Near-Optimal Distance Emulator for Planar Graphs

Hsien-Chih Chang, Paweł Gawrychowski, <u>Shay Mozes</u>, and Oren Weimann

Slides by Shay Mozes

Distance Emulators

- let *G* be a graph with *n* nodes, let *T* be a subset of *k* vertices of *G* (terminals).
- a distance emulator is a small graph *H* with $T \subseteq V(H)$ that preserves the distances between all pairs of terminals.

Distance Emulators

- let G be a graph with n nodes,
 let T be a subset of k vertices of G (terminals).
- a distance emulator is a small graph *H* with $T \subseteq V(H)$ that preserves the distances between all pairs of terminals.
- related concepts:
 - small distance preserving minor/subgraph.
 - compressed representation of the distances (not a graph).

Prior Results

• minor preservers: $\Omega(k^2)$ lower bound even for unweighted grids [Krauthgamer, Nguyen, and Zondiner ICALP'12]

- compressed representation:
 - naive representation using O(min(n, k²)) bits is optimal, even for weighted grids [Gavoille, Peleg, Pérennes, and Raz SODA'01]
 - can compress unweighted undirected planar graphs using $\tilde{O}(\min(k^2, \sqrt{nk}))$ bits [Abboud, Gawrychowski, <u>Mozes</u>, Weimann SODA'18]

Our results

• we turn the compressed representation of Abboud et. al into a distance emulator:

for an undirected unweighted planar graph *G* with *n* vertices and *k* terminals, we construct a directed weighted (non-planar) emulator with $\tilde{O}(\min(k^2, \sqrt{n \cdot k}))$ vertices and edges in $\tilde{O}(n)$ time.

as a corollary, one can compute all-pairs distances among the terminals in *Õ*(*n*) time when *k* = *O*(*n*^{1/3}) (just run Dijkstra on the emulator *k* times)

- the main building block in the compression scheme of Abboud et al. is a compression of *m*-by-*m* unit-Monge matrices into Õ(*m*) bits
- our main technical tool emulates an *m*-by-*m* unit-Monge matrix by a graph with $\tilde{O}(m)$ vertices and edges

• M[i,j] - distance from r_i to c_j

- M[i,j] distance from r_i to c_j
- Monge: paths must cross, so $M[i,j]+M[i+1,j+1] \le M[i,j+1]+M[i+1,j]$

 C_j

ri

 r_{i+1}

 C_{j+1}

- M[i,j] distance from r_i to c_j
- Monge: paths must cross, so
 M[*i*,*j*]+*M*[*i*+1,*j*+1] ≤ *M*[*i*,*j*+1]+*M*[*i*+1,*j*]

 C_j

 r_i

 r_{i+1}

 C_{j+1}

 so difference between consecutive rows is monotone:

 $M[i, j] - M[i+1, j] \le M[i, j+1] - M[i+1, j+1]$

- M[i,j] distance from r_i to c_j
- Monge: paths must cross, so
 M[*i*,*j*]+*M*[*i*+1,*j*+1] ≤ *M*[*i*,*j*+1]+*M*[*i*+1,*j*]

 C_{j}

ri

 r_{i+1}

 C_{j+1}

so difference between consecutive rows is monotone:
 M[*i*, *j*]-*M*[*i*+1, *j*] ≤ *M*[*i*,*j*+1]-*M*[*i*+1, *j*+1]

• unit Monge: r_i and r_{i+1} are neighbors, so

 $-1 \leq M[i, j] - M[i+1, j] \leq 1$

- M[i,j] distance from r_i to c_j
- Monge: paths must cross, so
 M[*i*,*j*]+*M*[*i*+1,*j*+1] ≤ *M*[*i*,*j*+1]+*M*[*i*+1,*j*]
- so difference between consecutive rows is monotone:
 M[*i*, *j*]-*M*[*i*+1, *j*] ≤ *M*[*i*,*j*+1]-*M*[*i*+1, *j*+1]
- unit Monge: r_i and r_{i+1} are neighbors, so $-1 \le M[i, j] M[i+1, j] \le 1$
- so difference between consecutive rows is monotone and bounded. Looks like:

 r_i

 r_{i+1}

 C_{j}

 C_{j+1}

-1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 1

Unit-Monge matrix compression

- store the first row of an *x*-by-*y* matrix explicitly
- encode difference between each pair of consecutive rows by storing the two locations where -1 changes to 0 or 0 changes to 1
- total space for x-by-y matrix is Õ(x+y) instead of Õ(xy)

 the compression scheme of Abboud et al. combines unit-Monge matrix compression with a slicing technique and small cycle separators.

distances between certain pairs of nodes in the graph G

distances between all pairs of nodes on certain cycles in G

	metric compression of Abboud et al-
distances between certain pairs of nodes in the graph G	represented explicitly
distances between all pairs of nodes on certain cycles in G	represented using unit-Monge matrix compression (not a graph)

	metric compression of Abboud et al.	our subset emulator
distances between certain pairs of nodes in the graph G	represented explicitly	represented as weighted edges
distances between all pairs of nodes on certain cycles in G	represented using unit-Monge matrix compression (not a graph)	represented using emulators for unit-Monge matrices (a graph)

	metric compression of Abboud et al.	our subset emulator
distances between certain pairs of nodes in the graph G	represented explicitly	represented as weighted edges
distances between all pairs of nodes on certain cycles in G	represented using unit-Monge matrix compression (not a graph)	represented using emulators for unit-Monge matrices (a graph)

Emulating unit-Monge matrices

 we would like to construct a small graph *H* with vertices {*r_i*}, {*c_j*} and possibly new vertices, such that *dist_H(r_i,c_j) = dist_G(r_i,c_j)*

Emulating unit-Monge matrices

- we would like to construct a small graph *H* with vertices {*r_i*}, {*c_j*} and possibly new vertices, such that *dist_H(r_i,c_j) = dist_G(r_i,c_j)*
- equivalently, the distance from r_i to c_j in H is M[i,j]

Emulating unit-Monge matrices

- we would like to construct a small graph *H* with vertices {*r_i*}, {*c_j*} and possibly new vertices, such that *dist_H(r_i,c_j) = dist_G(r_i,c_j)*
- equivalently, the distance from r_i to c_j in H is M[i,j]
- we first convert the problem into yet another equivalent one
 (this is not essential, but the presentation is cleaner)

• If *M* is unit Monge then each row in matrix of difference between consecutive rows looks like:

-1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 1

• If *M* is unit Monge then each row in matrix of difference between consecutive rows looks like:

-1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 1

if we also take differences between consecutive columns we get a 0/1 matrix *P* with at most two
 1's in each row

• If *M* is unit Monge then each row in matrix of difference between consecutive rows looks like:

-1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 1

- if we also take differences between consecutive columns we get a 0/1 matrix *P* with at most two
 1's in each row
- for simplicity think of *P* as a right-stochastic matrix (at most a single 1 entry in each row)

• If *M* is unit Monge then each row in matrix of difference between consecutive rows looks like:

-1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 1

- if we also take differences between consecutive columns we get a 0/1 matrix *P* with at most two 1's in each row
- for simplicity think of *P* as a right-stochastic matrix (at most a single 1 entry in each row)
- can express *M* as:

$$M[i,j] = \mathbf{R}[i] + \mathbf{C}[j] + \mathbf{C}[$$

given a *n*-by-*n* right-stochastic matrix *M* construct a small graph *H* (size $\tilde{O}(n)$) with a vertex r_i for each row, and a vertex c_j for each column, such that $dist_H(r_i,c_j)$ is the (i,j)-dominance query in *M*.

given a *n*-by-*n* right-stochastic matrix *M* construct a small graph *H* (size $\tilde{O}(n)$) with a vertex r_i for each row, and a vertex c_j for each column, such that $dist_H(r_i,c_j)$ is the (i,j)-dominance query in *M*.

the resulting emulator H is a directed acyclic (non-planar) graph with non-negative edge weights with $O(n \log n)$ vertices and edges

Back from right-stochastic to unit-Monge

• can express unit-Monge *M* as:

$$M[i,j] = R[i] + C[j] + \left| \sum_{\substack{i' > i \ i' > i}} \right|$$

P[i',j']

Back from right-stochastic to unit-Monge

• can express unit-Monge *M* as:

$$M[i, j] = R[i] + C[j] + \sum_{i' \ge i, j' \ge j} P[i', j']$$

Dominance query

 \boldsymbol{P}

	metric compression of Abboud et al.	our subset emulator
distances between certain pairs of nodes in the graph G	represented explicitly	represented as weighted edges
distances between all pairs of nodes on certain cycles in G	represented using unit-Monge matrix compression	represented using emulators for unit-Monge matrices

Our results

• we turn the compressed representation of Abboud et. al into a distance emulator:

for an undirected unweighted planar graph *G* with *n* vertices and *k* terminals, we construct a directed weighted (non-planar) emulator with $\tilde{O}(\min(k^2, \sqrt{n \cdot k}))$ vertices and edges in $\tilde{O}(n)$ time.

as a corollary, one can compute all-pairs distances among the terminals in *Õ*(*n*) time when *k* = *O*(*n*^{1/3}) (just run Dijkstra on the emulator *k* times)

Things I swept under the rug

- dealing with triangular unit-Monge matrices
- construction time of emulator
- construction time (and slight improvement) of the compression scheme of Abboud et al.

Open Questions

- does a small planar emulator exist?
- lower bounds?
 preliminary result: O(n logn) is tight for emulating by DAGs
- other applications

We are looking for postdocs and PhD interns

- jointly hosted by Oren
 Weimann (Haifa U.) and
 Shay Mozes (IDC Herzliya)
- planar graphs, data structures, string algorithms
- contact me in person or at <u>smozes@idc.ac.il</u> , <u>oren@cs.haifa.ac.il</u>

