Near-Optimal Distance Emulator for Planar Graphs

Hsien-Chih Chang, Paweł Gawrychowski, Shay Mozes, and Oren Weimann

Slides by Shay Mozes

Distance Emulators

- let G be a graph with n nodes, let T be a subset of k vertices of G (terminals).
- a distance emulator is a small graph H with $T \subseteq V(H)$ that preserves the distances between all pairs of terminals.

Distance Emulators

- let G be a graph with n nodes, let T be a subset of k vertices of G (terminals).
- a distance emulator is a small graph H with $T \subseteq V(H)$ that preserves the distances between all pairs of terminals.
- related concepts:
- small distance preserving minor/subgraph.
- compressed representation of the distances (not a graph).

Prior Results

- minor preservers: $\Omega\left(k^{2}\right)$ lower bound even for unweighted grids [Krauthgamer, Nguyen, and Zondiner ICALP'12]
- compressed representation:
- naive representation using $O\left(\min \left(n, k^{2}\right)\right)$ bits is optimal, even for weighted grids [Gavoille, Peleg, Pérennes, and Raz SODA'01]
- can compress unweighted undirected planar graphs using $\tilde{O}\left(\min \left(k^{2}, \sqrt{n k}\right)\right)$ bits [Abboud, Gawrychowski, Mozes, Weimann SODA'18]

Our results

- we turn the compressed representation of Abboud et. al into a distance emulator:
for an undirected unweighted planar graph G with n vertices and k terminals, we construct a directed weighted (non-planar) emulator with $\tilde{O}\left(\min \left(k^{2}, \sqrt{n \cdot k}\right)\right)$ vertices and edges in $\tilde{O}(n)$ time.
- as a corollary, one can compute all-pairs distances among the terminals in $\tilde{O}(n)$ time when $k=O\left(n^{1 / 3}\right)$ (just run Dijkstra on the emulator k times)

Converting Abboud et al's compression into an emulator

- the main building block in the compression scheme of Abboud et al. is a compression of m-by- m unit-Monge matrices into $\tilde{O}(m)$ bits
- our main technical tool emulates an m-by- m unit-Monge matrix by a graph with $\tilde{O}(m)$ vertices and edges

Monge matrices

- $M[i, j]$ - distance from r_{i} to c_{j}

Monge matrices

- $M[i, j]$ - distance from r_{i} to c_{j}
- Monge: paths must cross, so

$$
M[i, j]+M[i+1, j+1] \leq M[i, j+1]+M[i+1, j]
$$

Monge matrices

- $M[i, j]$ - distance from r_{i} to c_{j}
- Monge: paths must cross, so

$$
M[i, j]+M[i+1, j+1] \leq M[i, j+1]+M[i+1, j]
$$

- so difference between consecutive rows is monotone:

$$
M[i, j]-M[i+1, j] \leq M[i, j+1]-M[i+1, j+1]
$$

Monge matrices

- $M[i, j]$ - distance from r_{i} to c_{j}
- Monge: paths must cross, so

$$
M[i, j]+M[i+1, j+1] \leq M[i, j+1]+M[i+1, j]
$$

- so difference between consecutive rows is monotone:

$$
M[i, j]-M[i+1, j] \leq M[i, j+1]-M[i+1, j+1]
$$

- unit Monge: r_{i} and r_{i+1} are neighbors, so

$$
-1 \leq M[i, j]-M[i+1, j] \leq 1
$$

Monge matrices

- $M[i, j]$ - distance from r_{i} to c_{j}
- Monge: paths must cross, so

$$
M[i, j]+M[i+1, j+1] \leq M[i, j+1]+M[i+1, j]
$$

- so difference between consecutive rows is monotone:

$$
M[i, j]-M[i+1, j] \leq M[i, j+1]-M[i+1, j+1]
$$

- unit Monge: r_{i} and r_{i+1} are neighbors, so

$$
-1 \leq M[i, j]-M[i+1, j] \leq 1
$$

- so difference between consecutive rows is monotone and bounded. Looks like:

Unit-Monge matrix compression

- store the first row of an x-by- y matrix explicitly

- encode difference between each pair of consecutive rows by storing the two locations where -1 changes to 0 or 0 changes to 1
- total space for x-by- y matrix is $\tilde{O}(x+y)$ instead of $\tilde{O}(x y)$

Converting Abboud et al's compression into an emulator

- the compression scheme of Abboud et al. combines unitMonge matrix compression with a slicing technique and small cycle separators.

```
distances between certain pairs of nodes in the graph \(G\)
distances between all pairs of nodes on certain cycles in \(\mathbf{G}\)
```


Converting Abboud et al's compression into an emulator

- the compression scheme of Abboud et al. combines unitMonge matrix compression with a slicing technique and small cycle separators.

	metric compression of Abboud et al.
distances between certain pairs of nodes in the graph \mathbf{G}	represented explicitly
distances between all pairs of nodes on certain cycles in \mathbf{G}	represented using unit-Monge matrix compression (not a graph)

Converting Abboud et al's compression into an emulator

- the compression scheme of Abboud et al. combines unitMonge matrix compression with a slicing technique and small cycle separators.

	metric compression of Abboud et al.	our subset emulator
distances between certain pairs of nodes in the graph G	represented explicitly	represented as weighted edges
distances between all pairs of nodes on certain cycles in G	represented using unit-Monge matrix compression (not a graph)	represented using emulators for unit-Monge matrices (a graph)

Converting Abboud et al's compression into an emulator

- the compression scheme of Abboud et al. combines unitMonge matrix compression with a slicing technique and small cycle separators.

	metric compression of Abboud et al.	our subset emulator
distances between certain pairs of nodes in the graph G	represented explicitly	represented as weighted edges
distances between all pairs of nodes on certain cycles in G	represented using unit-Monge matrix compression (not a graph)	represented using emulators for unit-Monge matrices (a graph)

Emulating unit-Monge matrices

- we would like to construct a small graph H with vertices $\left\{r_{i}\right\},\left\{c_{j}\right\}$ and possibly new vertices, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)=\operatorname{dist}_{G}\left(r_{i}, c_{j}\right)$

Emulating unit-Monge matrices

- we would like to construct a small graph H with vertices $\left\{r_{i}\right\}$, $\left\{c_{j}\right\}$ and possibly new vertices, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)=\operatorname{dist}_{G}\left(r_{i}, c_{j}\right)$
- equivalently, the distance from r_{i} to c_{j} in H is $M[i, j]$

Emulating unit-Monge matrices

- we would like to construct a small graph H with vertices $\left\{r_{i}\right\},\left\{c_{j}\right\}$ and possibly new vertices, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)=\operatorname{dist}_{G}\left(r_{i}, c_{j}\right)$
- equivalently, the distance from r_{i} to c_{j} in H is $M[i, j]$

- we first convert the problem into yet another equivalent one
(this is not essential, but the presentation is cleaner)

From unit-Monge to right-stochastic

- If M is unit Monge then each row in matrix of difference between consecutive rows looks like:

From unit-Monge to right-stochastic

- If M is unit Monge then each row in matrix of difference between consecutive rows looks like:

$$
-1-1-1-100000000000111111
$$

- if we also take differences between consecutive columns we get a 0/1 matrix P with at most two 1's in each row

From unit-Monge to right-stochastic

- If M is unit Monge then each row in matrix of difference between consecutive rows looks like:

$$
-1-1-1-100000000000111111
$$

- if we also take differences between consecutive columns we get a $0 / 1$ matrix P with at most two 1's in each row
- for simplicity think of P as a right-stochastic matrix (at most a single 1 entry in each row)

From unit-Monge to right-stochastic

- If M is unit Monge then each row in matrix of difference between consecutive rows looks like:

$$
-1-1-1-100000000000111111
$$

- if we also take differences between consecutive columns we get a 0/1 matrix P with at most two 1's in each row
- for simplicity think of P as a right-stochastic matrix (at most a single 1 entry in each row)
- can express M as:

$$
M[i, j]=R[i]+C[j]+\sum_{\substack{i^{\prime} \geq i, j^{\prime} \geq j}} P\left[i^{\prime}, j^{\prime}\right]
$$

Graphical encoding of dominance queries on a right-stochastic matrix

given a n-by- n right-stochastic matrix M construct a small graph H (size $\tilde{O}(n)$) with a vertex r_{i} for each row, and a vertex c_{j} for each column, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)$ is the (i, j)-dominance query in M.

Graphical encoding of dominance queries on a right-stochastic matrix

given a n-by- n right-stochastic matrix M construct a small graph H (size $\tilde{O}(n)$) with a vertex r_{i} for each row, and a vertex c_{j} for each column, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)$ is the (i, j)-dominance query in M.
$\left(\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$

Graphical encoding of dominance queries on a right-stochastic matrix

given a n-by- n right-stochastic matrix M construct a small graph H (size $\tilde{O}(n)$) with a vertex r_{i} for each row, and a vertex c_{j} for each column, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)$ is the (i, j)-dominance query in M.
divide $\left(\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$\left(\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$
divide $\left(\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$

Graphical encoding of dominance queries on a right-stochastic matrix

given a n-by- n right-stochastic matrix M construct a small graph H (size $\tilde{O}(n)$) with a vertex r_{i} for each row, and a vertex c_{j} for each column, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)$ is the (i, j)-dominance query in M.

$\left(\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$

$\left(\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$

Graphical encoding of dominance queries on a right-stochastic matrix

given a n-by- n right-stochastic matrix M construct a small graph H (size $\tilde{O}(n)$) with a vertex r_{i} for each row, and a vertex c_{j} for each column, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)$ is the (i, j)-dominance query in M.

$\left(\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$

$\left(\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$ remove zero cols $\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$

Graphical encoding of dominance queries on a right-stochastic matrix

given a n-by- n right-stochastic matrix M construct a small graph H (size $\tilde{O}(n)$) with a vertex r_{i} for each row, and a vertex c_{j} for each column, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)$ is the (i, j)-dominance query in M.

Graphical encoding of dominance queries on a right-stochastic matrix

given a n-by- n right-stochastic matrix M construct a small graph H (size $\tilde{O}(n)$) with a vertex r_{i} for each row, and a vertex c_{j} for each column, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)$ is the (i, j)-dominance query in M.

Graphical encoding of dominance queries on a right-stochastic matrix

given a n-by- n right-stochastic matrix M construct a small graph H (size $\tilde{O}(n)$) with a vertex r_{i} for each row, and a vertex c_{j} for each column, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)$ is the (i, j)-dominance query in M.

Graphical encoding of dominance queries on a right-stochastic matrix

given a n-by- n right-stochastic matrix M construct a small graph H (size $\tilde{O}(n)$) with a vertex r_{i} for each row, and a vertex c_{j} for each column, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)$ is the (i, j)-dominance query in M.

Graphical encoding of dominance queries on a right-stochastic matrix

given a n-by- n right-stochastic matrix M construct a small graph H (size $\tilde{O}(n)$) with a vertex r_{i} for each row, and a vertex c_{j} for each column, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)$ is the (i, j)-dominance query in M.

Graphical encoding of dominance queries on a right-stochastic matrix

given a n-by- n right-stochastic matrix M construct a small graph H (size $\tilde{O}(n)$) with a vertex r_{i} for each row, and a vertex c_{j} for each column, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)$ is the (i, j)-dominance query in M.

Graphical encoding of dominance queries on a right-stochastic matrix

given a n-by- n right-stochastic matrix M construct a small graph H (size $\tilde{O}(n)$) with a vertex r_{i} for each row, and a vertex c_{j} for each column, such that $\operatorname{dist}_{H}\left(r_{i}, c_{j}\right)$ is the (i, j)-dominance query in M.

the resulting emulator H is a directed acyclic (non-planar) graph with non-negative edge weights with $O(n \log n)$ vertices and edges

Back from right-stochastic to unit-Monge

- can express unit-Monge M as:

$$
M[i, j]=R[i]+C[j]+\sum_{\substack{i^{\prime} \geq i, j^{\prime} \geq j}} P\left[i^{\prime}, j^{\prime}\right]
$$

Back from right-stochastic to unit-Monge

- can express unit-Monge M as:

$$
M[i, j]=R[i]+C[j]+\sum_{\substack{i^{\prime} \geq i, j^{\prime} \geq j}} P\left[i^{\prime}, j^{\prime}\right]
$$

Converting Abboud et al's compression into an emulator

- the compression scheme of Abboud et al. combines unitMonge matrix compression with a slicing technique and small cycle separators.

	metric compression of Abboud et al.	our subset emulator
distances between certain pairs of nodes in the graph G	represented explicitly	represented as weighted edges
distances between all pairs of nodes on certain cycles in G	represented using unit-Monge matrix compression	emulators for unit-Monge matrices

Our results

- we turn the compressed representation of Abboud et. al into a distance emulator:
for an undirected unweighted planar graph G with n vertices and k terminals, we construct a directed weighted (non-planar) emulator with $\tilde{O}\left(\min \left(k^{2}, \sqrt{n \cdot k}\right)\right)$ vertices and edges in $\tilde{O}(n)$ time.
- as a corollary, one can compute all-pairs distances among the terminals in $\tilde{O}(n)$ time when $k=O\left(n^{1 / 3}\right)$ (just run Dijkstra on the emulator k times)

Things I swept under the rug

- dealing with triangular unit-Monge matrices
- construction time of emulator
- construction time (and slight improvement) of the compression scheme of Abboud et al.

Open Questions

- does a small planar emulator exist?
- lower bounds?
preliminary result: $O(n \log n)$ is tight for emulating by DAGs
- other applications

We are looking for postdocs and PhD interns

- jointly hosted by Oren Weimann (Haifa U.) and Shay Mozes (IDC Herzliya)
- planar graphs, data structures, string algorithms
- contact me in person or at smozes@idc.ac.il, oren@cs.haifa.ac.il

