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Distance Emulators

e let G be a graph with n nodes,
let T be a subset of k vertices of G (terminals).

e a distance emulator is a small graph H with T < V(H) that
preserves the distances between all pairs of terminals.



Distance Emulators

e let G be a graph with n nodes,
let T be a subset of k vertices of G (terminals).

e a distance emulator is a small graph H with T < V(H) that
preserves the distances between all pairs of terminals.

e related concepts:
e small distance preserving minor/subgraph.
e compressed representation of the distances (not a graph).



Prior Results

e minor preservers: Q(k?) lower bound even for unweighted
grids [Krauthgamer, Nguyen, and Zondiner ICALP’12]

e compressed representation:

e naive representation using O(min(n, k?)) bits is optimal, even
for weighted grids [Gavoille, Peleg, Pérennes, and Raz SODA’01]

* can compress unweighted undirected planar graphs using

O(min(k?, \/ nk)) bits [Abboud, Gawrychowski, Mozes, Weimann
SODA’18]




Our results

e we turn the compressed representation of Abboud et. al
iInto a distance emulator:

for an undirected unweighted planar graph G with n
vertices and k terminals, we construct a directed weighted
(non-planar) emulator with O(min(k?,\/n - k))

vertices and edges in O(n) time.

* as a corollary, one can compute all-pairs distances among
the terminals in O(n) time when k = O(n'’?)
(just run Dijkstra on the emulator & times)



Converting Abboud et al’s
compression into an emulator

e the main building block in the compression scheme of
Abboud et al. is a compression of m-by-m unit-Monge
matrices into O(m) bits

e our main technical tool emulates an m-by-m unit-Monge
matrix by a graph with O(m) vertices and edges
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Monge matrices

e M][ij] - distance from r; to ¢;
e Monge: paths must cross, so
< Mlij+1]+M[i+1,J]

e 5o difference between consecutive rows
IS monotone:
M(i, jl-M[i+1, jl = M[ij+1]-M[i+1, j+1]

* unit Monge: r;and r;;; are neighbors, so
1 =Ml[i,jl- M[i+1,/] <1

e so difference between consecutive rows is monotone and
bounded. Looks like:

1-1-1-1000000001111 1
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Unit-Monge matrix
compression

i+l
e store the first row of an x-by-y matrix
explicitly

* encode difference between each pair of
consecutive rows by storing the two
locations where -1 changes to 0 or O
changes to 1

o total space for x-by-y matrix is O(x+y)
instead of O(xy)

Cj+1



Converting Abboud et al’s
compression into an emulator

e the compression scheme of Abboud et al. combines unit-
Monge matrix compression with a slicing technique and small
cycle separators.
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Emulating unit-Monge matrices

. Cj
 we would like to construct a small Civs
graph H with vertices {r;} , {¢;} and r; /

possibly new vertices, such that Vit]

distu(ri,cj) = distg(ri,cj)
e equivalently, the distance from r; to ¢; In
His Mli,j]

* we first convert the problem into yet
another equivalent one

(this is not essential, but the presentation is cleaner)
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From unit-Monge to right-stochastic

e |f M is unit Monge then each row in matrix of
difference between consecutive rows looks like:

14-1-1-1000000001111 1

e |f we also take differences between consecutive
columns we get a 0/1 matrix P with at most two

1’s In each row

e for simplicity think of P as a right-stochastic
matrix (at most a single 1 entry in each row)

® can express M as:

Mli, 5] = R[] + Clj] +
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Graphical encoding of dominance
queries on a right-stochastic matrix

given a n-by-n right-stochastic matrix M construct a small graph
H (size O(n)) with a vertex r; for each row, and a vertex ¢; for each
column, such that distu(ri,c;) is the (i,j)-dominance query in M.
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Graphical encoding of dominance
queries on a right-stochastic matrix

given a n-by-n right-stochastic matrix M construct a small graph
H (size O(n)) with a vertex r; for each row, and a vertex ¢; for each
column, such that distu(ri,c;) is the (i,j)-dominance query in M.
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Graphical encoding of dominance
queries on a right-stochastic matrix

given a n-by-n right-stochastic matrix M construct a small graph
H (size O(n)) with a vertex r; for each row, and a vertex ¢; for each
column, such that distu(ri,c;) is the (i,j)-dominance query in M.
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Graphical encoding of dominance
queries on a right-stochastic matrix

given a n-by-n right-stochastic matrix M construct a small graph
H (size O(n)) with a vertex r; for each row, and a vertex ¢; for each
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Graphical encoding of dominance
queries on a right-stochastic matrix

given a n-by-n right-stochastic matrix M construct a small graph
H (size O(n)) with a vertex r; for each row, and a vertex ¢; for each
column, such that distu(ri,c;) is the (i,j)-dominance query in M.
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Graphical encoding of dominance
queries on a right-stochastic matrix

given a n-by-n right-stochastic matrix M construct a small graph
H (size O(n)) with a vertex r; for each row, and a vertex ¢; for each
column, such that distu(ri,c;) is the (i,j)-dominance query in M.
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Converting Abboud et al’s
compression into an emulator

e the compression scheme of Abboud et al. combines unit-
Monge matrix compression with a slicing technique and small

cycle separators.
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Our results

e we turn the compressed representation of Abboud et. al
iInto a distance emulator:

for an undirected unweighted planar graph G with n
vertices and k terminals, we construct a directed weighted
(non-planar) emulator with O(min(k?,\/n - k))

vertices and edges in O(n) time.

* as a corollary, one can compute all-pairs distances among
the terminals in O(n) time when k = O(n'’?)
(just run Dijkstra on the emulator & times)



Things | swept under the rug

e dealing with triangular unit-Monge matrices
e construction time of emulator

e construction time (and slight improvement) of the
compression scheme of Abboud et al.



Open Questions

e does a small planar emulator exist?

e |[ower bounds?
preliminary result: O(n logn) is tight for emulating by DAGs

e other applications
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