrices B1, . . . , Br, and the matrices
D1, . . . , Dr can all be constructed in total time Õ(Mn1−α+ω) and space Õ(n3−α).
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3.2. The Query
Upon query (u, v, S) we seek the shortest u-to-v path P in the graph (V,E \S). We first
identify the set FS of all graphs Gj that do not contain any edge from S. This is done by
going overG1, . . . , Gr and checking each one inO(f) time for a total ofO(fr) = Õ(n1−α)
time. By Lemma 3.1, we get that fS = |FS | = Θ(f lg n). We then compute the u-to-v
distance in every Gj ∈ FS . This finds P in case P is short and can be done in a total of
O(fS) time using the Aj matrices or in O(nfS) = Õ(n) time using the Dj matrices (by
Lemma 3.5).

To handle long P s, we construct a dense distance graph GS : Its set of vertices is V S =
B ∪ {u, v}, and the length of the edge (x, y) is minGj∈FS{distance from x to y in Gj}. A
shortest u-to-v path in GS will give us the required path P with high probability.

Constructing the graph GS . To construct GS , we need the distances in every Gj ∈
FS between any two vertices in V S . Once we have these V S × V S distances, each edge-
length in GS requires examining fS values for a total of O(fS |B|2) = Õ(n2−2(1−α)/f )
time.

If we used the Aj matrices then we already have the V S × V S distances stored and
we do not need to spend any additional time. If however we used the Bj matrices then
we already have the distances between any two vertices in B and we have also just
computed the u-to-v distance in each Gj ∈ FS . What is left is to compute the distance
from u to all vertices of B and from all vertices of B to v. Again, using Lemma 3.5, each
one of these O(|B|) distances is computed in O(n) time from Dj . The overhead of using
the Bj (rather than Aj) matrices over all Gj ∈ FS is thus O(n|B|fS) = Õ(n2−(1−α)/f )
time.

Having constructed the graph GS , all that is left is to compute the u-to-v distance
in GS . Notice that the edge-lengths of GS are no longer bounded and may be positive
or negative. Therefore, we can not directly use Dijkstra’s single source shortest paths
(SSSP) algorithm (that can handle unbounded lengths but can not handle negative
lengths). We may run Goldberg’s SSSP algorithm (which can handle large integral
negative lengths) but this would be too costly. Instead, we use the well known method
of feasible price functions in order to transform the edge-lengths of GS to be nonnega-
tive and then use Dijkstra’s SSSP algorithm.

Computing the u-to-v distance in GS . For a directed graph G = (V,E) with
(possibly negative) edge-lengths w(·), a price function is a function φ from the ver-
tices of G to the reals. For an edge (u, v), its reduced length with respect to φ is
wφ(u, v) = w(u, v) + φ(u) − φ(v). A price function φ is feasible if wφ(u, v) ≥ 0 for all
edges (u, v) ∈ E. The idea behind feasible price functions is that for any two vertices
s, t ∈ V , for any s-to-t path P , wφ(P ) = w(P ) + φ(s) − φ(t). This shows that an s-to-t
path is shortest with respect to wφ(·) iff it is shortest with respect to w(·). Moreover,
the s-to-t distance with respect to the original lengths w(·) can be recovered by adding
φ(t)− φ(s) to the s-to-t distance with respect to wφ(·).

The most natural feasible price function comes from single-source distances. Let s
be a new vertex added to G with an edge from s to every other vertex of G having
weight 0. Let d(v) denote the distance from s to vertex v ∈ G. Then for every edge
(u, v) ∈ E, we have that d(v) ≤ d(u) + w(u, v), so wd(u, v) ≥ 0 and thus d(·) is feasible.
This means that knowing d(·), we can now use Dijkstra’s SSSP algorithm on G (with
reduced lengths) from any source we choose and obtain the SSSP with respect to the
original G. However, we would like to run Dijkstra not on G but on GS . The following
lemma states that we can use the same price function d(v) on all possible GSs.

LEMMA 3.9. The function d(·) is a feasible price function for every possible GS .
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PROOF. Consider an edge (x, y) in GS . We need to prove that wd(x, y) ≥ 0. We know
that w(x, y) is the length of a shortest x-to-y path in all Gj ∈ FS . In particular, w(x, y)
is the length of some (not necessarily shortest) x-to-y path P in G. Consider the s-to-y
path in G that is composed of a shortest s-to-x path in G and the path P . The length
of this s-to-y path is d(x) + w(x, y) and therefore d(y) ≤ d(x) + w(x, y) so wd(x, y) =
w(x, y) + d(x)− d(y) ≥ 0.

Lemma 3.9 suggests that during preprocessing-time we also compute the distances
d(v) in G using SSSP from s, and then during query-time use d(·) as a price function.
This single SSSP computation only adds O(n3) time to the preprocessing (using the
Bellman-Ford SSSP) or Õ(Mnω) time if the edge-lengths are in {−M, . . . ,M} (using the
Yuster and Zwick SSSP). Observe that these running times are negligible with respect
to the preprocessing time that we have already spent. Then, in query-time, we run
Dijkstra’s SSSP on GS from u using the price function d(·) in O(|B|2) = Õ(n2−2(1−α)/f )
time.

To conclude, the dominating term in the query time is Õ(n2−2(1−α)/f ) if we use the
Aj matrices and Õ(n2−(1−α)/f ) if we use the Bj matrices. Together with Corollaris 3.4
and 3.8 this gives the bounds of Theorem 1.1.

4. THE REPLACEMENT PATHS ALGORITHM
In this section, we show how our distance sensitivity oracle for avoiding failed edges
can be made to solve the replacement paths problem in the bounds of Corollary 1.2.

Recall that in the replacement paths problem we are given a directed graph G =
(V,E) with positive and negative edge-lengths and two distinct vertices u and v. Let
P = (u = v0, v1, . . . , vk = v) be a shortest path from u to v where 1 ≤ k < n (we assume
no negative cycles; such cycles will be detected if they exist). We wish to compute paths
P1, . . . , Pk such that Pi is a shortest path from u to v in the graph G \ ei where ei is the
edge (vi−1, vi).

As a first step, we compute some shortest u-to-v path in G in order to identify
e1, . . . , ek. This can be done in Õ(Mnω) time using the SSSP algorithm of Yuster and
Zwick. We then build a distance sensitivity oracle for G as in the previous section. We
use the construction with the Bj matrices, but we make one small change in the pre-
processing stage: After we randomly choose the set of vertices B we explicitly add u
and v to B. This does not change the construction time which by Theorem 1.1 (with
f = 1) requires Õ(Mn1−α+ω) time.

Finally, we ask the oracle queries (u, v, {ei}) for i = 1, . . . , k. Naively, using Theo-
rem 1.1, each query requires Õ(n2−(1−α)/f ) = Õ(n1+α) time so all queries take Õ(n2+α)
time. However, since now u and v are in B, we don’t need to compute the {u} × B and
B × {v} distances in query-time. This was the Õ(n2−(1−α)/f ) bottleneck and without it
the query takes Õ(n2−2(1−α)/f ) = Õ(n2α) time.

Total time complexity. From the above description, the total time complexity of
our replacement paths algorithm is

Õ(Mnω +Mn1−α+ω + n1+2α).

To get the desired bounds we will choose the optimal value for α. First notice that we
must insist on M ≤ n3−ω = n0.624 for otherwise the time complexity is worse than
the trivial O(n3) solution. Setting the second and third terms to be equal determines
the best choice of α = ω

3 + lgM
3 lgn implying that Mn1−α+ω = n1+2α = M

2
3n1+

2
3ω. Notice

that indeed α ≤ 1 since M ≤ n3−ω. The total time complexity is therefore Õ(Mnω +

M
2
3n1+

2
3ω) thus proving Corollary 1.2.
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5. AVOIDING VERTICES RATHER THAN EDGES
In this section, we explain how our distance sensitivity oracle can be made to work in
the same bounds of Theorem 1.1 for the case of avoiding vertices. That is, when in the
query (u, v, S) the set S ⊆ V \ {u, v} is a set of vertices and we seek a shortest u-to-v
path in the graph obtained from G by removing all vertices in S and their adjacent
edges. We follow the exact same lines as Section 3 and only highlight the differences
for the case of avoiding vertices.

5.1. The Preprocessing
In preprocessing, we generate the subgraphs G1, . . . , Gr with r = 42fn1−α lg n. This
time, Gj is obtained from G by removing every vertex (and its adjacent edges) with
probability n(α−1)/f . Generating these subgraphs requires O(rn) = Õ(fn2−α) time and
space.

The set FS now denotes the set of graphs Gj that do not contain any vertex in S.
The statement of Lemma 3.1 is still correct (after replacing S ⊆ E with S ⊆ V ). In
particular, the expectation of fS is still E[fS ] = r(n(α−1)/f )f = 42f lg n. The only minor
change in the proof is where we use union bound over all possible O(n2f ) subsets of
edges of size at most f . We now only have to union bound over all possible O(nf )
subsets of vertices of size at most f . This only helps in the analysis.

Given some specific set of vertices S and a pair of vertices u, v 6∈ S, let P denote a
shortest path from u to v in the graph (V \ S,E). The path P induces at most O(n)
(overlapping) intervals. An interval of P , just as in Section 3, is a subpath consisting
of n(1−α)/f consecutive vertices, and is said to survive if all the vertices of this interval
are present in some Gj ∈ FS .

The total number of possible intervals is now onlyO(nf+3) as each one of theO(nf+2)
possible queries (u, v, S) corresponds to a path P that induces O(n) intervals. The
statement of Lemma 3.2 is still true, we just need to change O(n2f+3) to O(nf+3)
and (V,E \ S) to (V \ S,E). In the proof of this lemma, we make the minor change
of claiming that “The probability that all the |I| vertices of I survived in Gj is precisely
(1− n(α−1)/f )|I| ≥ (1− n(α−1)/f )n

(1−α)/f

= 1/e”. The rest of the proof is identical except
for the union bound which is now over O(nf+3) possible intervals (and not O(n2f+3)).
This only helps in the analysis.

Lemma 3.3 and the rest of the preprocessing is exactly like in Section 3.

5.2. The Query
Upon query (u, v, S) we seek the shortest u-to-v path P in the graph (V \ S,E). As
before, we first identify the set FS of all graphs Gj that do not contain any vertex from
S. This is done by going over G1, . . . , Gr and checking each one in O(f) time for a total
of O(fr) = Õ(n1−α) time.

We then wish to compute the u-to-v distance in every Gj ∈ FS . Notice that u and
v are not necessarily present in all Gj ∈ FS . However, by Lemma 3.2, all the vertices
of an interval survive in some Gj . In particular, the vertex u (resp. v) survives along
with the entire interval composed of a prefix (resp. suffix) of P starting (resp. ending)
with u (resp. v). This finds P in case P is short (i.e., P is composed of a single interval
containing both u and v) and as before it can be done in total O(fS) time using the Aj
matrices or in Õ(n) time using the Dj matrices.

To handle long P s, we construct a dense distance graph GS : Its set of vertices is now
V S = B ∪ {u, v} \ S as opposed to B ∪ {u, v}. Notice that some of the vertices of B may
now be removed by S. However, by Lemmas 3.2 and 3.3 we know that every interval
survives entirely and so the vertex of B that hits this interval also survives.
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The rest of the query stage is handled exactly as in Section 3.

6. CONCLUDING REMARKS
We have presented a distance sensitivity oracle that is constructed in sub-cubic time
and upon query (u, v, S) with |S| = O(lg n/ lg lg n) returns in sub-quadratic time the
length of a shortest u-to-v path that avoids all the edges or vertices in the set S. We
have also presented a sub-cubic time algorithm for the replacement paths problem in
directed graphs with small integral edge-lengths.

Even though our oracle’s query time is rather slow, it is still the fastest known for
f > 2 faults. In fact, for vertex faults, even if we are willing to settle for approximate
distances, the only known oracle of Chechik et al. [Chechik et al. 2010] that works for
avoiding f edges does not work for avoiding f vertices. Improving our query time, even
at the cost of allowing approximation, is an important open problem.

As for the replacement paths problem, the main open question is whether we can
solve it in sub-cubic time on directed graphs with unbounded (i.e, independent of M )
weights. Even an O(n3−δpoly(lgM)) time solution for any δ > 0 would be very in-
teresting since by a recent result of Vassilevska-Williams and Williams [Vassilevska-
Williams and Williams 2010] it will imply that many other important problems have
an O(n3−δpoly(lgM)) solution. These problems include the all-pairs shortest paths
problem on weighted digraphs, detecting if a weighted graph has a triangle of neg-
ative total edge weight, finding a minimum weight cycle in a graph of non-negative
edge weights, and more.
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