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Abstract

We consider the problem of preprocessing a weighted directed planar graph in order to quickly answer
exact distance queries. The main tension in this problem is between space S and query time Q, and since
the mid-1990s all results had polynomial time-space tradeoffs, e.g., Q = Θ̃(n/

√
S) or Q = Θ̃(n5/2/S3/2).

In this paper we show that there is no polynomial tradeoff between time and space and that it is
possible to simultaneously achieve almost optimal space n1+o(1) and almost optimal query time no(1).
More precisely, we achieve the following space-time tradeoffs:

n1+o(1) space and log2+o(1) n query time,

n log2+o(1) n space and no(1) query time,

n4/3+o(1) space and log1+o(1) n query time.

We reduce a distance query to a variety of point location problems in additively weighted Voronoi dia-
grams, and develop new algorithms for the point location problem itself using several partially persistent
dynamic tree data structures.
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1 Introduction

A distance oracle is a data structure that gives oracle access to the pairwise distance function distG(·, ·) with
respect to some graph G. There are two trivial solutions to this problem: store distG explicitly in Θ(n2)
space, or store the graph itself and answer queries in Ω(m) time. The goal is to achieve a time-space tradeoff
that approaches the constant query time of the first trivial scheme and the linear space of the second.

On general graphs G it seems that incorporating approximation into the distance estimates is necessary to
get an attractive space-time tradeoff. There are approximate distance oracles for undirected graphs [64, 18]
that trade space O(n1+1/k) against multiplicative approximation 2k − 1, with optimal O(1) query time.
Others [58, 1] pit space against a mix of multiplicative and additive approximation, or in sparse graphs [2, 61],
space against query time. Refer to Sommer [60] for a survey on distance oracles.

When G is known to come from a structured class of graphs we can aspire to find exact distance oracles
with attractive space-time tradeoffs. In this paper we develop new distance oracles for weighted, directed
planar graphs. This problem has been studied for 25 years in both the exact [3, 24, 19, 28, 45, 67, 56, 9, 54,
20, 32, 14] and the approximate [63, 42, 43, 44, 34, 68, 13] settings. Our oracles are the first exact oracles
to simultaneously achieve almost optimal space n1+o(1) and almost optimal query time no(1). Theorem 1.1
provides a fine-grained tradeoff between space and query time.
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Figure 1: Tradeoff of the space (S) vs. the query time (Q) for exact distance oracles in planar graphs on a
doubly logarithmic scale, hiding subpolynomial factors. The previous tradeoffs are indicated by solid black
lines and points, while our new tradeoff is indicated by the red point.

1.1 History of Planar Distance Oracles

The planar distance oracle problem was introduced in 1996 by Arikati et al. [3] and Djidjev [24]. The main
technical tool used in the early planar distance oracles [3, 24, 19] is Lipton and Tarjan’s planar separator
theorem [49], and its refinements by Miller [52] and Frederickson [29]. Let the query time and the space
of an oracle be denoted by Q and S, respectively. The early oracles achieved a space-query tradeoff of
Q = Õ(n/

√
S) for S ∈ [n4/3, n2], but a weaker tradeoff of Q = O(n2/S) for S ∈ [n, n4/3).
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In a very influential paper Fakcharoenphol and Rao [28] introduced Monge matrices to planar graph
algorithms, and devised a distance oracle with Õ(n) space and Õ(

√
n) query time, i.e., they added an

additional point to the general Q = Õ(n/
√
S) tradeoff. Eventually, Mozes and Sommer [54] extended this

tradeoff to nearly the full range [n log log n, n2], using [28] and ideas from Klein’s [44] multiple source shortest
path (MSSP) data structure.

The work of [67, 56, 54, 30] focussed on achieving optimal time or space, at the expense of the other
measure. Wulff-Nilsen’s [67] distance oracle occupies subquadratic space O(n2 log4 log n/ log n) and answers
queries in optimal O(1) time, whereas Nussbaum [56] and Mozes and Sommer’s [54] distance oracle occu-
pies optimal O(n) space and answers distance queries in O(n1/2+ε) time, for any ε > 0. On undirected,
unweighted planar graphs, the recent distance oracle of Fredslund-Hansen, Mozes, and Wulff-Nilsen [30]
occupies O(n5/3+ε) space and answers queries in O(log(1/ε)) time for any ε > 0.

In 2017 Cabello [10] introduced a new idea, additively weighted planar Voronoi diagrams,1 and used them
to solve problems concerning planar metrics (diameter, sum-of-distances) in strongly subquadratic time.
Inspired by this idea, Cohen-Addad, Dahlgaard, and Wulff-Nilsen [20] realized that Voronoi diagrams can be
used to obtain the first exact distance oracle for planar graphs with subquadratic space and polylogarithmic
query time. The Voronoi diagram based oracle in their breakthrough paper has a space-time tradeoff of
Q = Õ(n5/2/S3/2) for S ∈ [n3/2, n5/3].

All of the distance oracles cited above report exact distances. Thorup [63] proved that on non-negatively
weighted planar graphs, (1+ε)-approximate distances can be reported in O(ε−1+log log n) time by an oracle
of space O(nε−1 log2 n). Refer to [44, 42, 43, 34, 68, 13, 48] for other space-time-approximation tradeoffs on
undirected planar graphs and to [48] for an improved tradeoff on directed planar graphs. See Table 1.

1.2 New Results

In this paper we show that there is no polynomial tradeoff between space and query time, and that near-
optimality in both measures can be achieved simultaneously : with n1+o(1) space exact distance queries can
be answered in no(1) query time. Our main distance oracle (Theorem 1.1) does have a space-time tradeoff,
the extremes of which let us achieve either Õ(n) space or Õ(1) query time but not both.

Theorem 1.1. Let G be an n-vertex weighted planar digraph with no negative cycles, and let κ,m ≥ 1
be parameters. A distance oracle occupying space O(mκn1+1/m+1/κ) can be constructed in Õ(n3/2+1/m +
n1+1/m+1/κ) time to answer exact distance queries in O(2mκ log2 n log log n) time. At the two extremes of
the space-time tradeoff curve, we can construct oracles in n3/2+o(1) time with either

• n1+o(1) space and log2+o(1) n query time, or

• n log2+o(1) n space and no(1) query time.

At a high level, Theorem 1.1 reduces a distance query distG(u, v) to a series of point location problems
in additively weighted planar Voronoi diagrams. We compute an m-level #r-division [29, 46] where regions

on level i have O(ni/m) vertices and O(
√
ni/m) boundary vertices (vertices shared by other regions). In

the course of answering a distance query distG(u, v) we find (u1, u2, . . .), where ui is the last vertex of the
shortest u-to-v path lying on the boundary of a level-i region that contains u.

Theorem 3.2 proves that the point location problem itself is reducible to O(log n) distance-type queries2

via a kind of binary search. We employ two strategies for answering these distance-type queries. The first is
to store many MSSP structures for various subgraphs. This is time-efficient but requires space linear in the
size of these subgraphs. The second is to use recursion. Specifically, given (u1, . . . , ui), we can narrow the
number of possibilities for ui+1 down to two candidates s1, s2 in Õ(1) time via point location queries that
are solved without recursion. We determine which of these two sites actually is ui+1 with two recursive calls
to compute dist(s1, v) and dist(s2, v). This branching process leads to a query time Õ(2m) that depends

1Voronoi diagrams have also been used for facility location problems in planar graphs [51].
2Specifically, deciding whether the shortest s-to-v path is a prefix of the shortest s-to-x path for some vertex x, or whether

it branches to the left or to the right of it.

2



Exact Oracles Space Query Time

Arikati, Chen, Chew
Das, Smid & Zaroliagis

1996 S ∈ [n3/2, n2] O
!

n2

S

"

Djidjev 1996
S ∈ [n, n2] O

!
n2

S

"

S ∈ [n4/3, n3/2] O
!

n√
S
log n

"

Chen & Xu 2000 S ∈ [n4/3, n2] O
!

n√
S
log

!
n√
S

""

Fakcharoenphol & Rao 2006 O(n log n) O(
√
n log2 n)

Wulff-Nilsen 2010 O(n2 log4 logn
logn ) O(1)

Nussbaum 2011
O(n) O(n1/2+ε)

S ∈ [n4/3, n2] O
!

n√
S

"

Mozes & Sommer 2012
S ∈ [n log log n, n2] O

!
n√
S
log2 n log3/2 log n

"

O(n) O(n1/2+ε)

Cohen-Addad, Dahlgaard
& Wulff-Nilsen

2017 S ∈ [n3/2, n5/3] O
!

n5/2

S3/2 log n
"

Gawrychowski, Mozes
Weimann & Wulff-Nilsen

2018
O(n3/2) O(log n)

S ∈ [n, n3/2] O
!

n3/2

S log2 n
"

Fredslund-Hansen, Mozes
& Wulff-Nilsen

2020 O(n5/3+ε) log(1/ε) (Undir.,Unweight.)

new

n1+o(1) log2+o(1) n Theorem 1.1

n log2+o(1) n no(1) Theorem 1.1

O(n4/3 log1/3 n) O(log2 n) Theorem 4.1

n4/3+o(1) log1+o(1) n Theorem 4.1

(1 + !)-Approx. Oracles Space Query Time

Thorup 2001
O(nε−1 log2 n) O(log log n+ ε−1)

O(nε−1 log n) O(ε−1) (Undir.)

Klein 2002 O(n(log n+ ε−1 log ε−1)) O(ε−1) (Undir.)

Kawarabayashi,
Klein & Sommer

2011 O(n) O(ε−2 log2 n) (Undir.)

Kawarabayashi,
Sommer & Thorup

2013
O(n log n) O(ε−1) (Undir.)

O(n) O(ε−1) (Undir.,Unweight.)

Gu & Xu 2015 O(n log n(ε−1 log n+ 2O(1/ε))) O(1) (Undir.)

Wulff-Nilsen 2016 O(nε−2) O(ε−2) (Undir.)

Chan & Skrepetos 2019 O(n log n(ε−1 log n+ ε−4−δ)) O(1) (Undir.)

Le & Wulff-Nilsen 2021 O(nε−2) O(ε−2) (Undir.)

Le & Wulff-Nilsen 2021 o(nε−1 log n) O(log log n+ ε−5.01)

Table 1: Space-query time tradeoffs for exact and approximate planar distance oracles. All exact distance
oracles apply to weighted, directed graphs without negative cycles. Approximate distance oracles apply
to non-negatively weighted graphs; some are restricted to undirected and/or unweighted graphs. O hides
log(ε−1 log n) factors. The bounds for approximate distance oracles in directed planar graphs assume that
the ratio between the largest and smallest edge weights is polynomial in n.
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exponentially on m, whereas the space of the data structure is about Õ(n1+1/m). Thus, by setting m
appropriately we can achieve Õ(1) query time and n1+o(1) space or no(1) query time and Õ(n) space.

Using existing MSSP structures [44] the query time would be O(2m log3 n). We develop a new MSSP
data structure based on Euler-tour trees [38] and partially persistent arrays [21] that may be of independent
interest. It uses O(κn1+1/κ) space and answers distance-type queries in O(κ log log n) time, for any parameter
κ ≥ 1. The first tradeoff of Theorem 1.1 (minimizing query time) is obtained by setting both κ,m to be
ω(1) and o(log log n).

In Theorem 4.1 we describe a simpler distance oracle that achieves different space-time tradeoffs, namely
Õ(n4/3) space and O(log2 n) query time, or n4/3+o(1) space and log1+o(1) n query time.

Finally, we complement our almost optimal distance oracle with an efficient preprocessing algorithm that
runs in n3/2+o(1) time. In particular, we show an efficient algorithm for computing Voronoi diagrams in
planar graphs, which we believe is of independent interest.

Provenance of the Paper. This paper is derived from three extended abstracts. The first [31], which
appeared in SODA 2018, characterized the tree structure of the dual representation of Voronoi diagrams,
and developed the point location mechanism described in Section 3. The distance oracle of [31] achieved
a tradeoff of Q = Õ(n3/2/S) for S ∈ [n, n3/2], which is completely subsumed by Theorem 1.1. Therefore,
it is not described in this paper. The second paper [14], which appeared in STOC 2019, observed that the
same point location mechanism can be used in an external Voronoi diagram, i.e., the Voronoi diagram for
the complement of a region in an r-division. Furthermore, it developed the recursive query structure using
m-level #r-divisions. A query at level i of the recursion reduces to O(log n) queries at level i + 1. Thus, the
query time in [14] is proportional to (log n)m rather than to 2m as in Theorem 1.1. The resulting distance
oracle of [14] achieved n1+o(1) space and no(1) query-time. The third paper [50], which appeared in SODA
2021, modified and extended the point location mechanism. It showed that, by using appropriate persistent
data structures and further exploiting planarity, much of the point location work can be done efficiently
without recursion, and that only two recursive calls at a higher level suffice. The MSSP data structure based
on Euler-tour trees was also introduced in [50].

1.3 Organization

In Section 2 we review background on planar embeddings, planar separators, and multiple-source shortest
paths (MSSP). In Section 3 we review additively weighted Voronoi diagrams, and prove that the point
location problem is reducible to O(log n) distance-type queries. Section 4 describes a simple distance oracle
with space Ω(n4/3) and faster query times than those of Theorem 1.1.

Section 5 introduces the main distance oracle of Theorem 1.1 and the high-level query algorithm. The
high-level algorithm relies on specialized point location routines, which are introduced in Section 6. Section 7
analyzes the space and query time of the distance oracle whereas its construction time is addressed in
Section 8. Section 9 explains how to remove a simplifying assumption made throughout the paper, that each
region is bounded by a single hole. We conclude with some remarks and open problems in Section 10.

The new MSSP implementation is described in Appendix A.

2 Preliminaries

2.1 The Graph and its Embedding

A weighted directed planar graph G = (V,E, ℓ) is represented by a combinatorial embedding: for each
v ∈ V (G) we list the edges incident to v according to the clockwise order around v. Let n = |V (G)|. We
assume that the graph has a fixed embedding, has no negative weight cycles, and, without loss of generality,
further assume the following.

• All the edge-weights are non-negative, i.e., ℓ : E → R≥0. This can be ensured in O(n log2 n
log logn ) time [39,

55]. Furthermore, in O(n) time, via randomized or deterministic perturbation [26], we can assume that
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there are no zero weight edges, and that shortest paths are unique in any subgraph of G. Each original
distance can be recovered from the corresponding distance in the transformed graph in constant time.3

• The graph is strongly-connected and triangulated, i.e., each face is bounded by a 3-cycle. We can
ensure this by introducing artificial edges with weight n ·maxe∈E(G){ℓ(e)} so as not to affect any finite
distances.

• If (u, v) ∈ E(G) then (v, u) ∈ E(G) as well. (In the circular ordering around v, they are represented
as a single element {u, v}.) We stress that the graph is directed. That is, ℓ(u, v) and ℓ(v, u) need not
be equal, and one of them may be ∞.

Suppose P = (v0, v1, . . . , vk) is a path oriented from v0 to vk, and e = (vi, u) (where i ∈ [1, k − 1]) is an
edge not on P . Then e is to the right of P if e appears between {vi, vi+1} and {vi−1, vi} in the clockwise
order around vi, and left of P otherwise.

2.2 Separators and r-Divisions

Lipton and Tarjan [49] proved that every planar graph contains a separator of O(
√
n) vertices that, once

removed, breaks the graph into components with at most 2n/3 vertices each. Miller [52] showed that every
triangulated planar graph has a O(

√
n)-size separator that consists of a simple cycle. Simple cycle separators

can be used to recursively separate a planar graph until its components have constant size. Klein, Mozes,
and Sommer [46] showed how to obtain, in O(n) time, a complete recursive decomposition tree of G that is a
binary tree whose nodes correspond to subgraphs of G, called regions, with the root being all of G, and the
leaves being regions of constant size. The set of boundary vertices of a region R is denoted by ∂R: it consists
of those vertices of R that belong to some separator along the recursive decomposition used to obtain R.

An r-division, introduced by Frederickson [29], is a set of Θ(n/r) regions, no two of which are ancestor
of one another in the recursive decomposition tree, whose union is G (i.e., a maximal anti-chain), and such
that each region has O(r) vertices and O(

√
r) boundary vertices.

We use [46], for computing a hierarchical #r-division, where #r = (rm, . . . , r1) and n = rm > · · · > r1 = Ω(1)
in linear time. Each region in each ri-division is a region in the complete recursive decomposition tree of G.
Such an #r-division has the following properties:

• (Division & Hierarchy) For each i, Ri is the set of regions in an ri-division of G, where Rm = {G}
consists of the graph itself. For each i < i′ ≤ m and Ri ∈ Ri, there is a unique Ri′ ∈ Ri′ such that
E(Ri) ⊆ E(Ri′). The #r-division can therefore be represented as a rooted tree of regions.

• (Boundaries and Holes) The O(
√
ri) boundary vertices of any Ri ∈ Ri lie on a constant number of

faces of Ri called holes, each bounded by a cycle (not necessarily simple).

We modify the output of the Klein-Mozes-Sommer [46] #r-division in two ways. First, we supplement it
with a zeroth level. The layer-0 R0 = {{v} | v ∈ V (G)} consists of singleton sets, and each {v} is attached
as a (leaf) child of an arbitrary R ∈ R1 for which v ∈ R. Second, we modify the graph so that every hole of
every region is bounded by a simple cycle in the graph. This involves cutting along paths of repeated edges;
see Section 9 for details of this transformation.

Suppose that f is one of the O(1) holes of region R and Cf is the cycle bounding f . The cycle Cf

partitions E(G)−Cf into two parts. Let Rf,out be the graph induced by the part disjoint from R, together
with Cf , i.e., Cf appears in both R and Rf,out. The presentation of the algorithm is greatly simplified
by assuming that in every region R, ∂R lies on a single hole fR. We use Rout as a short form of RfR,out.
In Section 9 we explain how to remove this assumption.

3Lemma 3.3 in [26] asserts that for any two paths p1, p2 from s to t, there exists a path p that is strictly shorter (under the
perturbation) than at least one of p1, p2. The proof of the lemma shows that the edges of p are contained in the union of the
edges of p1 and p2. Hence, shortest paths are unique in any subgraph of G. (In fact, [26, Lemma 3.3] discusses costs of flows,
of which shortest paths is a special case.)
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Figure 2: The clockwise order of ex, eu, ev around v tells us whether the shortest s-to-u path branches from
the shortest s-to-v path to the right or left.

2.3 Multiple-Source Shortest Paths

Consider a weighted planar graph H with a distinguished face f on vertices S. Klein’s MSSP algorithm [45]
takes O(|H| log |H|) time and produces an O(|H| log |H|)-size data structure that, given s ∈ S and v ∈ V (H),
returns distH(s, v) in O(log |H|) time. Klein’s algorithm can be viewed [11] as continuously moving the source
vertex around the boundary face f , recording all changes to the single-source shortest paths (SSSP) tree
in a Link-Cut tree data structure [59]. It is shown [45] that each edge in H enters and leaves the SSSP
tree exactly once, and hence the number of changes is O(|H|). Each change to the tree can be handled
in O(log |H|) time [59], and the generic persistence method of [25] allows for querying any state of the
SSSP tree. The important point is that the total space is linear in the number of updates to the structure
(O(|H|)) times the update time (O(log |H|)). We show that this structure can be augmented to also answer
other useful queries. Further, we present alternative tradeoffs for the problem by implementing MSSP using
Euler Tour trees [38], as opposed to the data structure of [45] that uses Link-Cut trees [59]. Since our data
structure (with Euler Tour trees) does not satisfy the criteria of Driscoll et al.’s [25] persistence method for
pointer-based data structures, we use the folklore implementation of persistent arrays4 to make any RAM
data structure persistent, with doubly-logarithmic slowdown in the query time. See Appendix A for a proof
of Lemma 2.1.

Lemma 2.1 (Cf. Klein [45] and Cabello et al. [11]). Let H be a planar graph, S be the vertices on some
distinguished face f , and κ ≥ 1 be a parameter. Consider the following queries.

• Given s ∈ S, v ∈ V (H), return distH(s, v).

• Given s ∈ S, u, v ∈ V (H), return (x, eu, ev), where x is the lowest common ancestor (LCA) of u and v
in the SSSP tree rooted at s and ez is the edge on the path from x to z (if x ∕= z) for z ∈ {u, v}.

We can achieve either of the following space-time tradeoffs:

(a) O(|H| log |H|) construction time, O(|H| log |H|)-space, and O(log |H|) query time, or

(b) O(κ|H|1+1/κ) construction time, O(κ|H|1+1/κ)-space, and O(κ log log |H|) query time.

The purpose of the second query is to tell whether u lies on the shortest s-to-v path (x = u) or vice
versa, or to tell whether the s-to-u path branches left or right from the s-to-v path. If they do branch, we
also say that u is to the left/right of the s-to-v path. Once we retrieve the LCA x and edges eu, ev, we get

4Dietz [21] credits this method to an oral presentation of Dietzfelbinger et al. [22], which highlighted it as an application of
dynamic perfect hashing. The idea is to maintain a van Emde Boas-type data structure [65, 66] for every array location A[i] that
contains every value written to A[i], keyed by the time it is written. Both the values and timestamps are O(logn)-bit integers.
Looking up A[i] at time t involves a single predecessor search, which takes O(log logn) time. Perfect hashing is used to reduce
the space of each van Emde Boas structure to linear. If randomness is undesirable, we can afford to construct linear-space
deterministic dictionaries with an O(logn)-factor overhead in construction time; see Hagerup, Milterson, and Pagh [36].
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the edge ex from x to its parent. The clockwise order of ex, eu, ev around x tells us5 whether the shortest
s-to-u path branches to the left or to the right of the shortest s-to-v path. See Figure 2.

3 Additively Weighted Voronoi Diagrams

Let H be a directed planar graph with real edge-lengths and no negative-length cycles. Assume that all faces
of H are triangles except, perhaps, a single face h, which we regard as the infinite face. Let S be the set of
vertices that lie on h. The vertices of S are called sites. Each site s ∈ S has a weight ω(s) ≥ 0 associated
with it. The additively weighted distance from a site s ∈ S to a vertex v ∈ V (H), denoted by dω(s, v), is
defined as ω(s) plus the length of the shortest s-to-v path in H. To avoid clutter in the presentation we
assume that |S| > 2. This is without loss of generality since when |S| ≤ 2 (in fact, whenever S = O(1))
point location (Theorem 3.2) becomes trivial.

Definition 3.1. The Voronoi diagram of S within H with additive weights ω, denoted by VD[H,S,ω], is
a partition of V (H) into pairwise disjoint sets, one set Vor(s) for each site s ∈ S. The set Vor(s), which
is called the Voronoi cell of s, contains all vertices in V (H) that are closer (w.r.t. dω(·, ·)) to s than to any
other site in S. Ties are always broken consistently, in favor of sites with larger additive weights—formally,
with respect to reverse lexicographic order on (ω(s), s).

Since every subgraph of H is strongly connected, the Voronoi cells partition V (H). Due to the tie-
breaking rule, for any v ∈ Vor(s), the shortest s-to-v path is contained in Vor(s). In particular, Vor(s) is
connected.

We say that an edge e of H belongs to Vor(s) if both endpoints of e belong to Vor(s). We say that e is a
boundary edge of Vor(s) if exactly one endpoint of e belongs to Vor(s).

Next, we describe a space-efficient dual representation VD∗[H,S,ω] (or simply VD∗) of a Voronoi diagram
VD[H,S,ω]. Let H∗ be the planar dual of H. Let VD∗

0 be the subgraph of H∗ consisting of the duals of
edges {u, v} of H such that u and v are in different Voronoi cells. Let VD∗

1 be the graph obtained from VD∗
0

by dissolving degree-2 vertices into their incident edges (or equivalently, eliminating each degree-2 vertex by
contracting any one of its incident edges). The vertices of VD∗

1 are called Voronoi vertices. A Voronoi vertex
f∗ ∕= h∗ is dual to a triangular face f whose three vertices belong to three distinct Voronoi cells. We call
such a face trichromatic. Each Voronoi vertex f∗ stores for each vertex u incident to f the site s such that
u ∈ Vor(s). Note that h∗ is a Voronoi vertex. Each face of VD∗

1 corresponds to a cell Vor(s). Hence there
are at most |S| faces in VD∗

1. Since the minimum degree in VD∗
1 is 3, the total number of edges, vertices,

and faces of VD∗
1 is O(|S|). Finally, we define VD∗ to be the graph obtained from VD∗

1 by splitting the node
h∗ into deg(h∗) copies, each one incident to an edge formerly incident to h∗. See Figure 3 for an illustration.

We say that an edge e∗0 of VD∗
0 is represented by an edge e∗ of VD∗ if e∗0 was contracted into e∗ in the

process defining VD∗. We say that an edge e∗ of VD∗ is incident to Vor(s) if e∗ is an edge on the face of
VD∗

1 that corresponds to Vor(s).

Lemma 3.1. If ω is such that every vertex of S lies in its own Voronoi cell then VD∗[H,S,ω] is a tree.

Proof. Suppose that VD∗ contains a cycle C∗. Since the degree of each copy of h∗ is one, the cycle avoids all
copies of h∗. Since all the sites are on the boundary of the hole h, each of the vertices of the graph enclosed
by C∗ belongs in a Voronoi cell that contains no site, a contradiction.

To prove that VD∗ is connected, observe that in VD∗
1, every Voronoi cell is a face bounded by a cycle

that goes through h∗. Let C∗ denote one such cycle. If C∗ is disconnected in VD∗ then, in VD∗
1, C

∗ must
visit h∗ at least twice. But this implies that the cell corresponding to C∗ contains more than a single site, a
contradiction. Thus, the boundary of every Voronoi cell is a connected subgraph of VD∗. Consider, for any
i, the edge {si, si+1}. Since si and si+1 are in the distinct Voronoi cells Vor(si) and Vor(si+1), the dual of

5The order can be inferred in constant time by storing with each edge its rank in a clockwise traversal of the edges incident
to x, starting from an arbitrarily chosen vertex.
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Figure 3: A planar graph (black edges) with four sites on the infinite face together with the dual Voronoi
diagram VD∗ (in blue). VD∗ is a tree with 6 vertices. The sites are shown together with their corresponding
shortest path trees (in turquoise, red, yellow, and green).

{si, si+1} is represented by some edge of VD∗. Hence, for every i, the boundaries of the Voronoi cell of si
and of si+1 share that edge, so they are in the same connected component of VD∗. It follows that the entire
VD∗ is connected.

Throughout the paper, we force the preconditions to Lemma 3.1 to hold. In particular, suppose S0 are
the vertices lying on the distinguished face h0 in H0, and S = {s ∈ S0 | s ∈ Vor(s)} are those sites with
non-empty Voronoi cells. Rather than construct VD∗[H0, S0,ω], we embed dummy edges in h0, so that S
are the vertices of a distinguished face h in a graph H such that distH0

= distH . It follows from Lemma 3.1
that VD∗[H,S,ω] is a tree. See Figures 3 and 4 for an illustration of how dummy edges are added to a
graph.

Let us also mention an alternative work-around. Consider a site s that belongs to the Voronoi cell of a
different site s′. One can then substitute ω(s) by dω(s′, s) and consider s as a proxy for s′. That is, due to
our tie-breaking rules, with such updated weights, s will belong to its own Voronoi cell, and whenever we
find that some vertex v belongs to the Voronoi cell of s, we know that in effect v belongs to the Voronoi cell
of s′.

3.1 Point Location in Voronoi Diagrams

The point location problem is, given v and some representation of a Voronoi diagram VD[H,S,ω], to de-
termine the site s ∈ S for which v ∈ Vor(s) and the distance dω(s, v). In this section we describe a data
structure that answers point location queries efficiently, given access to an MSSP structure on the relevant
graph.

Theorem 3.2. Let H be a planar graph and S be the vertices on a distinguished face h. Suppose we have
access to an MSSP data structure for H with distinguished face h and query time tq. After preprocessing
VD∗[H,S,ω] in O(|S|) time, we can answer point location queries in O(tq · log |S|) time.

In the remainder of this section we prove Theorem 3.2. The main idea is as follows. In order to find
the Voronoi cell Vor(s) to which a query vertex v belongs, it suffices to identify an edge e∗ of VD∗ that is

8



adjacent to Vor(s). Given e∗ we can simply check which of its two adjacent cells contains v by comparing
the additive distances from the corresponding two sites to v using two MSSP queries. The point location
data structure is based on a centroid decomposition of the tree VD∗ into connected subtrees, and on the
ability to go down this centroid decomposition, each time choosing a subtree that contains an edge adjacent
to Vor(s).

We assume that H is triangulated, except for the face h. In addition, for technical reasons we assume
that for every face f ∕= h incident to {y0, y1, y2}, three artificial vertices yfj , j ∈ {0, 1, 2} have been embedded

in f , each with a single zero-length incident edge (yj , y
f
j ).

6 This assumption does not change distances in
H nor the asymptotic size of H. The preprocessing consists of just computing a centroid decomposition of
VD∗. A centroid of an n-node tree T is a node u ∈ T such that removing u and replacing it with copies,
one for each edge incident to u, results in a set of trees, each with at most n+1

2 edges. A centroid always
exists in a tree with at least one edge. The centroid decomposition of VD∗ is defined recursively. In every
step of the centroid decomposition we work with a connected subtree T ∗ of VD∗. Initially, T ∗ is the entire
tree VD∗. Recall that there are no nodes of degree 2 in VD∗. If there are no nodes of degree 3, then T ∗

consists of a single edge of VD∗, and the decomposition terminates. Otherwise, we choose a centroid c∗, and
partition T ∗ into the three subtrees T ∗

0 , T
∗
1 , T

∗
2 obtained by splitting c∗ into three copies, one for each edge

incident to c∗. Since the size of VD∗ is O(|S|), the depth of this recursive decomposition is log |S| + O(1).
Such a decomposition can be computed in O(|S|) time [8, 33] and can be represented as a ternary tree which
we call the centroid decomposition tree, in O(|S|) space. Each non-leaf node of the centroid decomposition
tree corresponds to a centroid vertex c∗, which is stored explicitly. We will refer to nodes of the centroid
decomposition tree by their associated centroid. Each node also implicitly corresponds to the subtree of VD∗

of which c∗ is the centroid. The leaves of the centroid decomposition tree correspond to single edges of VD∗,
which are stored explicitly. See Figure 4.

The procedure SimpleCentroidSearch(VD∗, v) takes as input a dual Voronoi diagram VD∗ and a vertex
v to be located. It returns a pair (s, d) where v ∈ Vor(s) and d = dω(s, v). The procedure is recursive.
It traverses a centroid decomposition for VD∗, and at intermediate invocations the procedure takes a third
argument T ∗, which is a subtree of the centroid decomposition. The loop invariant is that T ∗ contains a
leaf representing some edge on the boundary of Vor(s). The algorithm bottoms out in one of two base cases
(Line 8 or Line 13).

The first way the recursion can end is if we reach the bottom of the centroid decomposition. If T ∗ is a
singleton, its single node f∗ corresponds to an edge in VD∗ separating the Voronoi cells of two sites, say
s1 and s2. At this point we know that either v ∈ Vor(s1) or v ∈ Vor(s2), and determine which case is true
by comparing the additive distances from each of s1 and s2, which can be computed using the MSSP data
structure (Lines 2–9).

We now explain how to treat the case where T ∗ is not a singleton. The root f∗ of T ∗ is dual to
a trichromatic face f composed of three vertices y0, y1, y2 in clockwise order, which are, respectively, in
distinct Voronoi cells of sites s0, s1, s2. Let e0, e1, e2 be the edges {y2, y0}, {y0, y1}, {y1, y2}, respectively. For
j ∈ {0, 1, 2}, let pj denote the sj-to-yj shortest path. Further, let us denote by Cj the path obtained by
concatenating path pj , edge ej , and the reverse of path pj−1. (In notation related to a triangular face, all
subscripts are naturally modulo 3, i.e., pj−1 is short for pj−1 (mod 3).) A vertex of H either lies on one of the
pjs, or strictly to the right of exactly one of the Cjs. The second case can be equivalently restated as follows:
v is enclosed by the cycle comprised of Cj and the sj−1-to-sj walk along face h that does not contain sj+1.
See Figure 5.

For each j, we can check whether v lies on some pj using the MSSP data structure. If this is the case,
then v ∈ Vor(sj), and we are done (Lines 12–13). We next show how to check whether v lies to the right of
some Cj .

6The artificial vertices are leaves in any shortest path tree, while this is not true for the yis. Then, for every vertex v ∕= yfj

that is not on the shortest sj -to-yj path, the shortest sj -to-v path branches either left or right of the shortest sj -to-y
f
j path,

whereas v may be a descendant of yj in the shortest path tree rooted at sj . This is used, for instance, in Lemma 3.3.
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(a)

(b) (c)

Figure 4: (a) The original H0 is a triangulated grid, with f0 being the exterior face. The boundary vertices
S with non-empty Voronoi cells are marked with colored halos. Edges are added so that S are on the exterior
face f . The vertices of VD∗ are the duals of trichromatic faces, and those derived by splitting f∗ into |S|
vertices. The edges of VD∗ correspond to paths of duals of bichromatic edges. (b) The dual representation
VD∗. (c) A centroid decomposition of VD∗.

10



Lemma 3.3. We can check whether v lies strictly to the right of Cj with a constant number of queries to
an MSSP data structure for H with sources S.

Proof. We assume v does not lie on Cj since this was already checked. We check which of the sites sj and
sj−1 is closer to v with respect to the additive distances with two queries to the MSSP data structure at
hand. Without loss of generality, suppose that this site is sj . We then use a single query to the MSSP data

structure to determine whether the shortest sj-to-v path branches right from the shortest sj-to-y
f
j path.

(Recall that yfj is an auxiliary vertex embedded in the face f and connected to yj with a zero length edge).
As we show next, v lies strictly to the right of Cj if and only if v lies strictly to the right of the shortest

sj-to-y
f
j path. Towards a contradiction, suppose that v lies strictly to the right of exactly one of Cj and the

shortest sj-to-y
f
j path. Then, the shortest sj-to-v path must cross pj−1. Due to planarity, it can only do so

at a vertex. This yields a contradiction, as all vertices on pj−1 are in Vor(sj−1), and due to the assumed
uniqueness of shortest paths this would mean that sj is not closer to v than sj−1.

If it turns out that v is right of Cj , the algorithm recurses on the subtree of T ∗ rooted at the child of f∗

that contains the leaf edge of VD∗ representing e∗j (Line 16).

Algorithm 1 SimpleCentroidSearch(VD∗, v, T ∗)

Input: A Voronoi diagram VD∗, the vertex v to be located, and a centroid decomposition tree T ∗ of a
subtree of VD∗. If the last argument is omitted, T ∗ is the decomposition tree for the entire VD∗.
Require: Some edge of the boundary of the Voronoi cell containing v in VD∗ is a leaf in T ∗.
Output: The site s such that v ∈ Vor(s), and the additive distance to v.

1: f∗ ← root of T ∗

2: if f∗ is a single edge then
3: s1, s2 ← sites corresponding to f∗

4: for j = 1, 2 do
5: dj ← ω(sj) + distH(sj , v) ⊲ MSSP query
6: end for
7: k ← argminj(dj)
8: return (sk, dk)
9: end if

10: s0, s1, s2 ← sites corresponding to f∗ ⊲ f is a face on {y0, y1, y2}, yi ∈ Vor(si)
11: for j = 0, 1, 2 do
12: if v lies on pj then ⊲ MSSP query; pj is the shortest sj-to-yj path in H
13: return(sj ,ω(sj) + distH(sj , v))
14: else if v is (strictly) to the right of Cj then ⊲ See Lemma 3.3; Cj is pj ∪ {ej} ∪ pj−1

15: T ∗
j ← subtree of T ∗ rooted at the child of f∗ containing the leaf edge of VD∗ representing e∗j

16: return SimpleCentroidSearch(VD∗, v, T ∗
j )

17: end if
18: end for

We are now ready to complete the proof of Theorem 3.2 on the correctness and time complexity of
SimpleCentroidSearch. Define f, yj , sj , e

∗
j , f

∗, pj , Cj , for j = {0, 1, 2} as above, and let s̃ be such that
v ∈ Vor(s̃). If Line 12 tells us that v is on pj , then s̃ is sj , as returned in Line 13. The loop invariant is that
T ∗ contains some leaf edge that belongs to the boundary of the cell Vor(s̃). This is clearly true in the initial
call, when T ∗ is the entire centroid decomposition of VD∗. Suppose that Line 14 tells us that v lies strictly
to the right of Cj . Observe that since pj and pj−1 are monochromatic, all edges of VD∗ correspond to paths
in H∗ that are disjoint from the set of dual edges of Cj , with the exception of e∗j . We claim that T ∗

j contains
at least one edge bounding Vor(s̃). First, this is clearly true if e∗j is such an edge, i.e., if s̃ ∈ {sj−1, sj}.
In the complementary case, all vertices of Vor(s̃) are strictly to the right of Cj . Hence, none of the edges
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Figure 5: Illustration of the setting and proof of Theorem 3.2. Left: A decomposition of VD∗ (shown in
blue) by a centroid f∗ into three subtrees, and a corresponding partition of P into three regions delimited
by the paths pj (shown in red, yellow, and turquoise). Right: a schematic illustration of the same scenario.

bounding Vor(s̃) can be in T ∗
j′ for j

′ ∕= j. Thus, the maintained invariant implies that there is such an edge
in T ∗

j .
When f∗ is a single edge on the boundary of Vor(s1) and Vor(s2) (Line 2), the loop invariant guarantees

that either s̃ = s1 or s̃ = s2. The additive distances d1 and d2 to s1 and s2 respectively are computed in
Line 5, and s̃ is the site with smaller additive distance among the two (Line 7). Hence, Line 8 returns the
correct answer.

The efficiency of procedure SimpleCentroidSearch depends on the time required to compute distances
in H (Lines 5 and 13) and whether v lies on or to the left/right of a shortest path pj (Lines 12 and 14).
By Lemma 2.1 and Lemma 3.3, each of these operations is supported by the MSSP data structure for H,S,
whose query time is tq. Hence the cost of the top-level call to SimpleCentroidSearch is O(tq · log |S|), O(tq)
time for each of the log |S|+O(1) recursive calls.

4 A Simple Planar Distance Oracle

In this section we present a distance oracle that is simpler than the one developed in Sections 5–8. Moreover,
the time-space tradeoffs of the simpler distance oracle are actually incomparable to those of the oracle
described in Sections 5–8 and would be more attractive if query time is prioritized over space. In particular,
depending on the MSSP implementation (Lemma 2.1), we can achieve either Õ(n4/3) space and O(log2 n)

query time or n4/3+o(1) space and log1+o(1) n query time.

4.1 The Data Structure

We begin by computing an #r = (r3, r2, r1) division where r3 = n, r2 ≈ n2/3, and r1 ≈ n1/3. In other words,
R3 = {G} contains one region, namely G, which is partitioned into regions R2, each with O(r2) vertices
and O(

√
r2) boundary vertices, and so on. As usual, we temporarily assume that each region is bounded by

a single hole and remove this assumption in Section 4.4. The data structure consists of the following three
parts.

1. For each R1 ∈ R1 and each pair of vertices u, v ∈ R1, store distR1(u, v). The space for this part is
O((n/r1) · r21) = O(n · r1).
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2. For each R2 ∈ R2, we store two MSSP structures, one for R2 and one for Rout
2 , both w.r.t. ∂R2. For

each R1 ∈ R1 with parent R2 ∈ R2 we store MSSP structures for R1 and Rout
1 ∩ R2 w.r.t. ∂R1. The

space required for these structures is, depending on the MSSP implementation, either

O((n/r2) · n log n+ (n/r1) · r2 log r2) = Õ(n4/3)

or

O(ρ(n2/r2 + nr2/r1)),

where ρ = κn1/κ is the space overhead.

3. Suppose vertex u is in R1 ∈ R1, R1’s parent is R2 ∈ R2, and R2’s parent is R3 = G ∈ R3. For each
vertex u we store the dual Voronoi diagrams VD∗

in(u,R1),VD∗
in(u,R2),VD∗

out(u,R1),VD∗
out(u,R2),

which are defined as follows.

• For i ∈ {1, 2}, VD∗
in(u,Ri) is VD∗[Ri, ∂Ri,ω], the dual representation of the Voronoi diagram for

Ri with sites ∂Ri and additive weights given by ω(s) = distRi+1(u, s).

• For i ∈ {1, 2}, VD∗
out(u,Ri) is VD∗[Rout

i ∩Ri+1, ∂Ri,ω] with ω(s) = distRi+1
(u, s).

The space for each dual Voronoi diagram is linear in the number of sites, i.e., over all u the total space
is O(n · (√r2 +

√
r1)) = Õ(n4/3).

4.2 The Query Algorithm

The query algorithm SimpleDist(u, v,Ri) is recursive. It takes vertices u, v ∈ Ri ∈ Ri and reports
distRi

(u, v). At the top level recursive call SimpleDist(u, v,G) we have i = 3 (G ∈ R3 is the only re-
gion at level 3) and when i = 1 the distance can be reported immediately (Line 2), using part 1 of the data
structure. Therefore the recursion depth is constant.

When i ∈ {2, 3} we let Ri−1 be a subregion of Ri containing u. There are two cases: v ∈ Ri−1 or
v ∕∈ Ri−1. When v ∈ Ri−1 the shortest u-to-v path can be contained entirely in Ri−1 or it can cross ∂Ri−1.
In the former case distRi(u, v) = distRi−1(u, v), which is computed recursively (Line 6). In the latter case,
suppose s ∈ ∂Ri−1 is the last boundary vertex along the shortest u-to-v path. Then

distRi
(u, v) = distRi

(u, s) + distRi−1
(s, v) = ω(s) + distRi−1

(s, v),

where ω is the additive weight function in VD∗
in(u,Ri−1). In other words, computing distRi(u, v) reduces

to a point location problem in VD∗
in(u,Ri−1) (Line 7). When v ∕∈ Ri−1 we know the shortest u-to-v path

crosses ∂Ri−1 at least once; suppose that the last time it crosses is at vertex s. Then, by similar reasoning,

distRi(u, v) = distRi(u, s) + distRout
i−1∩Ri

(s, v) = ω(s) + distRout
i−1∩Ri

(s, v),

where ω is the additive weight function in VD∗
out(u,Ri−1). This point location problem in VD∗

out(u,Ri−1)
is handled in Line 10.

The query time is dominated by O(1) point location queries. By Theorem 3.2, SimpleDist takes
O(tq log n) time, where tq ∈ {O(log n), O(κ log log n)} depends on the MSSP implementation.

4.3 Analysis

If we use the first implementation of MSSP from Lemma 2.1, the overall space is linear in

nr1 + (n2/r2 + nr2/r1) log n+ n
√
r2,
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which is O(n4/3 log2/3 n) when r2 = n2/3 log1/3 n and r1 = n1/3 log2/3 n. The space can be reduced to

O(n4/3 log1/3 n) by using a 4-level #r-division, say, #r = (n, n2/3 log2/3 n, n(2/3)2 , n(2/3)3). This increases the
cost of distance queries by a small constant factor.

If we use the second implementation of MSSP from Lemma 2.1, with a space overhead of ρ = κn1/κ, the
overall space is linear in

nr1 + ρ(n2/r2 + nr2/r1) + n
√
r2,

which isO(n4/3ρ2/3) = O(κ2/3n4/3+2/(3κ)) when r2 = n2/3ρ1/3, r1 = n1/3ρ2/3. When query time is prioritized

it is best to set κ = ω(1) and logo(1) n, leading to a distance oracle with n4/3+o(1) space and query time

O((κ log log n) · log n) = log1+o(1) n.

Algorithm 2 SimpleDist(u, v,Ri)

Input: Two vertices u, v in a region Ri ∈ Ri, i ∈ {1, 2, 3}.
Output: distRi(u, v).

1: if i = 1 then
2: Return distRi(u, v) ⊲ Stored explicitly in Part 1.
3: end if
4: Ri−1 ← a sub-region of Ri containing u
5: if v ∈ Ri−1 then
6: d1 ← SimpleDist(u, v,Ri−1)
7: d2 ← SimpleCentroidSearch(VD∗

in(u,Ri−1), v)
8: return min(d1, d2)
9: else

10: return SimpleCentroidSearch(VD∗
out(u,Ri−1), v)

11: end if

4.4 Dealing with Multiple Holes

In general the boundary vertrices ∂Ri of any region Ri lie on O(1) holes. We modify the data structure and
query algorithm to deal with multiple holes as follows.

1. For each region Ri in the decomposition and each hole h of Ri we build two MSSP data structures,
one for Ri and one for Rh,out

i . In both structures, the set of sources are the vertices of ∂Ri that lie on
h.

2. Fix a vertex u that lies in R1 ∈ R1, which is contained in R2 ∈ R2 and G = R3 ∈ R3. For i ∈ {1, 2},
for each hole h of Ri, let S be the vertices on h.

• We store VD∗
in(u, h,Ri), which is the dual representation VD∗[Ri, S,ω] with ω(s) = distRi+1(u, s).

• We store VD∗
out(u, h,Ri), which is the dual representation VD∗[Rh,out

i ∩ Ri+1, S,ω] with ω(s) =
distRi+1

(u, s).

The algorithm SimpleDist(u, v,Ri) is modified as follows. In Line 7 we are considering u-to-v paths that
cross ∂Ri−1, but the last ∂Ri−1 vertex s could be on any hole of Ri−1. Thus, for each of the O(1) holes h we
execute SimpleCentroidSearch(VD∗

in(u, h,Ri−1), v) and let d2 be the minimum distance found. In Line 10,

there is a unique hole h of Ri−1 for which v ∈ Rh,out
i−1 and we know that every u-to-v path must cross h.

Thus, we only make one call to SimpleCentroidSearch(VD∗
out(u, h,Ri−1), v).

Theorem 4.1 summarizes the space-time tradeoffs achievable by our simplest distance oracle.

Theorem 4.1. Let G be a weighted, directed planar graph. Distance queries in G can be answered in
O(log2 n) time with an Õ(n4/3)-size oracle, or in log1+o(1) n time with an n4/3+o(1)-size oracle.
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4.5 Digression: Extension to Graphs of Bounded Genus

Here, we briefly describe how to generalize the oracle described in this section for graphs embeddable onto
surfaces of bounded genus. As shown by Chambers, Erickson, and Nayyeri in [12], we can “planarize” an n-
vertex graph G of genus g by repeating the following procedure g times: find a short non-contractible cycle
in O(gn log n) time using the algorithm of Erickson and Har-Peled [27], and cut along it, duplicating its
vertices and edges. This algorithm thus runs in O(g2n log n) time and produces an n-vertex planar graph P
with exactly 2g holes that contain all the copies of the duplicated vertices. Each such hole, called a boundary
cycle, is incident to O(

#
n/g log g) vertices.

To avoid clutter, we describe our oracle for g = O(1). We build our n4/3+2/(3κ)-space oracle for P with
κ = O(1) ≥ 4 so the space is O(n3/2). Further, for each vertex u ∈ V (G), for each of the O(1) boundary
cycles, we build a Voronoi diagram for P with sites the vertices of the hole, and an additive weight function
defined by distances from u in G, i.e., ω(s) = distG(u, s). Further, for each boundary cycle C, we build
an MSSP data structure for P with sources the vertices lying on C. Setting κ′ = O(1) ≥ 2 the space for
the MSSP structures is O(κ′n1+1/κ′

) = O(n3/2) since we have O(1) boundary cycles, and the space for the
Voronoi diagrams is O(n3/2) since there are O(

√
n) vertices on boundary cycles.

Upon a query (u, v), we first compute distP (u, v) in O(log n log log n) time (κ = O(1)) using the planar
distance oracle. First, note that distP (u, v) ≥ distG(u, v) Further, observe that distP (u, v) ∕= distG(u, v)
only if some vertex on the shortest u-to-v path in G has been duplicated, and thus the path has been split.
Suppose that this is the case. Let s be the last vertex on the shortest u-to-v path in G that has been
duplicated. Note that s is not known at query time. By choice of s, distG(u, v) = distG(u, s) + distP (s, v).
Thus, we can take care of this case by performing point location queries in each of the O(1) extra Voronoi
diagrams stored for u with target v, and returning the minimum distance computed by those queries. The
query time is O(log n log log n) since k′ = O(1).

Thus, for n-vertex graphs embeddable to surfaces of constant genus, we obtain an oracle that occupies
space O(n3/2) and answers queries in O(log n log log n) time.

5 The Distance Oracle

In this section we introduce our main distance oracle referenced in Theorem 1.1. The oracle is based on
an #r-division, #r = (rm, . . . , r1), where ri = ni/m and m is a parameter. Suppose that we want to compute
distG(u, v). Let R0 = {u} be the artificial level-0 region containing u and Ri ∈ Ri be the level-i ancestor
of R0. (Throughout the paper, we will use “Ri” to refer specifically to the level-i ancestor of R0 = {u},
as well as to a generic region at level-i. Surprisingly, this will cause no confusion.) Let t be the unique
index for which v ∕∈ Rt but v ∈ Rt+1. For 0 ≤ i ≤ t, define ui to be the last vertex on ∂Ri encountered on
the shortest path from u to v. The main task of the distance query algorithm is to compute the sequence
(u = u0, . . . , ut). Suppose that we know the identity of ui and t > i. Finding ui+1 now amounts to a point
location problem for v in VD∗[Rout

i+1, ∂Ri+1,ω], where ω(s) is the distance from ui to s ∈ ∂Ri+1. However, we
cannot afford to store an MSSP structure for every (Rout

i+1, ∂Ri+1), since |Rout
i+1| = Ω(|G|). Our point location

routine narrows down the number of possibilities for ui+1 to at most two candidates in O(κ log2+o(1) n) time
and then decides between them using two recursive distance queries, but starting one level higher in the
hierarchy. There are about 2m recursive calls in total, leading to a O(2mκ log2+o(1) n) query time.

The data structure is composed of several parts. Parts (A) and (B) are explained below, while parts
(C)–(E) will be unveiled in Section 6.

(A) (MSSP Structures) For each i ∈ [0,m − 1] and each region Ri ∈ Ri with parent Ri+1 ∈ Ri+1,
we store an MSSP data structure (Lemma 2.1(b)) for the graph Rout

i , and source set ∂Ri. However,
the structure only answers queries for s ∈ ∂Ri and u, v ∈ Rout

i ∩ Ri+1. Rather than represent the
full SSSP tree from each root on s ∈ ∂Ri, the MSSP data structure only stores the tree induced by
Rout

i ∩ Ri+1, i.e., the parent of any vertex v ∈ Rout
i ∩ Ri+1 is its nearest ancestor v′ in the SSSP tree

such that v′ ∈ Rout
i ∩Ri+1. If (v

′, v) is a “shortcut” edge corresponding to a path in Rout
i+1, it has weight

distRout
i

(v′, v).
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We fix a κ and let the update time in the dynamic tree data structure be O(κn1/κ) time. Thus, the
space7 of this structure is O([|Rout

i ∩Ri+1|+ |∂Ri| · |∂Ri+1|] · κn1/κ) = O(ri+1 · κn1/κ) since each edge
in Rout

i ∩ Ri+1 is swapped into and out of the SSSP tree once [45], and the number of shortcut edges
on ∂Ri+1 swapped into and out of the SSSP is at most |∂Ri+1| for each of the |∂Ri| sources. Over all
i and Θ(n/ri) choices of Ri, the space is O(mκn1+1/m+1/κ) since ri+1/ri = n1/m.

(B) (Voronoi Diagrams) For each i ∈ [0,m−2] and Ri ∈ Ri with parent Ri+1 ∈ Ri+1, and each q ∈ ∂Ri,
define VD∗

out(q,Ri+1) to be VD∗[Rout
i+1, ∂Ri+1,ω], with ω(s) = distG(q, s). The space to store the dual

diagram and its centroid decomposition is O(|∂Ri+1|) = O(
√
ri+1). Over all choices for i, Ri, and q,

the space is O(mn1+1/(2m)) since
#
ri+1/ri = n1/(2m).

Due to our tie-breaking rule in the definition of Vor(·), locating ui+1 (t ≥ i + 1) is tantamount to
performing a point location on a Voronoi diagram in part (B) of the data structure.

Lemma 5.1. Suppose that q ∈ ∂Ri and v ∕∈ Ri+1. Consider the Voronoi diagram represented by VD∗
out(q,Ri+1)

with sites ∂Ri+1 and additive weights defined by distances from q in G. Then v ∈ Vor(s) if and only if s is
the last vertex of ∂Ri+1 that lies on the shortest path from q to v in G, and dω(s, v) = distG(q, v).

Proof. By definition, dω(s, v) is the length of the shortest path from q to v that passes through s and whose
s-to-v suffix does not leave Rout

i+1. Thus, dω(s, v) ≥ distG(q, v) for every s, and dω(s, v) = distG(q, v) for
some s. Because of our assumption that all edge-weights are strictly positive, and our tie-breaking rule for
preferring larger ω-values in the definition of Vor(·), if v ∈ Vor(s) then s must be the last ∂Ri+1-vertex on
the shortest q-to-v path.

5.1 The Query Algorithm

A distance query is given u, v ∈ V (G). We begin by identifying the level-0 region R0 = {u} ∈ R0 and call
the function Dist(u, v,R0). In general, the function Dist(ui, v, Ri) takes as arguments a region Ri, a source
vertex ui on the boundary ∂Ri, and a target vertex v ∕∈ Ri. It returns a value d such that

distG(ui, v) ≤ d ≤ distRout
i

(ui, v). (1)

Note that Rout
0 = G, so the initial call to this function correctly computes distG(u, v). When v is “close”

to ui (v ∈ Rout
i ∩ Ri+1) it computes distRout

i
(ui, v) without recursion, using part (A) of the data structure.

When v ∈ Rout
i+1 it performs point location using the function CentroidSearch, which culminates in up to

two recursive calls to Dist on the level-(i+ 1) region Ri+1. Thus, the correctness of Dist hinges on whether
CentroidSearch correctly computes distances when v ∈ Rout

i+1.

Algorithm 3 Dist(ui, v, Ri)

Input: A region Ri, source ui ∈ ∂Ri and v ∕∈ Ri.
Output: A value d such that distG(ui, v) ≤ d ≤ distRout

i
(ui, v).

1: if v ∈ Rout
i ∩Ri+1 then ⊲ I.e., i = t

2: return d ← distRout
i

(ui, v) ⊲ Part (A)

3: end if ⊲ v ∈ Rout
i+1

4: return d ← CentroidSearch(VD∗
out(ui, Ri+1), v)

The procedure CentroidSearch is an adaptation of procedure SimpleCentroidSearch. CentroidSearch is
given as input ui ∈ ∂Ri, v ∈ Rout

i+1, VD∗
out = VD∗

out(ui, Ri+1), and a subtree T ∗ of the centroid decomposition

7This is also the construction time which will be analyzed in Section 8.
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Figure 6: Here f∗ is a degree-3 vertex in VD∗
out(ui, Ri+1), corresponding to a trichromatic face f on vertices

y0, y1, y2, which are in the Voronoi cells of s0, s1, s2 on the boundary ∂Rout
i+1. The shortest sj-to-yj paths

partition V (Rout
i+1) into six parts: the three shortest paths and the three regions bounded by them and

by f . Let e∗0, e
∗
1, e

∗
2 be the edges in VD∗

out dual to {y0, y2}, {y1, y0}, {y2, y1}. In the centroid decomposition
e∗0, e

∗
1, e

∗
2 are in separate subtrees of f∗. Let f∗

j be the child of f∗ ancestral to e∗j , which is either e∗j itself, or
a trichromatic face to the right of the “chord” (sj , . . . , yj , yj−1, . . . , sj−1). CentroidSearch locates the site
whose Voronoi cell contains v via recursion. It calls each of SitePathIndicator and ChordIndicator thrice,
in order to find which of the 6 parts contains v. If v lies on an sj-to-yj path the CentroidSearch recursion
terminates; otherwise it recurses on the correct child f∗

j of f∗.

of VD∗
out. Once again, if omitted, T ∗ is the full centroid decomposition. It ultimately finds ui+1 ∈ ∂Ri+1

for which v ∈ Vor(ui+1) and returns

ω(ui+1) +Dist(ui+1, v, Ri+1) Line 5 or 13 of CentroidSearch

≤ distG(ui, ui+1) + distRout
i+1

(ui+1, v) Defn. of ω; guarantee of Dist (Eqn. (1))

= distG(ui, v). Lemma 5.1

The main difficulty in implementing CentroidSearch is that we cannot afford to store MSSP structures
for Rout

i+1. CentroidSearch can be seen as an implementation of SimpleCentroidSearch with the following
modifications.

• Distances from sites of VD∗
out(ui, Ri+1) to vertices in Rout

i+1 are now computed using Dist rather than
MSSP queries. In particular, CentroidSearch is aware of the recursive decomposition of G.

• Line 12 of SimpleCentroidSearch is now replaced by a call to a procedure SitePathIndicator, which
returns a boolean indicating whether v is on the shortest sj-to-yj path.

• Line 14 of SimpleCentroidSearch is now replaced by a call to a procedure ChordIndicator, which
returns whether v lies strictly to the right of the oriented path (sj , . . . , yj , yj−1, . . . , sj−1). We call such
a path a chord; these are formally defined in Section 6.2.
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Algorithm 4 CentroidSearch(VD∗
out(ui, Ri+1), v, T

∗)

Input: The dual representation VD∗
out = VD∗

out(ui, Ri+1) of a Voronoi diagram with additive weights
ω(s) = distG(ui, s), a vertex v ∈ Rout

i+1, and a centroid decomposition tree T ∗ of a subtree of VD∗
out. If the

last argument is omitted, T ∗ is the decomposition tree for the entire VD∗
out.

Require: Some edge of the boundary of the Voronoi cell containing v in VD∗
out is a leaf in T ∗.

Output: The distance distG(ui, v).

1: f∗ ← root of T ∗

2: if T ∗ is a single edge then
3: s1, s2 ← sites corresponding to f∗ ⊲ Candidates for ui+1

4: for j = 1, 2 do
5: dj ← ω(sj) +Dist(sj , v, Ri+1)
6: end for
7: k ← argminj(dj)
8: return (sk, dk)
9: end if

10: s0, s1, s2 ← sites corresponding to f∗

11: for j = 0, 1, 2 do
12: if SitePathIndicator(VD∗

out(ui, Ri+1), v, f
∗, j) returns True then

13: return ω(sj) +Dist(sj , v, Ri+1) ⊲ sj = ui+1

14: else if ChordIndicator(VD∗
out(ui, Ri+1), v, f

∗, j) returns True then
15: T ∗

j ← subtree of T ∗ rooted at the child of f∗ containing the leaf edge of VD∗
out representing e∗j

16: return CentroidSearch(VD∗
out(ui, Ri+1), v, T

∗
j )

17: end if
18: end for

Lemma 5.2. CentroidSearch correctly computes distG(ui, v).

Proof. Let s̃ be the site of VD∗
out for which v ∈ Vor(s̃). Apart from Lines 5 and 13, CentroidSearch is just a

different implementation of SimpleCentroidSearch. Thus, it follows directly from the proof of Theorem 3.2
that CentroidSearch either correctly identifies the site s̃ in Line 12, or it identifies two candidates for s̃ in
Line 3. First, we have to show that the additive distance from s̃, computed in Line 5 or in Line 13 is indeed
distG(ui, v). In either of the two cases, we have

ω(s̃) +Dist(s̃, v, Ri+1) ≤ distG(ui, s̃) + distRout
i+1

(s̃, v) = distG(ui, v).

Finally, if there is another candidate s′ ∕= s̃ identified in Line 3, we clearly have ω(s′) + Dist(s′, v, Ri+1) ≥
distG(ui, v). This completes the proof.

The main challenge is to efficiently implement the SitePathIndicator and ChordIndicator functions, i.e.,
to solve the restricted point location problem in Rout

i+1, depicted in Figure 6. We will show how to solve these

two point location problems in O(κ log1+o(1) n) time.

6 Chords, Pieces, and the Indicator Functions

Recall that the main problem faced by CentroidSearch is to determine whether v lies on, left of, or right of
the chord

C̃ = (sj , . . . , yj , yj−1, . . . , sj−1),

which is a simple path joining ∂Ri+1-vertices in Rout
i+1. The case when v ∈ C̃ (detected by SitePathIndicator)

is relatively simple, so for the purpose of this overview we shall assume v ∕∈ C̃.
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The index t is such that v ∈ Rout
t ∩ Rt+1 so it suffices to restrict our attention to Rout

t . Note, however,
that C̃ can cross ∂Rt an unbounded number of times, meaning that the projection of C̃ onto Rout

t consists of
an unbounded number of chords, i.e., subpaths of C̃ in Rout

t joining vertices of ∂Rt. These chords partition
Rout

t into a set P of pieces.
The strategy of ChordIndicator is to find any chord C ∈ C that lies on the boundary of v’s piece in P.

It follows that the left/right relationship between v and C̃ is identical to the left/right relationship between
v and C. Thus, we have reduced our problem to several structured point location problems, among them
locating v in a certain set of pieces, and determining the relationship between v and a single chord C. In
reality things are slightly more complicated, as we decompose C (and hence P) into three parts corresponding
to (1) all chords in the sj-to-yj path that do not include yj , (2) all chords in the sj−1-to-yj−1 path that do
not include yj−1, and (3) the one chord (if any) that includes yj and yj−1.

Roadmap for Section 6. The sketch above motivates several useful subroutines. We need to be able to
decide if v lies on, left of, or right of a chord C, where C is either a shortest path between ∂Rt vertices
or the subpath of C̃ between ∂Rt vertices that goes through yj and yj−1. These two types of queries are
addressed in Lemmas 6.1 and 6.2 in Section 6.1. Section 6.1 also introduces parts (C) and (D) of the data
structure, and Lemma 6.3 shows that a special case of SimpleCentroidSearch can be implemented efficiently.
In particular, if VD∗ is a Voronoi diagram for Rout

t and v ∈ Rout
t ∩ Rt+1, SimpleCentroidSearch(VD∗, v)

can be solved in the same time bound as in Theorem 3.2, using parts (A,D) of the data structure in lieu of
a full MSSP structure.

Section 6.2 analyzes the properties of chords and pieces, and introduces part (E) of the data struc-
ture, which represents numerous chord/piece sets space-efficiently using persistent data structures. The
SitePathIndicator and ChordIndicator functions are explained in Sections 6.3 and 6.4, respectively. A key
subroutine of ChordIndicator is PieceSearch, which solves a certain point location problem with respect to
an ensemble of chords and pieces; it is presented in Section 6.4.1.

6.1 Auxiliary Lemmas and a Special Case of SimpleCentroidSearch

We begin with the following lemma, which is used in SitePathIndicator,PieceSearch, and ChordIndicator.

Lemma 6.1. Consider a region Rt, two vertices a, b ∈ ∂Rt, and a vertex v ∈ Rout
t ∩ Rt+1. Let C be

the shortest a-to-b path in Rout
t . We can test whether v lies on C and whether v lies to the right of C in

O(κ log log n) time, using part (A) of the data structure.

Proof. Let a′, b′ be pendant vertices attached to a, b, respectively, embedded inside the face of Rout
t bounded

by ∂Rt. We ask the MSSP structure (part (A)) for the lowest common ancestor, w, of v and b′ in the
shortcutted SSSP tree rooted at a′. It follows that v lies on C if and only if v = w. We henceforth suppose
that this is not the case. Then, the shortest a′-to-v and a′-to-b′ paths branch at some point. The LCA query
also returns the two tree edges ev, eb′ leading to v and b′, respectively. Let ew be the edge connecting w to
its parent.8 If the clockwise order around w is ew, eb′ , ev then v lies to the right of C; otherwise it lies to
the left. Note that if the shortest a′-to-b′ and a′-to-v paths in G branch at a point in Rout

t+1, then w will be
the nearest ancestor of the branchpoint on ∂Rt+1 and one or both of ev, eb′ may be “shortcut” edges in the
MSSP structure. See Figure 7 for an illustration.

Lemma 6.2. Consider a vertex u ∈ Rt and an edge {y0, y1} of Rout
t . For j ∈ {0, 1}, let xj be the last vertex

of the shortest u-to-yj path that lies on ∂Rt, and suppose x0 ∕= x1. Let C be the concatenation of the shortest
x1-to-y1 path in Rout

t , the edge {y1, y0}, and the reverse of the shortest x0-to-y0 path in Rout
t . Further, for

j ∈ {0, 1}, let x̂j be the last vertex of the shortest xj-to-yj path that lies on ∂Rout
t+1 (if it exists).

Given Rt, u, yj , xj , distG(u, xj), and x̂j for j ∈ {0, 1}, and a vertex v ∈ Rout
t ∩Rt+1, we can test whether

v lies on C and whether v lies to the right of C in O(κ log log n) time, using part (A) of the data structure.
8The purpose of adding a′, b′ is to make sure all three edges ew, ev , eb′ exist. The vertices a′, b′ are not represented in the

MSSP structure. The edges (a′, a) and (b, b′) can be simulated by inserting them between the two boundary edges on ∂Rt

adjacent to a and b, respectively.
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Figure 7: The a-to-b shortest path, which may pass through Rout
t+1, in which case it is represented in the

MSSP structure with shortcut edges (solid, angular edges).

Proof. Consider the following distance function d̂ for vertices z ∈ Rout
t :

d̂(z) = min
$
distG(u, x0) + distRout

t
(x0, z), distG(u, x1) + distRout

t
(x1, z)

%
.

Observe that the terms involving u are given and, if z ∈ Rout
t ∩ Rt+1, the other terms can be queried in

O(κ log log n) time using part (A). It follows that the shortest path forest w.r.t. d̂ has two trees, rooted at

x0 and x1. Using part (A) of the data structure we compute d̂(v), which reveals the j% ∈ {0, 1} such that v
is in xj! ’s tree. Let f be a face on which y0, y1 lie, such that the third vertex of f lies to the left of C. At
this point we break into two cases, depending on whether f is in Rout

t ∩ Rt+1 or in Rout
t+1. Without loss of

generality, we assume that j% = 1 and depict only this case in Figure 8(a,b).

(a) (b)

Figure 8: An illustration of the setting in Lemma 6.2. (a) The case where f lies in Rout
t ∩Rt+1. (b) The case

where f lies in Rout
t+1, x̂0, x̂1 are the last ∂Rt+1 vertices on the x0-to-y0 and x1-to-y1 paths. If the shortest

x′
1-to-x̂1 and x′

1-to-v paths branch, we can answer the query as in (a). If x′
1-to-x̂1 is a prefix of x′

1-to-v,
ev = (x̂1, v̂), and ev is a shortcut edge (which implies v̂ ∈ ∂Rt+1), then we can use the clockwise order of
x̂1, v̂, x̂0 around the hole on ∂Rt+1 to determine whether v lies to the right of C. (Not depicted: the case
that ev is an original edge, where v̂ may not be on ∂Rt+1.)

Case a. Suppose that f is in Rout
t ∩ Rt+1. Let yf1 be a pendant vertex attached to y1 embedded inside

f and let x′
1 be a pendant vertex attached to x1 embedded inside the face of Rout

t bounded by ∂Rt. The
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shortest x′
1-to-y

f
1 and x′

1-to-v paths share a common prefix. We query the MSSP structure (part (A)) to get

the lowest common ancestor w of yf1 and v and the three edges eyf
1
, ev, ew around w. If v = w then v is

on the shortest x1-to-y
f
1 path and hence on C. If v ∕= w then all three edges eyf

1
, ev, ew are distinct and we

determine whether v is to the right of C by examining the circular order of the three edges incident to w, as
in the proof of Lemma 6.1. (If j% = 0 then we would reverse the answer due to the reversed orientation of
the x0-to-y0 subpath w.r.t. C.) See Figure 8(a) for an illustration.

Case b. Now suppose f lies in Rout
t+1. We first ask the MSSP structure of part (A) for the lowest common

ancestor w of x̂1 and v in the shortcutted SSSP tree rooted at x′
1, and also get the three incident edges

ex̂1 , ev, ew. If w = v then v ∈ C and we are done, so we proceed under the assumption that w ∕= v. Thus,
the edges ev and ew exist and are different. If w ∕= x̂1 then ex̂1 also exists, and once again we determine
whether v is to the right of C from the circular order of ev, ew, ex̂1 around w. If w = x̂1, ex̂1 does not
exist. In this case, let v̂ be the endpoint of ev that is not x̂1. If ev is a shortcut edge, it implies v̂ ∈ ∂Rt+1

and we can determine whether v is to the right of C from the circular order of x̂1, x̂0 and v̂ along ∂Rt+1.
If ev is an original edge, we have ev ∈ Rout

t ∩ Rt+1. By viewing (x̂1, x̂0) as a virtual shortcut edge, the
left/right relationship between v and C now depends on the circular order of ev, ew, (x̂1, x̂0) around x̂1.

9 See
Figure 8(b) for an illustration.

Let us now introduce parts (C) and (D) of our data structure. The reason for storing part (C) will
become clear in subsequent sections. One of the main reasons for storing the Site Tables of part (D) is so
that we can invoke Lemma 6.2, which requires that we provide x̂0, x̂1. The Side Tables of part (D) are
stored so that we can handle a simple case in the ChordIndicator function where the chord does not interact
at all with some specific part of the graph that contains v; they store the answer for this whole part.

(C) (More Voronoi Diagrams) For each i ∈ [1,m − 1], each Ri ∈ Ri, and each q ∈ ∂Ri, we store
VD∗

out(q,Ri), which is VD∗[Rout
i , ∂Ri,ω], where ω(s) = distG(q, s). The total space for these diagrams

is O(mn) and is dominated by part (B).

(D) (Site Tables; Side Tables) For each i and Voronoi diagram VD∗
out = VD∗

out(u
′, Ri) from part (B)

or (C), we store the following for each node f∗ in the centroid decomposition of VD∗
out, with yj , sj ,

j ∈ {0, 1, 2} defined as usual. Let Ri′ ∈ Ri′ be the ancestor of Ri at level i′ ≥ i. For each i′ and
j ∈ {0, 1, 2} we store the pair (q, x) consisting of the first and last vertices on the shortest sj-to-yj
path that lie on ∂Ri′ . We also store distG(u

′, x).

It may be that the shortest sj-to-yj path does not intersect ∂Ri′ , in which case (q, x) do not exist. In
this case we store a single bit indicating whether Rout

i′ lies to the right or left of the site-centroid-site
chord (sj , . . . , yj , yj−1, . . . , sj−1) in Rout

i . The space cost for part (D) is O(m) times the space cost of
(B) and (C).

The following lemma is a direct consequence of Lemma 6.2, which lets us implement the non-trivial parts
of SimpleCentroidSearch in the same time bound guaranteed by Theorem 3.2.

Lemma 6.3. Suppose VD∗ = VD∗
out(u

′, Rt) is one of the Voronoi diagrams stored in part (C), and v ∈
Rout

t ∩ Rt+1. Then SimpleCentroidSearch(VD∗, v) can be executed in O(κ log n log log n) time, using parts
(A) and (D) of the data structure. (I.e., it does not require a full MSSP structure for Rout

t .)

Proof. Because v ∈ Rout
t ∩Rt+1, the distances in Lines 5 and 13 can be computed in O(κ log log n) time using

part (A). The other non-trivial steps are Lines 12 and 14, where we check whether v lies on the sj-to-yj
path, or strictly to the right of the (sj , . . . , yj , yj−1, . . . , sj−1) chord. Lemma 6.2 says that these queries
can also be answered in O(κ log log n) time, if they are also given the boundary vertices x̂0, x̂1, x̂2 ∈ ∂Rt+1,
which are stored in part (D). Thus, the overall time for SimpleCentroidSearch (including recursive calls) is
O(κ log n log log n).

9A possible implementation is to choose an original edge e′ on ∂Rt+1 incident to x̂1 as a proxy of the virtual shortcut edge
(x̂1, x̂0), and determine the relationship by the circular order of ev , ew, e′ around x̂1.
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Figure 9: A laminar set of chords partition Rout into pieces. Observe that the chords separating pieces P5–P9

overlap in certain prefixes. The piece tree is indicated by diamond vertices and pink edges. Note that two
pieces (e.g. P5 and P9) may share a boundary, but not be adjacent.

6.2 Chords and Pieces

We begin by defining the key concepts of our point location method: chords, laminar chord sets, pieces, and
the occludes relation.

Definition 6.1. (Chords) Fix an R in the #r-division and two vertices c0, c1 ∈ ∂R. An oriented simple
path −−→c0c1 is a chord of Rout if it is contained in Rout and is internally vertex-disjoint from ∂R. When the
orientation is irrelevant we write it as c0c1.

Definition 6.2. (Laminar Chord Sets) A set of chords C for Rout is laminar (non-crossing) if for any
two such chords C = −−→c0c1, C

′ = −−→c2c3, if there exists a v ∈ (C ∩ C ′) \ ∂R then the subpaths from c0 to v and
from c2 to v are identical; in particular c0 = c2 in this case.

The orientation of chords does not always coincide with a natural orientation of paths defined by the
algorithm. For example, in Figure 6, the oriented chord −−→s0s2 = (s0, . . . , y0, y2, . . . , s2) is composed of three
parts: a shortest s0-to-y0 path (whose natural orientation coincides with that of −−→s0s2), the edge {y0, y2}
(which has no natural orientation in this context), and the shortest s2-to-y2 path (whose natural orientation
is the reverse of its orientation in −−→s0s2). The orientation serves two purposes. In Definition 6.1 we can
speak unambiguously about the parts of Rout to the right and left of −−→s0s2. In Definition 6.2 the role of the
orientation is to ensure that the partition of Rout into pieces induced by C can be represented by a tree, as
we show in Lemma 6.4.

Definition 6.3. (Pieces) A laminar chord set C for Rout partitions the faces of Rout into pieces, excluding
the face on ∂R. Two faces f, g are in the same piece iff f∗ and g∗ are connected by a path in (Rout)∗ that
avoids duals of edges in C and of edges along the boundary cycle on ∂R. A piece is regarded as the subgraph
induced by its faces, i.e., it includes their constituent vertices and edges. Two pieces P1, P2 are adjacent if
there is an edge e on the boundary of P1 and P2 and e is in a unique chord of C. See Figure 9.

Lemma 6.4. Suppose that C is a laminar chord set for Rout, P = P(C) is the corresponding piece set and
E are the pairs of adjacent pieces. Then T = (P, E) is a tree, called the piece tree induced by C.
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Proof. The claim is clearly true when C contains zero or one chords, so we will reduce the general case to this
case via a peeling argument. We will find a piece P with degree 1 in T , remove it and the chord bounding
it, and conclude by induction that the truncated instance is a tree. Reattaching P implies that T is a tree.

Let C = −−→c0c1 ∈ C be a chord such that no edge of any other chord appears strictly to one side of C, say
to the right of C. Let P be the piece to the right of C. (In Figure 9 the chords bounding P1, P2, P11, P12

would be eligible to be C.) Let C = (c0 = v0, v1, v2, . . . , vk = c1) and vj! be such that the edges of the suffix
(vj! , . . . , vk) are on no other chord, meaning the vertices {vj!+1, . . . , vk−1} are on no other chord. Let gj be
the face to the left of (vj , vj+1). It follows that there is a path from g∗j! to g∗k−1 in (Rout)∗ that avoids the
duals of all edges in C and along ∂R. All pieces adjacent to P contain some face among {gj! , . . . , gk−1}, but
these are in a single piece, hence P corresponds to a degree-1 vertex in T . Let P be bounded by C and an
interval B of the boundary cycle on ∂R. Obtain the “new” Rout by cutting along C and removing P , the
new ∂R by substituting C for B, and the new chord-set C by removing C and trimming any chords that
shared a non-empty prefix with C. By induction the resulting piece-adjacency graph is a tree; reattaching
P as a degree-1 vertex shows that T is a tree.

Definition 6.4. (Occluding Chords; Maximal Chords) Fix Rout, chord C, and two faces f, g, neither
of which is the hole defined by ∂R. If f and g are on opposite sides of C, we say that from vantage f , C
occludes g. Let C be a set of chords. We say C ∈ C is maximal in C with respect to a vantage f if there is
no C ′ ∈ C such that C ′ occludes a strict superset of the faces that C occludes. (Note that the orientation of
chords is irrelevant to the occludes relation.)

It follows from Definition 6.4 that if C is laminar, the maximal chords with respect to f will intersect the
boundary of f ’s piece in P(C).

We can also speak unambiguously about a chord C occluding a vertex or edge not on C, from a certain
vantage, which itself may be a face, a vertex, or a piece. Specifically, we can say that from some vantage, C
occludes an interval of the boundary cycle on ∂R, say according to a clockwise traversal around the hole on
∂R in Rout.10 This will be used in the ChordIndicator procedure of Section 6.4.2.

We next present part (E) of our data structure, which will be used to implement the functions SitePathIndicator
and ChordIndicator.

(E) (Chord Trees; Piece Trees) For each i ∈ [1,m − 1], each Ri ∈ Ri, and each source q ∈ ∂Ri, we
store the SSSP tree from q with respect to G induced by ∂Ri as a chord tree TRi

q . In particular, the

parent of x ∈ ∂Ri in TRi
q is the nearest ancestor in the SSSP tree from q that lies on ∂Ri. Every edge

of TRi
q is designated a chord if the corresponding path is entirely contained in Rout

i , or a non-chord

otherwise. Define CRi
q to be the set of all chords in TRi

q , oriented away from q; this is clearly a laminar

set since shortest paths are unique and all prefixes of shortest paths are shortest paths. Define PRi
q

to be the corresponding partition of Rout
i into pieces, and T Ri

q the corresponding piece tree. Define

TRi
q [x] for x ∈ ∂Ri to be the path from q to x in TRi

q , CRi
q [x] the corresponding chord-set, and PRi

q [x]
the corresponding piece-set.

The data structure answers the following queries

MaximalChord(Ri, q, x, P, P
′): We are given Ri, q, x ∈ ∂Ri, a piece P ∈ PRi

q , and possibly another

piece P ′ ∈ PRi
q (which may be Null). If P ′ is Null, return any maximal chord in CRi

q [x] from

vantage P . If P ′ is not Null, return the maximal chord in CRi
q [x] (which, if it exists, is unique)

that occludes P ′ from vantage P .

AdjacentPiece(Ri, q, e): Here e is an edge on the boundary cycle on ∂Ri. Return the unique piece in
PRi
q with e on its boundary.11

We next describe how to compactly store Part (E) of the data structure. Our strategy is as follows. We fix
Ri and q ∈ ∂Ri and build a dynamic data structure for these operations relative to a dynamic subset Ĉ ⊆ CRi

q

10This is one place where we rely on the fact that each hole is bounded by a simple cycle.
11This is another place where we rely on the fact that every hole is bounded by a simple cycle.
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subject to the insertion and deletion of chords in O(log |∂Ri|/ log log |∂Ri|) time. By inserting/deleting
O(|∂Ri|) chords in the correct order, we can arrange that Ĉ = CRi

q [x] at some point in time, for every x ∈ ∂Ri.
Using the generic persistence technique for RAM data structures (see [21]) we can answer MaximalChord
queries relative to CRi

q [x] in O(log |∂Ri|) time.
We will make use of a data structure of Brodal et al. [7] specified in the following lemma.

Lemma 6.5. (Cf. Brodal et al. [7, Theorem 2]) For an edge-weighted tree with k nodes, there exists a data
structure that occupies O(k) space and supports the following operations in O(log k/ log log k) time.

• Update(e, w): Change the weight of an edge e to w.

• Pathmin/Pathmax(u, v): Given two nodes u and v, return the edge with minimum/maximum weight
on the path between u and v.

Lemma 6.6. Part (E) of the data structure can be stored in O(mn log n/ log log n) total space and answer
MaximalChord queries in O(log n) time and AdjacentPiece queries in O(1) time.

Proof. We first address MaximalChord. Let T = T Ri
q be the piece tree. The edges of T are in one-to-one

correspondence with the chords of C = CRi
q and if P, P ′ ∈ P = PRi

q are two pieces, the path from P to P ′

in T crosses exactly those chords that occlude P ′ from vantage P (and vice versa). We will argue that in
order to implement MaximalChord it suffices to design an efficient dynamic data structure for the following
problem; initially all edges are unmarked.

• Mark/Unmark(e): Mark/unmark an edge e ∈ E(T ).

• LastMarked(P ′, P ): Return the marked edge closest to P on the path from P ′ to P , or Null if all are
unmarked.

By doing a depth-first traversal of the chord tree TRi
q , marking/unmarking chords as they are encountered,

the set {e ∈ E(T ) | e is marked} will be equal to CRi
q [x] precisely when x is first encountered in DFS. To

answer a MaximalChord(Ri, q, x, P, P
′) query we interact with the state of the data structure when the

marked set is Ĉ = CRi
q [x]. If P ′ is not Null we return LastMarked(P ′, P ). Otherwise we pick an arbitrary

(marked) chord C ∈ CRi
q [x], get the adjacent pieces P ′

1, P
′
2 on either side of C, then query LastMarked(P ′

1, P )
and LastMarked(P ′

2, P ). At least one of these queries will return a chord and that chord is maximal from
vantage P . (Note that C must separate P from either P ′

1 or P ′
2.)

The operations Mark, Unmark, LastMarked are easily reducible to Update, Pathmin, Pathmax [7]
from Lemma 6.5. Root the tree at an arbitrary vertex and preprocess it for LCA queries [4]. All unmarked
edges carry a weight of +∞ (for Pathmin queries) and −∞ (for Pathmax queries). Mark(e) sets the weight
of e to be equal to the number of edges of the path from the root to e’s farthest endpoint from the root.
Consider a LastMarked(P ′, P ) query and let P ′′ be the lowest common ancestor of P and P ′. We find the
edges e0 = Pathmin(P ′, P ′′) and e1 = Pathmax(P, P ′′). If e1 exists (P ∕= P ′′) and is marked (weight not
±∞) then it is the correct answer. Otherwise, if e0 is marked then it is the correct answer. If neither case
holds then there are no marked edges on the path from P ′ to P .

For fixed Ri, q ∈ ∂Ri there are O(|∂Ri|) Mark and Unmark operations, each taking O(log n/ log log n)
time. Over all choices of i, Ri, and q the total update time is O(mn log n/ log log n). After applying
generic persistence for RAM data structures (see [21]) the space is O(mn log n/ log log n) and the time
per LastMarked query is O(log n/ log log n · log log n) = O(log n).

Turning to AdjacentPiece(Ri, q, e), there are |∂Ri|2 choices of (q, e). Hence all answers can be precom-
puted in a lookup table occupying O(mn) space.

6.3 The SitePathIndicator Function

The SitePathIndicator function is relatively simple. We are given VD∗
out(ui, Ri+1), v ∈ Rout

i+1, a centroid
f∗ ∈ Rout

i+1, f being a trichromatic face on y0, y1, y2, which are, respectively, in the Voronoi cells of s0, s1, s2 ∈
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(a) (b)

Figure 10: (a) f is in Rout
t+1 and x′ is the last vertex on ∂Rt+1 on the sj-to-yj path. Since z ∕= x and

z ∈ TRt
q [x] the subpath from z to z′ is a chord in Rout

t , and so we test whether v is on the chord
−→
zz′. (b) f

is in Rout
t ∩Rt+1 and x′ = yj . Since z = x we test whether v is on the x-to-yj path.

∂Ri+1, and an index j ∈ {0, 1, 2}. We would like to know if v is on the shortest sj-to-yj path. Recall that t
is such that v ∕∈ Rt but v ∈ Rt+1.

Using the lookup tables in part (D) of the data structure, we find the first and last vertices (q and x) of
∂Rt on the sj-to-yj path. If q, x do not exist then v is certainly not on the sj-to-yj path (Line 4). Using
parts (A,C,D) of the data structure, we invoke SimpleCentroidSearch to find the last point z of ∂Rt on
the shortest path (in G) from q to v. (See Lemma 6.3.) If z is not on the path from q to x in G (which
corresponds to it not being on the path from q to x in TRt

q , stored in Part (E)), then once again v is certainly
not on the sj-to-yj path (Line 8). So we may assume that z lies on the q-to-x path. For the case where
z = x, we let x′ be the last vertex of the shortest sj-to-yj path that is contained in the relevant subgraph
Rout

t ∩ Rt+1. In particular, there are three cases to consider, depending on whether the destination yj of
the path is in Rout

t ∩ Rt+1, in Rout
t+1, or in Rt. If yj ∈ Rout

t ∩ Rt+1 we let x′ = yj ; if yj ∈ Rout
t+1 we let x′

be the last vertex of ∂Rt+1 encountered on the shortest sj-to-yj path (stored in part (D)); and if yj ∈ Rt

we let x′ = x. Figure 10(a,b) illustrates the first two possibilities for x′. Now, v is on the sj-to-yj path iff
it is on the x-to-x′ shortest path, which can be answered using part (A) of the data structure (Lines 19,
21). (Figure 10(b) illustrates one way for v to appear on the x-to-x′ path.) In the remaining case, z is
on the shortest q-to-x path but is not x, meaning that the child z′ of z on TRt

q [x] is well defined. If the

corresponding shortest z-to-z′ path lies in Rout
t (i.e., it is a chord

−→
zz′), then v is on the shortest sj-to-yj

path iff it is on the shortest z-to-z′ path in Rout
t , which, once again, can be answered with part (A) of the

data structure via Lemma 6.1 (Lines 25, 27). See Figure 10(a) for an illustration of this case. Finally, if the
shortest z-to-z′ path is internally disjoint from Rout

t , then v is clearly not on the shortest sj-to-yj path.

25



Algorithm 5 SitePathIndicator(VD∗
out(ui, Ri+1), v, f

∗, j)

Input: The dual representation VD∗ = VD∗
out(ui, Ri+1) of a Voronoi diagram, a vertex v ∈ Rout

i+1, and
j ∈ {0, 1, 2}.

Output: True if v is on sj-to-yj shortest path, where sj , yj are with respect to f∗ in VD∗, and False
otherwise.

1: Rt ← the ancestor of Ri s.t. v /∈ Rt, v ∈ Rt+1.
2: (q, x) ← first and last ∂Rt vertices on the shortest sj-to-yj path. ⊲ Part (D)
3: if q, x are Null then
4: return False
5: end if
6: z ← SimpleCentroidSearch(VD∗

out(q,Rt), v) ⊲ Uses parts (A,C,D); see Lemma 6.3
7: if z is not on TRt

q [x] then
8: return False
9: end if

10: if z = x then
11: if yj is in Rout

t ∩Rt+1 then
12: x′ ← yj
13: else if yj ∕∈ Rt+1 then
14: x′ ← last ∂Rt+1 vertex on the shortest sj-to-yj path. ⊲ Part (D)
15: else
16: x′ ← x ⊲ I.e., yj ∕∈ Rout

t

17: end if
18: if v is on the shortest x-to-x′ path then ⊲ Part (A)
19: return True
20: end if
21: return False
22: end if
23: z′ ← the child of z on TRt

q [x] ⊲ Part (E)

24: if
−→
zz′ is a chord in CRt

q [x] and v is on the shortest z-to-z′ path in Rout
t then ⊲ Part (A)

25: return True
26: end if
27: return False

6.4 The ChordIndicator Function

The ChordIndicator function is given VD∗
out(ui, Ri+1), v ∈ Rout

i+1, a centroid f∗, with yj , sj defined as usual,
and an index j ∈ {0, 1, 2}. The goal is to report whether v lies to right of the oriented site-centroid-site
chord

C̃ = −−−−−−−−−→sjyjyj−1sj−1,

which is composed of the shortest sj-to-yj and sj−1-to-yj−1 paths, and the single edge {yj , yj−1}. Note that

C̃ is a simple path since the shortest sj-to-yj and sj−1-to-yj−1 paths belong to different Voronoi cells. See

Figure 6 for an illustration. It is guaranteed that v does not lie on C̃, as this case is already handled by the
SitePathIndicator function.

Figure 11 illustrates why this point location problem is so difficult. Since we know that v ∈ Rt+1 and
v ∕∈ Rt, we can narrow our attention to Rout

t ∩ Rt+1. However the projection of C̃ onto Rout
t can cross the

boundary ∂Rt an arbitrary number of times. Define C to be the set of oriented chords of Rout
t obtained by

projecting C̃ onto Rout
t .

Luckily C has some structure. Let (qj , xj) and (qj−1, xj−1) be the first and last ∂Rt vertices on the
shortest sj-to-yj and sj−1-to-yj−1 paths, respectively. (One or both of these pairs may not exist.) The
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(a)

(b) (c) (d)

Figure 11: (a) The projection of a site-centroid-site chord C̃ = −−−−−−−−−→sjyjyj−1sj−1 of Rout
i+1 onto Rout

t yields a set
C of chords of Rout

t , partitioned into three classes. Let qj , xj and qj−1, xj−1 be the first and last ∂Rt-vertices
on the sj-to-yj and sj−1-to-yj−1 paths. (b) C1: all chords in TRt

qj [xj ]. (c) C2: all chords in TRt
qj−1

[xj−1].

Their orientation is the reverse of their counterparts in C̃. (d) C3: the single chord −−−−−−−−−→xjyjyj−1xj−1.
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chords of C are in one-to-one correspondence with the chords of C1 ∪ C2 ∪ C3, defined below, but as we will
see, sometimes with their orientation reversed.

C1: Define C1 = CRt
qj [xj ]. That is, C1 contains all the chords on the path from qj to xj , stored in part (E) of

the data structure. Moreover, the orientation of C1 agrees with the orientation of C̃. The blue chords
of Figure 11(a) are isolated as C1 in Figure 11(b).

C2 : Define C2 = CRt
qj−1

[xj−1]. That is, C2 contains all the chords on the path from qj−1 to xj−1. The red
chords of C in Figure 11(a) are represented by chords C2, but with reversed orientation. Figure 11(c)
depicts C2.

C3 : This set contains the oriented chord −−−−→xjxj−1 (if it exists) consisting of the shortest xj-to-yj path, the
edge {yj , yj−1}, and the reverse of the shortest xj−1-to-yj−1 path. Figure 11(d) depicts C3.

The chord-set C partitions Rout
t into a piece-set P, with one such piece P ∈ P containing v. (Remember

that v is not on C̃.) We can also consider the piece-sets P1,P2,P3 generated by C1, C2, C3. Let P1 ∈ P1, P2 ∈
P2, P3 ∈ P3 be the pieces containing v. Since, ignoring orientation, C = C1 ∪ C2 ∪ C3, it must be that
P = P1 ∩ P2 ∩ P3. In order to determine whether v is to the right of C̃, it suffices to find some chord C ∈ C
bounding P and ask whether v is to the right of C. Note that such a chord C must also be on the boundary
of one of P1, P2, or P3.

The high-level strategy of ChordIndicator is as follows. First, we will find some piece P ′
1 ∈ PRt

qj that is
contained in P1 using the procedure PieceSearch described below. The chords of C1 bounding P1 are precisely
the maximal chords in C1 from vantage P ′

1. Using MaximalChord (part (E)) we will find a candidate chord
C1 ∈ C1, and one edge e on the boundary cycle of ∂Rt occluded by C1 from vantage P ′

1. Turning to C2, we
use AdjacentPiece to find the piece Pe ∈ PRt

qj−1
adjacent to e. Then, using PieceSearch and MaximalChord

again, we find a P ′
2 ∈ PRt

qj−1
contained in P2 and the maximal chord C2 occluding Pe from vantage P ′

2. Let
C3 be the singleton chord in C3, if any. We determine an “eligible” chord Cℓ ∈ {C1, C2, C3}, decide whether
v lies to the right of Cℓ, and return this answer if ℓ ∈ {1, 3} or reverse it if ℓ = 2. Recall that chords in C2
have the opposite orientation as their counterparts in C.

PieceSearch is presented in Section 6.4.1 and ChordIndicator in Section 6.4.2.

6.4.1 PieceSearch

Given v and q, x ∈ ∂Rt, we would like to locate the piece P ∈ PRt
q [x] that contains v. Note that since PRt

q

is a refinement of PRt
q [x], P is the union of some pieces in PRt

q . Thus, it suffices to return any P ′ ∈ PRt
q

such that P ′ ⊆ P . The procedure PieceSearch performs this task.
The first thing it does is find the last ∂Rt vertex z on the shortest path from q to v, which can be done

with a call to SimpleCentroidSearch on VD∗
out(q,Rt), using Lemma 6.3. (This uses parts (A,C,D) of the

data structure.) The shortest path from z to v cannot cross any chord in CRt
q [x], since they are part of a

shortest path, but it can coincide with a prefix of some chord in CRt
q [x]. Thus, if no chord of CRt

q [x] is incident
to z, then we are free to return any piece containing z. (There may be multiple options if z is an endpoint of
a chord in CRt

q . This case is depicted in Figure 12. When z = z0, we know that v ∈ P5 ∪ · · ·∪P9 and return

any such piece containing z.) In general z may be incident to up to two chords C1, C2 ∈ CRt
q [x]. (This occurs

when the shortest q-to-x path touches ∂Rt at z without leaving Rout
t .) In this case we determine which side

of C1 and C2 v is on (using Lemma 6.1) and return the appropriate piece adjacent to C1 or C2. This case
is depicted in Figure 12 with z = z1; the three possible answers coincide with v ∈ {v1, v2, v3}.

We remark that we could have defined PieceSearch to not take x as an argument, and just return a piece
P ′ ∈ PRt

q containing v, which is, by definition, a subpiece of the piece P ∈ PRt
q [x] containing v. This would

entail modifying Lines 5–6 to do a binary search on all the chords in CRt
q incident to z.

6.4.2 ChordIndicator

Let us walk through the ChordIndicator function. If C̃ = −−−−−−−−−→sjyjyj−1sj−1 does not touch the interior of Rout
t

then the left-right relationship between C̃ and v ∕∈ Rt is known, and stored in part (D) of the data structure.
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Algorithm 6 PieceSearch(Rt, q, x, v)

Input: A region Rt, two vertices q, x ∈ ∂Rt, and a vertex v not on the q-to-x shortest path in G.
Output: Any piece P ′ ∈ PRt

q that is a subpiece of the unique piece P ∈ PRt
q [x] containing v.

1: z ← SimpleCentroidSearch(VD∗
out(q,Rt), v) ⊲ Uses parts (A,C,D) of the data structure

2: if z is not an endpoint of any chord in CRt
q [x] then

3: return any piece in PRt
q containing z.

4: end if
5: C1, C2 ← two chords in CRt

q [x] adjacent to z (C2 may be Null)
6: Determine whether v is to the left or right of C1 and C2. ⊲ Part (A); see Lemma 6.1
7: return a piece adjacent to C1 or C2 that respects the queries of Line 6.

Figure 12: Solid chords are in CRt
q [x]. Dashed chords are in CRt

q but not CRt
q [x]. When z = z0, v = v0, the

piece in PRt
q [x] containing v is the union of P5–P9. PieceSearch reports any piece containing z0. When

z = z1, v ∈ {v1, v2, v3}, z is incident to two chords C1, C2. PieceSearch decides which side of C1, C2 v is on
(see Lemma 6.1), and returns the appropriate piece adjacent to C1 or C2.
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If this is the case the answer is returned immediately, at Line 3. A relatively simple case is when C1 and C2
are empty, and C = C3 consists of just one chord C3 = −−−−−−−−−→xjyjyj−1xj−1. We apply Lemma 6.2 to determine
whether v is to the right or left of C3 and return this answer (Line 8). Thus, without loss of generality we
can assume that C1 ∕= ∅ and C2 may or may not be empty.

Recall that P1 is v’s piece in PRt
qj [xj ]. Using PieceSearch we find a piece P ′

1 ⊆ P1 in the more refined

partition PRt
qj and find a MaximalChord C1 ∈ C1 from vantage P ′

1, and hence from vantage v as well. We

regard ∂Rt as circularly ordered according to a clockwise walk around the hole on ∂Rt in Rout
t . The chord

C1 occludes an interval I1 of ∂Rt from vantage v. If C1 is not one of the chords bounding P , then C3 or
some C2 ∈ C2 must occlude a superset I2 of I1, so we will attempt to find such a C2, as follows.

Let e be the first edge on the boundary cycle occluded by C1, i.e., e joins the first two elements of I1.
Using AdjacentPiece we find the unique piece Pe ∈ PRt

qj−1
with e on its boundary. Using PieceSearch again

we find P ′
2 ∈ PRt

qj−1
contained in P2, and using MaximalChord again, we find the maximal chord C2 ∈ C2

that occludes Pe from vantage P ′
2, and hence from vantage v as well. Observe that since all chords in C2

are vertex-disjoint from C1, if C2 ∕= Null then C2 must occlude a strictly larger interval I2 ⊃ I1 of ∂Rt. (If
C2 is Null then I2 = ∅.) It may be that C1 and C2 are both not on the boundary of P , but the only way
that could occur is if C3 ∈ C3 exists and occludes a superset of I1 and of I2 on the boundary ∂Rt. We check
whether v lies to the right or left of C3 using Lemma 6.2 and let I3 be the interval of ∂Rt occluded by C3

from vantage v. If I3 does not cover e, then we cannot conclude that C3 is superior than C1 and C2. Thus,
we find the chord Cℓ ∈ {C1, C2, C3} that covers e and maximizes |Iℓ|. Cℓ must be on the boundary of P , so
the left-right relationship between v and C̃ is exactly the same as the left-right relationship between v and
Cℓ, if ℓ ∈ {1, 3}, and the reverse of this relationship if ℓ = 2 since chords in C2 have the opposite orientation
as their subpath counterparts in C̃. Figure 13 illustrates how ℓ could take on all three values.

(a) (b) (c)

Figure 13: The intervals I1, I2, I3 are represented as pink circular arcs. The edge e is the first edge of I1 in a
clockwise walk around the hole bounded by ∂Rt in Rout

t . (Note that in this drawing the hole on ∂Rt is the
infinite face. Thus, a clockwise walk around ∂Rt looks like a counter-clockwise walk in the plane.) In (a) C2

exists and C3 is eligible since I3 ⊃ I2 ⊃ I1. In (b) C2 exists, but C3 occludes an interval I3 that does not
contain e, so C2 is an eligible chord. In (c) C2 is Null, and C3 does not occlude e from v, so C1 is the only
eligible chord. (In the figure I3 ⊂ I1 but it could also be as in (b), with I3 disjoint from I1.)
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Algorithm 7 ChordIndicator(VD∗
out(ui, Ri+1), v, f

∗, j)

Input: The dual representation VD∗
out = VD∗

out(ui, Ri+1) of a Voronoi diagram, a centroid f∗ in VD∗
out

with face f on vertices y0, y1, y2, which are in the Voronoi cells of s0, s1, s2, an index j ∈ {0, 1, 2}, and a
vertex v ∈ Rout

i+1 that does not lie on the site-centroid-site chord C̃ = −−−−−−−−−→sjyjyj−1sj−1.

Output: True if v lies to the right of C̃, and False otherwise.
1: Rt ← the ancestor of Ri s.t. v /∈ Rt, v ∈ Rt+1. C is the projection of C̃ onto Rout

t .
2: if the left/right relationship between Rout

t and C̃ = −−−−−−−−−→sjyjyj−1sj−1 is known then
3: return stored True/False answer. ⊲ Part (D)
4: end if ⊲ (It follows that C̃ crosses ∂Rt and that C ∕= ∅)
5: (qj , xj) ← first and last ∂Rt-vertices on shortest sj-to-yj path. ⊲ Part (D)
6: (qj−1, xj−1) ← first and last ∂Rt-vertices on shortest sj−1-to-yj−1 path. ⊲ Part (D)
7: if C1 = C2 = ∅ then
8: return True if v is to the right of the C3-chord −−−−−−−−−→xjyjyj−1xj−1, or False otherwise. ⊲ Parts (A,D)
9: end if ⊲ W.l.o.g., continue under the assumption that C1 ∕= ∅.

10: P ′
1 ← PieceSearch(Rt, qj , xj , v) ⊲ Parts (A,C,D)

11: C1 ← MaximalChord(Rt, qj , xj , P
′
1,⊥) ⊲ Part (E)

12: I1 ← the clockwise interval of hole ∂Rt occluded by C1 from vantage v.
13: e ← edge joining first two elements of I1.
14: Pe ← AdjacentPiece(Rt, qj−1, e) ⊲ Part (E)
15: P ′

2 ← PieceSearch(Rt, qj−1, xj−1, v) ⊲ Parts (A,C,D)
16: C2 ← MaximalChord(Rt, qj−1, xj−1, P

′
2, Pe) ⊲ Part (E); may return Null

17: I2 ← the clockwise interval of hole ∂Rt occluded by C2 from vantage v. ⊲ ∅ if C2 = Null
18: C3 ← single chord in C3, if any. ⊲ May be Null
19: I3 ← the clockwise interval of hole ∂Rt occluded by C3 from vantage v. ⊲ Parts (A,D)
20: ℓ ← index such that Iℓ covers e, and |Iℓ| is maximum.
21: if v is to the right of Cℓ and ℓ ∈ {1, 3} or v is to the left of Cℓ and ℓ = 2 then
22: return True
23: end if
24: return False

7 Analysis

This section constitutes a proof of the claims of Theorem 1.1 concerning space complexity and query time.
See Section 8 for an efficient construction and its analysis.

The cost of PieceSearch is dominated by the call to SimpleCentroidSearch, which by Lemma 6.3,
takes O(κ log n log log n) time. SitePathIndicator makes one call to SimpleCentroidSearch, and uses the
MSSP structure (part (A)) and various O(1)-time tree operations on TRi

q and the #r-division such as lowest
common ancestors and level ancestors [37, 4, 5, 35]. It also takes O(κ log n log log n) time. The calls to
MaximalChord and AdjacentPiece in ChordIndicator take O(log n) time by Lemma 6.6, and testing which
side of a chord v lies on takes O(κ log log n) time by Lemmas 6.1 and 6.2. The bottleneck in ChordIndicator
is still PieceSearch; overall it takes O(κ log n log log n) time.

An initial call to CentroidSearch (Line 4 ofDist) generates at most log n recursive calls to CentroidSearch
in total, culminating in the last recursive call making 1 or 2 calls to Dist with the “i” parameter incre-
mented. Excluding the cost of recursive calls to Dist, the cost of CentroidSearch is dominated by calls to
SitePathIndicator and ChordIndicator, i.e., an initial call to CentroidSearch takes log n·O(κ log n log log n) =
O(κ log2 n log log n) time. Let T (i) be the cost of a call to Dist(ui, v, Ri). We have

T (m− 1) = O(κ log log n) Dist returns at Line 2 with one MSSP query

T (i) = 2T (i+ 1) +O(κ log2 n log log n)

It follows that the time to answer a distance query is T (0) = O(2m · κ log2 n log log n).
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The space complexity of each part of the data structure is as follows. (A) is O(κmn1+1/m+1/κ) by
Lemma 2.1 and the fact that ri+1/ri = n1/m. (B) is O(mn1+1/(2m)) since

#
ri+1/ri = n1/(2m). (C) is O(mn)

since
&

i n/ri · (
√
ri)

2 = O(mn). (D) is O(m) times the space cost of (B) and (C), namely O(m2n1+1/(2m)),
and (E) is O(mn log n/ log log n) by Lemma 6.6. For the choices of m,κ considered below, the bottleneck is
(A).

We now explain how m,κ can be selected to achieve the extreme space and query complexities claimed in
Theorem 1.1. To optimize for query time, pick κ = m to be any function of n that is ω(1) and o(log log n).
Then the query time is

O(2mκ log2 n log log n) = log2+o(1) n

and the space is
O(mκn1+1/m+1/κ) = n1+o(1).

To optimize for space, choose κ = log n and m to be a function that is ω(log n/ log log n) and o(log n). Then
the space is

O
!
mκn1+1/m+1/κ

"
= o

!
n1+1/m log2 n

"
= n · 2o(log logn) · log2 n = n log2+o(1) n,

and the query time
O(2mκ log2 n log log n) = 2o(logn) log3 n log log n = no(1).

Note that once κ = Ω(log n) it is best to switch to the pointer-based MSSP implementation (see Lemma 2.1
and [25]), which saves a log log n-factor in the query time.

7.1 Speeding Up the Query Time

Considering functions that are ω(1) and o(log log n) is of purely theoretical nature, so in practice m and κ
will just be set as constants. In this section we illustrate how the query time’s dependence on m can be
improved from 2m to about 2m/4.

Observe that the space of (B) is asymptotically smaller than the space of (A). Replace (B) with (B’)

(B’) (Voronoi Diagrams) Fix i, a region Ri ∈ Ri with ancestors Ri+1 ∈ Ri+1 and Ri+4 ∈ Ri+4. For
each q ∈ ∂Ri store

VD∗
out(q,Ri+1) = VD∗[Rout

i+1, ∂Ri+1,ω]

VD∗
farout(q,Ri+4) = VD∗[Rout

i+4, ∂Ri+4,ω] only if i < m− 4

with ω(s) = distG(q, s) in both cases. Over all regions Ri, the space for storing all VD∗
outs is

Õ(n1+1/(2m)) since
#
ri+1/ri = n1/(2m) and the space for VD∗

farouts is Õ(n1+2/m) since
#
ri+4/ri =

n2/m.

Now the space for (A) is Õ(n1+1/m+1/κ) = Õ(n1+2/m) is balanced with (B’) when m = k. In the Dist
function we now consider three possibilities. If v ∈ Ri+1 we use part (A) to solve the problem without
recursion. If v ∕∈ Ri+1 but v ∈ Ri+4 we proceed as usual, calling CentroidSearch(VD∗

out(ui, Ri+1), v), and if
v ∕∈ Ri+4 we call CentroidSearch(VD∗

farout(ui, Ri+4), v). Observe that the depth of the Dist-recursion is now
at most t/4+O(1) < m/4+O(1), giving us a query time of O(m2m/4 log2 n log log n) with space Õ(n1+2/m).

8 Construction

In this section, we show how to construct our oracle in n3/2+o(1) time. We use dense distance graphs. The
dense distance graph of a region R, denoted DDG[R], is a complete directed graph on the vertices of ∂R, in
which the length of edge (u, v) is distR(u, v). We say that this kind of DDG is internal and, similarly, define
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the external DDG of a region R, denoted by DDG[Rout], to be a complete directed graph on ∂R, in which
the length of edge (u, v) is distRout(u, v).

The FR-Dijkstra algorithm [28] is an efficient implementation of Dijkstra’s algorithm [23] on DDGs. In
particular, it simulates the behavior of the heap in Dijkstra’s algorithm without explicitly scanning every
edge in the DDG. In fact, the FR-Dijkstra algorithm can run on a union of DDGs [28]. Moreover, it is
shown in [6] that it is also compatible with a traditional implementation of Dijkstra’s algorithm, in the
following sense: Suppose we have a graph H that consists of a subgraph of G on n0 vertices, and k DDGs
on n1, n2, . . . , nk vertices, respectively. The FR-Dijkstra algorithm can be implemented on H in Õ(N) time,

where N =
&k

i=0 ni [28, 40, 55].
Before the construction of DDGs and our oracle, we first prepare Klein’s MSSP structures (part (F)

below). Note that MSSP structures in part (F) are only used in the construction of DDGs and part (D).
They are not stored in our oracle and are unrelated to the MSSP structures from part (A).

(F) (More MSSP Structures) For each i ∈ [0,m − 1], each Ri ∈ Ri with parent Ri+1 ∈ Ri+1, we
build two MSSP structures for Rout

i ∩Ri+1 with sources on ∂Ri and ∂Ri+1, respectively, and an MSSP
structure for Ri with sources on ∂Ri.

All these MSSP structures are constructed using Klein’s MSSP algorithm [45] or the one in Ap-
pendix A.2 (with κ = log n) in Õ(

&
i

n
ri
ri+1) = Õ(mn1+1/m) time.

We then compute, for each region Ri in the #r-division, the internal DDG, the external DDG, and the
DDG of Rout

i ∩ Ri+1, denoted DDG[Rout
i ∩ Ri+1], defined as the complete graph with vertices ∂Ri ∪ ∂Ri+1

and edge weights the distances in Rout
i ∩ Ri+1. The internal DDG and DDG[Rout

i ∩ Ri+1] for each region
Ri can be computed using the MSSP structures in part (F) in Õ(ri) and Õ(ri+1) time respectively, thus in
Õ(

&
i

n
ri
(ri + ri+1)) = Õ(mn1+1/m) time over all regions. To compute the external DDGs, we consider a

top-down process on the #r-division. The external DDG for Ri can be computed by running the FR-Dijkstra
algorithm on the union of DDG[Rout

i+1] and DDG[Rout
i ∩Ri+1] sourced from each vertex in ∂Ri. The number

of vertices in this union is O(
√
ri+1), so computing DDG[Rout

i ] takes Õ(
√
riri+1) time, and the construction

time over all external DDGs is Õ(
&

i
n
ri

√
riri+1) = Õ(mn1+1/(2m)). The total construction time for all

DDGs is Õ(mn1+1/m). (See [41] for a recent efficient algorithm for computing external DDGs.)
With dense distance graphs, all components in the oracle can be constructed as follows.

(A) MSSP Structures

Recall that our MSSP structure for Rout
i with sites ∂Ri is obtained by contracting subpaths in Rout

i+1 of
the SSSP trees into single (shortcut) edges. In order to build the MSSP structure using dynamic trees,
it suffices to compute the contracted shortest path tree for every source on ∂Ri and then compare the
differences between the trees of two adjacent sources on ∂Ri.

For a single source on ∂Ri, the contracted shortest path tree can be computed with the FR-Dijkstra
algorithm on the union of subgraph Rout

i ∩ Ri+1 and DDG[Rout
i+1] in time Õ(ri+1). Thus, the time for

constructing and comparing the shortest path trees is Õ(ri+1
√
ri). After that, an MSSP structure

for Rout
i can be built in time Õ((ri+1 +

√
riri+1)κn

1/κ) (See item (A) in the beginning of Section 5).

The total time to construct all MSSP structures is Õ(
&

i
n
ri
(ri+1

√
ri + ri+1κn

1/κ)) = Õ(n3/2+1/mm+

n1+1/κ+1/mmκ).

Remark 1. Notice that in our MSSP structures for Rout
i , a contracted subpath should be internally

disjoint from ∂Ri+1. However, the underlying shortest paths represented by edges in DDG[Rout
i+1] may

not satisfy this condition. To fix this problem, we subtract a small value from all edge weights in
DDGs, so that shortest paths are not affected. With this perturbation, the path using the largest
number of DDG edges will be preferred. In such a path, each edge of the DDG corresponds to a path
that is internally disjoint from ∂Ri+1. This mechanism will also be used below.
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Efficient construction of Voronoi diagrams. Explicitly computing the primal Voronoi diagram can be
too expensive. We next show an efficient algorithm to compute the dual representation of a Voronoi diagram
that we believe is of independent interest (see [16] for an application of this algorithm in a dynamic setting).
Let us present the high-level idea of our algorithm. For conceptual simplicity, let us think of constructing
VD∗[R, ∂R,ω] for a region R in the complete recursive binary decomposition tree of G, described in Section 2.
Let P consist of the two children ofR in the recursive decomposition ofG. Let u be a dummy vertex connected
to ∂R with auxiliary edges (u, s) of length ω(s) for each s ∈ ∂R. We will run FR-Dijkstra from the dummy
vertex u on the union of these auxiliary edges and DDG[P ] for P ∈ P. We will show that we can then
decide whether each P ∈ P contains a trichromatic face in O(|∂P |) time by looking at the restriction of the
computed shortest paths tree to DDG[P ]. We will isolate the trichromatic faces by iteratively replacing any
piece containing such a face with its two sub-pieces and refining the shortest path tree accordingly.

Theorem 8.1. Suppose that we are given a complete recursive decomposition of a planar graph G of size n.
After an Õ(n)-time preprocessing, for any region R of the decomposition, we can construct VD∗[H, ∂R,ω]
for H ∈ {R,Rout} and arbitrary additive weights ω : ∂R → R≥0 in time Õ(

#
|H| · |∂R|).

Proof. Our preprocessing of each region P in the recursive decomposition consists of computing DDG[P ] in
O((|P |+ |∂P |2) log |P |) time via MSSP. This requires Õ(n) time in total.

For clarity, we assume that the additive weights are such that there are no empty Voronoi cells and only
waive this assumption at the end of the proof.

Let K be the star with center u and leaves ∂R, such that the weight of edge (u, s) is ω(s). Consider a
set P of regions of the recursive decomposition that cover H, i.e., each edge in H belongs to at least one
region in P and no edge in G \H belongs to any region of P. Let T be a shortest path tree rooted at u in
the union of K and the DDGs of all pieces in P. We shall next prove that, for each piece P ∈ P, we can
infer whether P contains a trichromatic face or not by inspecting the restriction of T to DDG[P ].

Our assumption on the additive weights guarantees that each vertex of ∂R is a child of u in T . We
label each vertex v of T by its unique ancestor in T that belongs to ∂R. Note that the label of a vertex v
corresponds to the Voronoi cell containing v in VD[H, ∂R,ω]. For a piece P ∈ P, consider the restriction
of T to DDG[P ]. We use a representation of size O(|∂P |) of the edges of T embedded as curves in P , such
that each edge of T is homologous to its underlying shortest path in P . See [47, 53] for details on such a
representation. We make incisions in the embedding of P along the edges of T (the endpoints of edges of T
are duplicated in this process). Let Q be the set of connected components of P after all incisions are made.

Claim 8.2. P contains a trichromatic face if and only if some connected component C in Q contains
boundary vertices of P with at least three distinct labels.

Intuitively, for each connected component C in Q, each label appears as the label of boundary vertices
along at most a single sequence of consecutive boundary vertices along the boundary of C. Then, since C
is triangulated, apart perhaps from its infinite face, Sperner’s lemma [62] directly implies that C contains a
trichromatic face if and only if C has vertices with at least three distinct labels in its infinite face. Let us
remark that the proof of Claim 8.2 does not rely on the single-hole assumption.

Proof of Claim 8.2. Let C be a connected component in Q. First, note that each of the vertices of C belongs
to the Voronoi cell of one of the sites that label the vertices in C∩∂P . Hence, if each C ∈ Q contains boundary
vertices of P with at most two distinct labels, P cannot contain any trichromatic faces.

It thus suffices to show that, if some C ∈ Q contains boundary vertices of P with at least three distinct
labels, then C (and P ) contains a trichromatic face. Let us consider such a component C. Note that the
vertices of ∂R either do not belong to C or they are incident to a single face f of C. In the former case, let f
be the face of C such that ∂R is embedded in f . We think of f as the infinite face of C. Note that, because
any path from ∂R to any vertex of C must intersect f , the set of labels of the vertices of f is identical to
the set of labels of all of C.

We first claim that the vertices of f that have the same label are consecutive in the cyclic order of f . To
see this, consider any two distinct vertices x, y of f that have the same label s. If the unique x-to-y path in
T is a subpath of the boundary of f , then this is clearly the case. Otherwise, consider the (not necessarily
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Figure 14: Illustration for the proof of the claim in the case where H = Rout. Some pieces in a graph G are
shown. Region R is shown in bold. Region P (bold boundary, horizontal stripes) lies outside R. The shortest
path tree T is shown in blue, the connected component C in yellow, and the cycle D in gray. Vertices x and
y have the same label s. The vertices v, z between x and y (on the cyclic walk F along the infinite face of C)
must also be labeled s.

simple) cycle D (in H) formed by the unique x-to-y path in T , and the x-to-y path F along the boundary
of f , such that ∂R and C are on the same side of D. See Figure 14. By choice of D, the only vertex of ∂R
that can be enclosed by D is s. Suppose, towards a contradiction, that some vertex v of F has label s′ ∕= s.
Since D does not enclose s′, the s′-to-v path in T starts outside D. Further, it cannot cross the x-to-y path
in T , all of whose vertices have the label s. Thus, the s′-to-v path in T must intersect C, and use an edge
whose underlying shortest path is disjoint from f . But then C should have been further dissected when the
incisions along T were performed, a contradiction.

The argument above established that the vertices of f that have the same label are consecutive in the
cyclic order of f . Let us now recall Sperner’s lemma.

Lemma 8.3 (Sperner’s lemma). Consider a planar graph J , such that each face is a triangle, apart perhaps
from the infinite face g. Further, consider a vertex-coloring of J with colors {1, 2, 3} that satisfies the following
condition: there exist three vertices v1, v2, v3 in g, colored 1, 2, 3, respectively, such that, for all j ∈ {1, 2, 3},
the vertices on the vj-to-vj−1 path along g that does not contain vj−2 have a color in {j, j− 1}—indices here
are modulo 3. Then, J contains a trichromatic face.

Suppose that we have exactly three labels for the vertices of f . Since every face of C other than f is
a triangle, and we can arbitrarily pick the vi’s as the vertices of each label form a contiguous interval, a
direct application of Sperner’s lemma implies that there is a trichromatic face. If we have k > 3 colors, we
can group k − 2 of them that appear consecutively in f together, and apply Sperner’s lemma to the new
instance. This concludes the proof of Claim 8.2.

If H = Rout, we set P to be the set of all siblings of pieces in the complete recursive decomposition tree
that contain R. Else, H = R and we set P = {R}.

We repeat the following process (O(log n) times) until we locate all O(|∂R|) trichromatic faces.
Each iteration consists of two steps. In the first step we compute the shortest path tree T rooted at u in

the union of K and the DDGs of all pieces in P using FR-Dijkstra. In the second step we refine the set P as
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follows. For each piece P , using Claim 8.2, we decide in O(|∂P |) time whether it contains any trichromatic
face. If P does not contain a trichromatic face we do nothing. If it does, we remove P from P and we insert
to P the two children of P , unless P is a leaf in the recursive decomposition, in which case we insert to P
the individual edges of P .

The tree structure of VD[H, ∂R,ω] is captured by the structure of the shortest path tree in the DDGs of
all the pieces at the end of this process. The total time to locate all the trichromatic faces is proportional,
up to polylogarithmic factors, to the total number of vertices in all of the DDGs involved in all these
computations, which is bounded as follows.

Let RH be the smallest piece in the complete recursive decomposition of G that contains H (if H = R
then RH = R, and if H = Rout then RH = G). Note that |RH | = O(|H|). For the remainder of this proof,
we use the term decomposition tree to refer to the subtree of the complete recursive decomposition tree
rooted at RH . Each DDG involved in the computation is either the DDG of a piece P in the decomposition
tree that contains a trichromatic face, or the DDG of the sibling of such a piece P . There are O(|∂R|)
trichromatic faces, and each contributes at most two DDGs at each level of the decomposition tree. It is
well known (cf. [32, Lemma 3.1]) both that the sizes of pieces and the number of boundary vertices of pieces
decrease geometrically as one descends down the decomposition tree. Hence, a näıve bound on the total
number of boundary vertices (equivalently, DDG vertices) in all those pieces is Õ(

#
|H| · |∂R|). However,

this bound is not tight since it double counts the contribution of pieces containing several trichromatic faces.
We follow the calculation in [17, Lemma 3.3] to avoid this double counting. Let r = |H|/|∂R|. Consider an
r-division of RH in the decomposition tree. We bound separately the contribution of (a) ancestors of pieces
in the r-division, and (b) descendants of pieces in the r-division.

For part (a), it is well known that the total number of vertices of all DDGs of all of the pieces in an
r-division is O(|H|/

√
r) = O(

#
|H| · |∂R|), and that this is also a bound on the total number of vertices in

all DDGs of all the ancestors of pieces of the r-division in the decomposition tree. Hence, the contribution
of part (a) is O(

#
|H| · |∂R|).

For part (b), Each trichromatic face contributes at most two pieces at each level of the decomposition
tree above it until reaching a piece of the r-division. Since the number of boundary vertices increases
exponentially as we go up the decomposition tree, the contribution is asymptotically dominated by the
largest such ancestor, which is the piece of the r-division itself. Since each piece of the r-division has O(

√
r)

boundary vertices, the contribution of part (b) is bounded by O(|∂R|
√
r) = O(

#
|H| · |∂R|).

Thus, the total time for finding all trichromatic faces as well as the tree structure is Õ(
#
|H| · |∂R|).

We now remove the assumption that there are no empty Voronoi cells. To this end, we first run FR-
Dijkstra as above on the union of star K and the DDGs of pieces in P. Then, for every site s that is not a
child of the root in the obtained shortest path tree T , we override its additive weight with its distance from
u, and store a pointer from this site to its ancestor (site) s′ in T that is a child of the root. Intuitively, s
becomes responsible for the vertices v of the Voronoi cell of s′ for which the shortest s′-to-v path contains s.
Our tie-breaking rule ensures that with the new additive weights, s ∈ Vor(s). This concludes the proof of
Theorem 8.1.

(B/C) Voronoi Diagrams

The additive weights of all Voronoi diagrams can be computed by running FR-Dijkstra on a union
of appropriate DDGs. Specific to VD∗

out(ui, Ri+1) in (B), additive weights are given by considering
the union of DDG[Ri],DDG[R

out
i ∩ Ri+1],DDG[R

out
i+1] in Õ(

√
ri+1) time. For VD∗

out(ui, Ri) in (C), we

consider the union of DDG[Ri],DDG[R
out
i ] and additive weights can be computed in time Õ(

√
ri). The

overall time to compute additive weights is Õ(
&

i
n
ri

√
ri
√
ri+1) = Õ(mn1+1/(2m)).

By Theorem 8.1, the total construction time for the dual representations is

Õ

'
(

i

n

ri

√
ri

)
n
√
ri+1 +

(

i

n

ri

√
ri

)
n
√
ri

*
= Õ

'
(

i

n3/2+1/(4m)

r
1/4
i

*
= Õ

!
n3/2+1/(4m)

"
,

which is also the construction time for parts (B) and (C).
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(D) Site Tables and Side Tables

We focus on the site table and side table for a specific VD∗
out(u,Ri), and do some preparations.

Observe that the union of

DDG[Rout
i ∩Ri+1],DDG[R

out
i+1 ∩Ri+2], . . . ,DDG[R

out
m−2 ∩Rm−1],DDG[R

out
m−1]

contains exactly all boundary vertices in Rout
i of ancestors Ri, Ri+1, . . . , Rm−1. We use H to denote

this union with an artificial super-source u′ connected to each site s ∈ ∂Ri with weight ω(s), and
construct the shortest path tree TH in H from the super-source u′ using the FR-Dijkstra algorithm in
Õ(

√
n) time.

Remember that the site table stores the first and last vertices of each site-centroid s-to-y path on the
boundary of each ancestor Ri′ (i′ ≥ i). We first find the last vertex x on the s-to-y path belonging
to H. Assume that y ∈ Rk+1 but y /∈ Rk, where Rk, Rk+1 are ancestors of Ri. We can observe that
x is the vertex in ∂Rk ∪ ∂Rk+1 with the minimal distH(u′, x) + distRout

k ∩Rk+1
(x, y), breaking ties in

favor of larger distH(u′, x). The former is given by TH and the latter can be found by querying MSSP
structures in (F) for Rout

k ∩ Rk+1. The calculation of x needs time Õ(|∂Rk+1|) = Õ(
√
n). Observe

that the u′-to-x path on TH includes all boundary vertices of ancestor regions on the s-to-y path. By
retrieving the u′-to-x path on TH in O(

√
n) time, we can get the required information for the site table.

The construction time of a site table for VD∗
out(u,Ri) is Õ(

√
ri
√
n).

In the side table, we will store the relationship (left/right/Null) between each site-centroid-site chord
C̃ = −−−−−−−−−→sjyjyj−1sj−1 (using the notations in Figure 6) and each ancestor Rout

i′ (i′ ≥ i). With the technique

used in the construction of site tables, we can extract all vertices of C̃ on each ∂Ri′ from TH , and
then determine the relationship between C̃ and each Rout

i′ with boundary vertices on C̃. For each Rout
i′

such that C̃ contains no vertices on ∂Ri′ , we pick an arbitrary vertex z on ∂Ri′ . We can retrieve from
TH the u′-to-z path and find the site sz such that z ∈ Vor(sz). This can be done in O(

√
n) time.

With TH and the MSSP structures from part (F), we can determine the pairwise relationships among
sj-to-yj , sj−1-to-yj−1, and sz-to-z shortest paths and know whether z lies to the left or right of C̃,

which immediately shows the relationship between C̃ and Rout
i′ . The construction time for a side table

of VD∗
out(u,Ri) is Õ(m

√
ri
√
n).

The total time for building all site tables and side tables is Õ(
&

i m
n
ri

√
ri
√
ri+1

√
n) = Õ(m2n3/2+1/(2m)).

(E) Chord Trees and Piece Trees

Recall that the chord tree TRi
q is obtained from the shortest path tree in G sourced from q ∈ ∂Ri by

contracting all paths between vertices in ∂Ri into single edges. Thus, it can be computed by running
FR-Dijkstra on the union of DDG[Ri] and DDG[Rout

i ] in Õ(
√
ri) time.

Regarding the construction of the piece tree T Ri
q , we first extract all the chords on TRi

q in Rout
i , i.e., the

chord set CRi
q . We treat each chord in CRi

q as an undirected edge and consider the undirected planar

graph Q which is the union of CRi
q and the boundary cycle on ∂Ri. Observe that each piece in PRi

q

relates to a face of Q. The piece tree T Ri
q can be computed in Õ(

√
ri) time, by taking the dual Q∗ and

removing the vertex corresponding to the face on ∂R. With the graph Q and the piece tree T Ri
q , the

data structure supporting MaximalChord and AdjacentPiece in Lemma 6.6 can also be constructed
in time Õ(

√
ri) for the given q,Ri.

The total time to compute part (E) is Õ(
&

i
n
ri

√
ri
√
ri) = Õ(nm).

The overall construction time is Õ(n3/2+1/m + n1+1/m+1/κ) since m and κ should be functions of n that
are O(log n).
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A preprocessing-time vs. query-time tradeoff. No smooth tradeoff between the Õ(n)-time prepro-
cessing and Õ(

√
n)-query time oracle of Fakcharoenphol and Rao [28], and the oracle presented in this paper

is known. Let us however note, that the oracle of [14] can be adapted to give the following tradeoff. For any
r = nx with constant x ∈ (0, 1], there is an oracle that can be constructed in n3/2+o(1)/r1/4 time, occupies
n1+o(1) space, and answers queries in r1/2+o(1) time. We now sketch how this tradeoff can be achieved.
The n1+o(1)-space, no(1)-query time oracle presented in [14] makes use of an #r-division, and stores similar
Voronoi diagrams as those presented in this paper; the main difference lies in how centroids are handled. The
sole bottleneck in its construction is the construction of Voronoi diagrams, with everything else requiring
time n1+o(1). Let k be the successor of r in #r. We obtain the tradeoff by building the Voronoi diagrams
(using Theorem 8.1) only for pieces in ri-divisions with i ≥ k in total time

Õ

+

,
(

i≥k

n

ri

√
ri

)
n
√
ri+1

-

. = n3/2+o(1)/r1/4.

Now consider a query distG(u, v). The case where v ∈ Rk is simple and can be handled using FR-Dijkstra
in Õ(

√
r) time. In the complementary case, we first perform FR-Dijkstra from the source u in the union of

DDG[Rout
0 ∩R1],DDG[R

out
1 ∩R2], . . . ,DDG[R

out
k−1 ∩Rk],DDG[R

out
k ],

and then issue distance queries to v from each of the boundary vertices of Rk. Finally, we return the
minimum of distG(u, s) + distRout

k
(s, v) over all s ∈ ∂Rk.

9 Multiple Holes and Nonsimple Cycles

We have assumed for simplicity that all regions are bounded by a simple cycle, and therefore have a single
hole. We now show how these assumptions can be removed.

Let us first illustrate how a region R may get a hole with a non-simple boundary cycle. The hierarchical
decomposition algorithm of Klein, Mozes, and Sommer [46] produces a binary decomposition tree, of which
our #r-division is a coarsening. It proceeds by finding a separating cycle (as in Miller [52]), and recursively
decomposes the graph inside the cycle and outside the cycle.12 At intermediate stages the working graph
contains several holes, but Miller’s theorem [52] only guarantees that a small cycle separator exists if the
graph is triangulated. To that end, the decomposition [46] puts an artificial vertex inside each hole and
triangulates the hole. See Figure 15(a,b). If the cycle separator C (blue cycle in Figure 15(b)) includes a
hole-vertex v, we splice out v and replace it with an interval of the boundary of the hole. If C also includes
edges on the boundary of the hole (Figure 15(c)), the modified cycle may not be simple. If this is the case,
we “cut” along non-simple parts of the cycle, replicating all such vertices and their incident cycle edges.
We then join pairs of identical vertices with zero-length edges (pink edges in Figure 15(c)), and triangulate
with large-length edges. This transformation clearly preserves planarity and does not change the underlying
metric.13

Turning to the issue of multiple holes, we first make some observations about their structural organization.
Fix any hole g of region Ri+1 and let Ri be a child of Ri+1. There is a unique hole parRi

(g) in Ri such that

g lies in R
parRi

(g),out

i , which we refer to as the parent of g in Ri. Note that all holes of Ri+1 have the same
parent in Ri, and that the ancestry of holes goes in the opposite direction of the ancestry of regions in the
#r-division. In a distance query we only deal with a series of regions R0 = {u}, R1, . . . , Rm = G. The holes of
these regions form a hierarchy, rooted at {u}, which we view as a degenerate hole. For notational simplicity
we use “g” to refer to the set of vertices on hole g.

12The Klein et al. [46] algorithm rotates between finding separators w.r.t. number of vertices, number of boundary vertices,
and number of holes, but this is not relevant to the present discussion.

13Given a distG(u, v) query, we can map it to Dist(u′, v′, R0), where u′ and v′ are any of the copies of u and v, respectively,
and R0 = {u′}.
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(a) (b)

(c) (d)

Figure 15: (a) A subgraph with two holes. (b) We put a vertex in each hole and triangulate the hole. (The
triangulation of the exterior hole is not drawn, for clarity.) A simple cycle separator (blue curve) is found
in this graph. (c) The cycle is mapped to a possibly non-simple cycle in the original graph that avoids
hole-vertices. We cut along non-simple parts of the cycle, duplicating the vertices and their adjacent edges
on the cycle. (d) The graph remaining after removing the subgraph enclosed by the cycle from (c).
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Lemma 9.1. There is an Õ(n)-space data structure that can be built in Õ(n) time, and given u, v can report

in O(m) time the regions R0 = {u}, R1, · · · , Rt+1 and holes h0, h1, . . . , ht such that v ∈ Rhi,out
i , v ∕∈ Rt, and

v ∈ Rt+1.

Proof. Regions Ri can be reported by following parent pointers in our tree representation of the #r-division,
starting from R0, to which u stores a pointer.

For each region Ri, we can find the correct hole hi as follows. We store the tree representation A of the
recursive decomposition computed by the algorithm of Klein et al [46]. We also store some extra information
for each hole of each region in A. Due to the structural organization of holes discussed above, each separator
of the O(log n) ancestors of a region P in A lies in Ph,out for a unique hole h of P . For each region P , we
store, for each separator of an ancestor of P in the decomposition tree, the hole h of P such that Ph,out

contains that separator. (This information can be propagated bottom-up during the construction of A in
Õ(n) time.) In the query, by performing an LCA query for the constant size region {v} and R0 in A, we
find the separator C that separated v from u. Then, for each i, we can find the appropriate hole hi of Ri in
O(1) time: it is the hole h such that C is in Rh,out

i . Over all i this takes O(m) time.

9.1 Data Structures

The following modifications are made to parts (A)–(E) of the data structure. In all cases the space usage is
unchanged, asymptotically.

(A) (MSSP Structures) For each i ∈ [0,m − 1], each Ri ∈ Ri with parent Ri+1 and each hole hi of Ri,

we build a MSSP structure for Rhi,out
i that answers distance queries and LCA queries w.r.t. Rhi,out

i for

vertices in Rhi,out
i ∩Ri+1.

(B) (Voronoi Diagrams) For each i ∈ [0,m− 2], each Ri ∈ Ri with parent Ri+1 ∈ Ri+1, each hole hi+1

of Ri+1 with parent hi = parRi
(hi+1), and each q ∈ hi, we store the dual representation of Voronoi

diagram VD∗
out(q,Ri+1, hi+1) defined to be VD∗[R

hi+1,out
i+1 , hi+1,ω] with ω(s) = distG(q, s).

(C) (More Voronoi Diagrams) For each i ∈ [1,m−1], each Ri ∈ Ri, each hole hi of Ri, and each q ∈ hi,

we store VD∗
out(q,Ri, hi), which is VD∗[Rhi,out

i , hi,ω] with ω(s) = distG(q, s).

(D) (Site Tables; Side Tables) For each i and each Voronoi diagram VD∗
out = VD∗

out(u
′, Ri, hi) from

part (B) or (C), for each node f∗ in the centroid decomposition of VD∗
out with yj , sj defined as usual,

j ∈ {0, 1, 2}, we store the following. Let Ri′ ∈ Ri′ be an ancestor of Ri, i
′ > i, and hi′ be a hole of Ri′

lying in Rhi,out
i . We store the first and last vertices q, x on the shortest sj-to-yj path that lie on hi′ as

well as distG(u
′, x).

We also store whether R
hi′ ,out
i′ lies to the left or right of the site-centroid-site chord −−−−−−−−−→sjyjyj−1sj−1 in

Rhi,out, or Null if the relationship cannot be determined.

(E) (Chord Trees; Piece Trees) For each i ∈ [1,m − 1], each Ri ∈ Ri, each hole hi of Ri, and source
q ∈ hi, we store a chord tree TRi,hi

q obtained by restricting the SSSP tree with source q to hi. An

edge in TRi,hi
q is designated a chord if the corresponding path lies in Rhi,out

i and is internally vertex

disjoint from hi. CRi,hi
q ,PRi,hi

q , T Ri,hi
q are defined analogously, and data structures are built to answer

MaximalChord and AdjacentPiece with respect to q,Ri, hi.

9.2 Query

At the first call toDist(u, v,R0) we apply Lemma 9.1 to generate the regions R1, . . . , Rt+1 and holes h1, . . . , ht

that will be accessed in all recursive calls, in O(m) time.
The shortest u-to-v path in G must cross h1, . . . , ht. The vertex ui is now defined to be the last ver-

tex in hi on the shortest u-to-v path. Given ui, we find ui+1 by solving a point location problem in
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VD∗
out(ui, Ri+1, hi+1). The SitePathIndicator and ChordIndicator routines focus on the subgraph Rht,out

t

rather than Rout
t . The general problem is no different than the single hole case, except that there may be

O(1) holes of Rt+1 lying in Rht,out
t , which does not cause further complications.

9.3 Preprocessing

The existence of multiple holes does not create any serious complications in our construction algorithm.

10 Conclusion

In this paper we have proven that it is possible to simultaneously achieve optimal space or query time, up to
a log2+o(1) n factor, and near-optimality in the other complexity measure, up to an no(1) factor. The main
open question in this area is whether there exists an exact distance oracle with Õ(n) space and Õ(1) query
time.

In terms of the parameter m (the depth of the #r-division), our distance oracle uses space Õ(n1+1/m) and
has query time Õ(2m). The exponential dependence on m arises from the fact that Dist solves one point
location problem, but our point location routine narrows the number of Voronoi cells to two candidates, which
are resolved with two recursive calls to Dist at a higher level of the #r-divsion. Avoiding this exponential
dependence on m may require a completely different approach to the problem.

We highlight two more open problems. The construction time of our oracle is n3/2+o(1). It is an important
open question to compute an oracle that is optimal in space, query time, and construction time, up to no(1)

factors. See [15] for a recent specialized oracle with near-linear construction time. A different direction is
to find efficient distance oracles for graphs embeddable on surfaces of bounded genus, as we believe that the
distance oracle described in Section 4.5 can be improved.

Acknowledgements. We thank Danny Sleator and Bob Tarjan for discussing update/query time tradeoffs
for dynamic trees.
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A MSSP (Proof of Lemma 2.1)

Let us recall the setup. We have a planar graph H with a distinguished face f , and wish to answer distH(s, v)
queries w.r.t. any s on f and v ∈ V (H), and LCA queries w.r.t. any s on f and u, v ∈ V (H). Klein [45]
proved that if we move the source vertex s around f and record all the changes to the SSSP tree, every edge
in E(H) can be swapped into and out of the SSSP at most once, i.e., there are O(|H|) updates in total.

A.1 Adding Functionality to Link-Cut Trees MSSP

In this subsection, we explain how to augment the MSSP data structure of Klein [45, 11] to support the lowest
common ancestor query of Lemma 2.1. The MSSP data structure represents the shortest path trees rooted
at the vertices S of the distinguished face f using a partially persistent [25] link-cut tree [59]. The persistent
representation allows us to access the desired version of the tree with a constant-time overhead. Let Ts

denote the version of the shortest path tree rooted at s. The edges of the link-cut tree Ts are partitioned
into solid and dashed edges. Each maximal path of solid edges is called a solid path, which is represented
by a binary search tree, where the left-right order in the search tree corresponds to the top-bottom order in
the solid path (the root is top).

To locate the LCA x of u and v, we list the solid paths that intersect the path from u to the root of Ts,
and those that intersect the path from v to the root of Ts. Let P be the first solid path in both lists, and let
u′ and v′ be the nearest ancestors of u and v that lie on P . The LCA x is the leftmost of u′ and v′ in the
search tree representing P . Once we have found x, we can retrieve the edge ez outgoing from x and leading
to the subtree containing z ∈ {u, v} (when x ∕= z) in additional O(log n) time.

A.2 MSSP via Euler Tour Trees

Generally, if we maintain the SSSP tree as the source travels around f in a dynamic data structure with
update time tu and query time tq (for distance and LCA queries), the universal persistence method for RAM
data structures (see [21]) yields anMSSP data structure with space O(|H|tu) and query time O(tq log log |H|).
Thus, to establish Lemma 2.1 it suffices to design a dynamic data structure for the following:

InitTree(s%, T ): Initialize a directed spanning tree T from root s%. Edges have real-valued lengths.

Swap(v, p, l): Let p′ be the parent of v; p is not a descandant of v. Update T ← T \ {(p′, v)} ∪ {(p, v)},
where (p, v) has length l.

Dist(v): Return distT (s
%, v).

LCA(u, v): Return the LCA y of u and v and the first edges eu, ev on the paths from y to u and from y to
v, respectively.

Here s% will be a fixed root vertex embedded in f with a single, weight-zero, out-edge to the current
root on f . Changes to the SSSP tree are effected with O(|H|) Swap operations. Klein [45] used Sleator and
Tarjan’s Link-Cut trees [59], which support Swap, Dist, and LCA (among other operations) in O(log |T |)
time. We will use a souped-up version of Henzinger and King’s [38] Euler Tour trees. Let ET(T ) be an Euler
tour of T starting and ending at s%. The elements of ET(T ) are edges, and each edge of T appears twice in
ET(T ), once in each direction. Each edge in T points to its two occurrences in ET(T ).

Suppose Tante is the tree before a Swap operation and Tpost the tree afterward. It is easy to see that
ET(Tpost) can be derived from ET(Tante) by O(1) splits and concatenations, and renaming the two elements
corresponding to the swapped edge. See Figure 16. We will argue that the dynamic tree operations Swap,
Dist, LCA can be implemented using the following list operations.

InitList(L): Initialize a list L of weighted elements.

Split(e0): Element e0 appears in some list L. Split L immediately after element e0, resulting in two lists.
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Figure 16: The effect of Swap(d, i, ·) on the Euler Tour. The interval ((b, d), (d, e), · · · , (e, d), (d, b)) is spliced
out and inserted between (h, i) and (i, j), and the elements (b, d), (d, b) are renamed (i, d), (d, i).

Concatenate(L0, L1): Concatenate L0 and L1, resulting in one list.

Add(e0, e1, δ): Here e0, e1 are elements of the same list L. Add δ ∈ R to the weight of all elements in L
between e0 and e1 inclusive.

Weight(e0): Return the weight of e0.

RangeMin(e0, e1): Return the minimum-weight element between e0 and e1 inclusive. If there are multiple
minima, return the first one.

To implement Dist and LCA we will actually use the list data structure with different weight functions.
For Dist, the weight of an edge (x, y) in ET(T ) is distT (s

%, y). Thus, Dist is answered with a call to Weight.
Each Swap(v, p, l) is effected with O(1) Split and Concatenate operations, renaming the elements of the
swapped edge, as well as one Add(e0, e1, δ) operation. Here (e0, . . . , e1) is the sub-list corresponding to the
subtree rooted at v, and δ = distTpost

(s%, v) − distTante
(s%, v) is the change in distance to v, and hence all

descendants of v.
To handle LCA queries, we use the list data structure where the weight of (x, y) is the depth of y in

T , i.e., the distance from s% to y under the unit length function. Once again, a Swap is implemented
with O(1) Split and Concatenate operations, and one Add operation. Consider an LCA(u, v) query. Let
e0 = (pu, u), e1 = (pv, v) be the edges into u and v from their respective parents, and suppose that e0 appears
before e1 in ET(T ).14 A call to RangeMin(e0, e1) returns the first edge ê = (x, y) in the interval (e0, . . . , e1)
minimizing the depth of y. It follows that y is the LCA of u and v. Furthermore, by the tiebreaking rule, if
ê ∕= e0 then ê = eu is the (reversal of the) edge leading from y towards u. If ê = e0 then v is a descendant of
u and eu does not exist. To find ev, we retrieve the edge ẽ = (y, py) in ET(T ) from y to its parent and let ẽ′

be its predecessor in ET(T ). (Note that since s% has degree 1, ẽ, ẽ′ always exist.) We call RangeMin(e1, ẽ′).
Once again, by the tiebreaking rule it returns the first edge ev = (x′, y) incident to y in (e1, . . . , ẽ

′), which
is the (reversal of the) first edge on the path from y to v. See Figure 17.

We have reduced our dynamic tree problem to a dynamic weighted list problem. We now explain how
the dynamic list problem can be solved with balanced trees.

Fix a parameter κ ≥ 1 and let n be the total number of elements in all lists. We now argue that Split,
Concatenate, and Add can be implemented in O(κn1/κ) time and Weight and RangeMin take O(κ) time.
We store the elements of each list L at the leaves of a rooted tree T (L). It satisfies the following invariants.

I. Each node γ of T (L) stores a weight offset w(γ), a min-weight value min(γ) and a pointer ptr(γ). The
weight of (leaf) e ∈ L is the sum of the w(·)-values of its ancestors, including e. The sum of min(γ)
and the w(·)-values of all strict ancestors of γ is exactly the weight of the minimum weight descendant
of γ, and ptr(γ) points to this element.

14As we will see, it is easy to determine which comes first.
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Figure 17: An illustration of an LCA(e, j) query. We do a RangeMin query on the interval e0 =
(d, e), . . . , (i, j) = e1 and retrieve the edge ê = ee = (b, a) with weight depthT (a). We then find ẽ = (a, s%)
and its predecessor ẽ′ = (h, a). Another RangeMin query on the interval (i, j), . . . , (h, a) returns ej = (h, a).

II. Non-root internal nodes have between n1/κ and 3n1/κ children. In particular, the tree has height at
most κ.

III. Each internal node γ maintains an O(1)-time range minimum structure [4] over the vector of min(·)-
values of its children.

It is easy to show that Split and Concatenate can be implemented to satisfy Invariant II by destroy-
ing/rebuilding O(1) nodes at each level of T . Each costs O(n1/κ) time to update the information covered by
Invariants I and III. The total time is therefore O(κn1/κ). By Invariant I, a Weight(e0) query takes O(κ)
time to sum all of e0’s ancestors’ w(·)-values. Consider an Add(e0, e1, δ) or RangeMin(e0, e1) operation.
By Invariant II, the interval (e0, . . . , e1) is covered by O(κn1/κ) T -nodes, and furthermore, those nodes can
be arranged into less than 2κ contiguous intervals of siblings. Thus, an Add(e0, e1) can be implemented in
O(κn1/κ) time by adding δ to the w(·)-values of these nodes and rebuilding the affected range-min struc-
tures from Invariant III. A RangeMin is reduced to O(κ) range-minimum queries (from Invariant III) and
adjusting the answers by the w(·)-values of their ancestors (Invariant I). Each range-min query takes O(1)
time and there are O(κ) ancestors with relevant w(·)-values. Thus RangeMin takes O(κ) time.

We have shown that the dynamic tree operations necessary for an MSSP structure can be implemented
with a flexible tradeoff between update time and query time. Moreover, this lower bound meets the Pǎtraşcu-
Demaine lower bound [57]. We leave it as an open problem to implement the complete set of operations
supported by Link-Cut trees, with update time O(κn1/κ) and query time O(κ).
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