
Better Tradeoffs for Exact Distance Oracles in
Planar Graphs

Paweł Gawrychowski1 Shay Mozes2 Oren Weimann3

Christian Wulff-Nilsen4

1University of Wrocław, Poland

2Interdisciplinary Center Herzliya, Israel

2University of Haifa, Israel

University of Copenhagen, Denmark

January 7, 2018

Gawrychowski et al. (University of Wrocław, Poland, Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel, University of Copenhagen, Denmark)Distance Oracles in Planar Graphs January 7, 2018 1 / 16

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 2 / 16

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 2 / 16

Goal
17

Preprocess an n-vertex planar graph G = (V ,E) with nonnegative arc
lengths, so that given any u, v ∈ V we can compute d(u, v) efficiently.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 3 / 16

Goal
17

Preprocess an n-vertex planar graph G = (V ,E) with nonnegative arc
lengths, so that given any u, v ∈ V we can compute d(u, v) efficiently.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 3 / 16

Goal
17

u

v

Preprocess an n-vertex planar graph G = (V ,E) with nonnegative arc
lengths, so that given any u, v ∈ V we can compute d(u, v) efficiently.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 3 / 16

Goal
17

u

v

Preprocess an n-vertex planar graph G = (V ,E) with nonnegative arc
lengths, so that given any u, v ∈ V we can compute d(u, v) efficiently.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 3 / 16

Previous work
The trade-off between the query time Q and the size S of the structure:

[5]

[1]

[4]

[5]

[3, 2]

[7]
[6]

4/3 23/2 5/3

1/4
1/3

1/2

1

lgS/ lg n

lgQ/ lg n

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 4 / 16

Previous work
The trade-off between the query time Q and the size S of the structure:

[5]

[1]

[4]

[5]

[3, 2]

[7]
[6]

4/3 23/2 5/3

1/4
1/3

1/2

1

lgS/ lg n

lgQ/ lg n

Djidjev [5] and Arikati et al. [1] achieved Q = O(n2/S2).

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 4 / 16

Previous work
The trade-off between the query time Q and the size S of the structure:

[5]

[1]

[4]

[5]

[3, 2]

[7]
[6]

4/3 23/2 5/3

1/4
1/3

1/2

1

lgS/ lg n

lgQ/ lg n

Fakcharoenphol and Rao [6] show that S = Õ(n) and Q = Õ(
√

n) is
possible.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 4 / 16

Previous work
The trade-off between the query time Q and the size S of the structure:

[5]

[1]

[4]

[5]

[3, 2]

[7]
[6]

4/3 23/2 5/3

1/4
1/3

1/2

1

lgS/ lg n

lgQ/ lg n

This has been extended to Q = Õ(n/
√

S) for essentially the whole
range of S in a series of papers.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 4 / 16

Previous work
The trade-off between the query time Q and the size S of the structure:

[5]

[1]

[4]

[5]

[3, 2]

[7]
[6]

4/3 23/2 5/3

1/4
1/3

1/2

1

lgS/ lg n

lgQ/ lg n

Last year, Cohen-Addad, Dahlgaard, and Wulff-Nilsen [4] showed that
this is not optimal, and S = O(n5/3) with Q = O(log n) is possible.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 4 / 16

Previous work
The trade-off between the query time Q and the size S of the structure:

[5]

[1]

[4]

[5]

[3, 2]

[7]
[6]

4/3 23/2 5/3

1/4
1/3

1/2

1

lgS/ lg n

lgQ/ lg n

We improve this to S = O(n1.5) and Q = O(log n).

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 4 / 16

Main result

For any S ∈ [n,n2], we construct an oracle of size S that answers an
exact distance query in Q = Õ(max{1,n1.5/S}) time.

At the heart of the above construction is a structure with S = O(n1.5)
and Q = O(log n) that, similarly to the result of Cohen-Addad et al.,
uses the Voronoi diagram technique introduced by Cabello.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 5 / 16

Main result

For any S ∈ [n,n2], we construct an oracle of size S that answers an
exact distance query in Q = Õ(max{1,n1.5/S}) time.

At the heart of the above construction is a structure with S = O(n1.5)
and Q = O(log n) that, similarly to the result of Cohen-Addad et al.,
uses the Voronoi diagram technique introduced by Cabello.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 5 / 16

Basic recursion
Miller
There always exists a Jordan curve separator of size O(

√
n) such that

there are at most 2
3n nodes on its inside/outside.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 6 / 16

Basic recursion
Miller
There always exists a Jordan curve separator of size O(

√
n) such that

there are at most 2
3n nodes on its inside/outside.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 6 / 16

Basic recursion
Miller
There always exists a Jordan curve separator of size O(

√
n) such that

there are at most 2
3n nodes on its inside/outside.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 6 / 16

Basic recursion
Miller
There always exists a Jordan curve separator of size O(

√
n) such that

there are at most 2
3n nodes on its inside/outside.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 6 / 16

Basic recursion

Recursively build an exact distance oracle for the inside.
Recursively build an exact distance oracle for the outside.
Build a structure that that can be used to find the shortest path
from u to v that visits at least one node of the separator.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 7 / 16

Basic recursion

Recursively build an exact distance oracle for the inside.
Recursively build an exact distance oracle for the outside.
Build a structure that that can be used to find the shortest path
from u to v that visits at least one node of the separator.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 7 / 16

Basic recursion

Recursively build an exact distance oracle for the inside.
Recursively build an exact distance oracle for the outside.
Build a structure that that can be used to find the shortest path
from u to v that visits at least one node of the separator.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 7 / 16

Basic recursion

u

v

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 8 / 16

Basic recursion

u

v

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 8 / 16

Basic recursion

u

v

Shortest path can cross the separator multiple times!

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 8 / 16

Basic recursion

u

v

w

Find w ∈ Sep minimising dG(u,w) + din(w , v).

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 8 / 16

Single step

Consider the inside of graph and a fixed node u.

u

1 For technical reasons, triangulate.
2 For every w ∈ Sep define ω(w) = dG(u,w).
3 Construct the Voronoi diagram.
4 ... finding w reduces to point location!

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 9 / 16

Single step

Consider the inside of graph and a fixed node u.

u

1 For technical reasons, triangulate.
2 For every w ∈ Sep define ω(w) = dG(u,w).
3 Construct the Voronoi diagram.
4 ... finding w reduces to point location!

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 9 / 16

Single step

Consider the inside of graph and a fixed node u.

u

1 For technical reasons, triangulate.
2 For every w ∈ Sep define ω(w) = dG(u,w).
3 Construct the Voronoi diagram.
4 ... finding w reduces to point location!

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 9 / 16

Single step

Consider the inside of graph and a fixed node u.

u

1 For technical reasons, triangulate.
2 For every w ∈ Sep define ω(w) = dG(u,w).
3 Construct the Voronoi diagram.
4 ... finding w reduces to point location!

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 9 / 16

Single step

Consider the inside of graph and a fixed node u.

u

1 For technical reasons, triangulate.
2 For every w ∈ Sep define ω(w) = dG(u,w).
3 Construct the Voronoi diagram.
4 ... finding w reduces to point location!

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 9 / 16

Single step

Consider the inside of graph and a fixed node u.

u

1 For technical reasons, triangulate.
2 For every w ∈ Sep define ω(w) = dG(u,w).
3 Construct the Voronoi diagram.
4 ... finding w reduces to point location!

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 9 / 16

Single step

Consider the inside of graph and a fixed node u.

u

v

1 For technical reasons, triangulate.
2 For every w ∈ Sep define ω(w) = dG(u,w).
3 Construct the Voronoi diagram.
4 ... finding w reduces to point location!

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 9 / 16

Voronoi diagram

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 10 / 16

Voronoi diagram

Look at the dual and create many copies of the node corresponding to
the external face.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 10 / 16

Voronoi diagram

Because all sites are adjacent to the external face, the diagram can be
described by a tree on O(|Sep|) nodes.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 10 / 16

Point location

Any tree on k nodes contains a centroid node u such that every
component of T \ {u} is of size 2

3k .

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 11 / 16

Point location

Any tree on k nodes contains a centroid node u such that every
component of T \ {u} is of size 2

3k .

y0

y1

y2

si0

si1

si2

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 11 / 16

Point location

Any tree on k nodes contains a centroid node u such that every
component of T \ {u} is of size 2

3k .

y0

y1

y2

si0

si1

si2

p0

p1

p2

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 11 / 16

Point location

Any tree on k nodes contains a centroid node u such that every
component of T \ {u} is of size 2

3k .

y0

y1

y2

si0

si1

si2

p0

p1

p2

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 11 / 16

Point location

y0

y1

y2

si0

si1

si2

p0

p1

p2

v

check that v is on the left of p2,
check that v is on the right of p0,

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 12 / 16

Point location

y0

y1

y2

si0

si1

si2

p0

p1

p2

v

check that v is on the left of p2,
check that v is on the right of p0,

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 12 / 16

Point location

y0

y1

y2

si0

si1

si2

p0

p1

p2

v

pj plus the extra edge is a path in the shortest paths tree rooted at sij
that doesn’t depend on ω.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 12 / 16

Point location

By storing preorder numbers for the shortest paths tree rooted at
sij we can check if v is on the left/right of pij in constant time.
This allows us to detect in constant time the relevant smaller
component of the tree representing the Voronoi diagram that
needs to be recursively searched for the cell of v (if it is not the
cell of any sij).

Time: O(log n)
Space: |Sep| ·O(n) to store the shortest path tree for every

site,
n ·O(

√
n) to store the Voronoi diagram and its

centroid decomposition for every u,
O(n1.5) in total.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 13 / 16

Point location

By storing preorder numbers for the shortest paths tree rooted at
sij we can check if v is on the left/right of pij in constant time.
This allows us to detect in constant time the relevant smaller
component of the tree representing the Voronoi diagram that
needs to be recursively searched for the cell of v (if it is not the
cell of any sij).

Time: O(log n)
Space: |Sep| ·O(n) to store the shortest path tree for every

site,
n ·O(

√
n) to store the Voronoi diagram and its

centroid decomposition for every u,
O(n1.5) in total.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 13 / 16

Point location

By storing preorder numbers for the shortest paths tree rooted at
sij we can check if v is on the left/right of pij in constant time.
This allows us to detect in constant time the relevant smaller
component of the tree representing the Voronoi diagram that
needs to be recursively searched for the cell of v (if it is not the
cell of any sij).

Time: O(log n)
Space: |Sep| ·O(n) to store the shortest path tree for every

site,
n ·O(

√
n) to store the Voronoi diagram and its

centroid decomposition for every u,
O(n1.5) in total.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 13 / 16

Point location

By storing preorder numbers for the shortest paths tree rooted at
sij we can check if v is on the left/right of pij in constant time.
This allows us to detect in constant time the relevant smaller
component of the tree representing the Voronoi diagram that
needs to be recursively searched for the cell of v (if it is not the
cell of any sij).

Time: O(log n)
Space: |Sep| ·O(n) to store the shortest path tree for every

site,
n ·O(

√
n) to store the Voronoi diagram and its

centroid decomposition for every u,
O(n1.5) in total.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 13 / 16

Point location

By storing preorder numbers for the shortest paths tree rooted at
sij we can check if v is on the left/right of pij in constant time.
This allows us to detect in constant time the relevant smaller
component of the tree representing the Voronoi diagram that
needs to be recursively searched for the cell of v (if it is not the
cell of any sij).

Time: O(log n)
Space: |Sep| ·O(n) to store the shortest path tree for every

site,
n ·O(

√
n) to store the Voronoi diagram and its

centroid decomposition for every u,
O(n1.5) in total.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 13 / 16

Point location

By storing preorder numbers for the shortest paths tree rooted at
sij we can check if v is on the left/right of pij in constant time.
This allows us to detect in constant time the relevant smaller
component of the tree representing the Voronoi diagram that
needs to be recursively searched for the cell of v (if it is not the
cell of any sij).

Time: O(log n)
Space: |Sep| ·O(n) to store the shortest path tree for every

site,
n ·O(

√
n) to store the Voronoi diagram and its

centroid decomposition for every u,
O(n1.5) in total.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 13 / 16

Basic recursion, again

Recursively build an exact distance oracle for the inside.
Recursively build an exact distance oracle for the outside.
Build a structure that that can be used to find the shortest path
from u to v that visits at least one node of the separator.

The overall space is roughly S(n) = O(n1.5) + 2S(n/2), so O(n1.5)
overall. But the query would take O(log2 n)...

Can we decrease the number of subproblems where we use the point
location structure?

It is enough to query only the structure corresponding to the topmost
subproblem where u and v lie on different sides of the separator if we
choose the separators more carefully. The query time becomes
O(log n).

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 14 / 16

Basic recursion, again

Recursively build an exact distance oracle for the inside.
Recursively build an exact distance oracle for the outside.
Build a structure that that can be used to find the shortest path
from u to v that visits at least one node of the separator.

The overall space is roughly S(n) = O(n1.5) + 2S(n/2), so O(n1.5)
overall. But the query would take O(log2 n)...

Can we decrease the number of subproblems where we use the point
location structure?

It is enough to query only the structure corresponding to the topmost
subproblem where u and v lie on different sides of the separator if we
choose the separators more carefully. The query time becomes
O(log n).

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 14 / 16

Basic recursion, again

Recursively build an exact distance oracle for the inside.
Recursively build an exact distance oracle for the outside.
Build a structure that that can be used to find the shortest path
from u to v that visits at least one node of the separator.

The overall space is roughly S(n) = O(n1.5) + 2S(n/2), so O(n1.5)
overall. But the query would take O(log2 n)...

Can we decrease the number of subproblems where we use the point
location structure?

It is enough to query only the structure corresponding to the topmost
subproblem where u and v lie on different sides of the separator if we
choose the separators more carefully. The query time becomes
O(log n).

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 14 / 16

Basic recursion, again

Recursively build an exact distance oracle for the inside.
Recursively build an exact distance oracle for the outside.
Build a structure that that can be used to find the shortest path
from u to v that visits at least one node of the separator.

The overall space is roughly S(n) = O(n1.5) + 2S(n/2), so O(n1.5)
overall. But the query would take O(log2 n)...

Can we decrease the number of subproblems where we use the point
location structure?

It is enough to query only the structure corresponding to the topmost
subproblem where u and v lie on different sides of the separator if we
choose the separators more carefully. The query time becomes
O(log n).

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 14 / 16

Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 15 / 16

Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 15 / 16

Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 15 / 16

Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 15 / 16

Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.

u

v

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 15 / 16

Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.

u

v

u′

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 15 / 16

Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.
Replace the explicitly stored shortest paths trees with the MSSP
structure of Klein, except that we need to slightly extend the
interface of the link-cut trees used to maintain the current tree.

After some calculations...
Time: O(

√
r log2 n)

Space: O(n1.5/
√

r + n log n log(n/r))

Time can be decreased to O(
√

r log n log r) with an additional trick.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 15 / 16

Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.
Replace the explicitly stored shortest paths trees with the MSSP
structure of Klein, except that we need to slightly extend the
interface of the link-cut trees used to maintain the current tree.

After some calculations...
Time: O(

√
r log2 n)

Space: O(n1.5/
√

r + n log n log(n/r))

Time can be decreased to O(
√

r log n log r) with an additional trick.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 15 / 16

Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.
Replace the explicitly stored shortest paths trees with the MSSP
structure of Klein, except that we need to slightly extend the
interface of the link-cut trees used to maintain the current tree.

After some calculations...
Time: O(

√
r log2 n)

Space: O(n1.5/
√

r + n log n log(n/r))

Time can be decreased to O(
√

r log n log r) with an additional trick.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 15 / 16

Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.
Replace the explicitly stored shortest paths trees with the MSSP
structure of Klein, except that we need to slightly extend the
interface of the link-cut trees used to maintain the current tree.

After some calculations...
Time: O(

√
r log2 n)

Space: O(n1.5/
√

r + n log n log(n/r))

Time can be decreased to O(
√

r log n log r) with an additional trick.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 15 / 16

Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.
Replace the explicitly stored shortest paths trees with the MSSP
structure of Klein, except that we need to slightly extend the
interface of the link-cut trees used to maintain the current tree.

After some calculations...
Time: O(

√
r log2 n)

Space: O(n1.5/
√

r + n log n log(n/r))

Time can be decreased to O(
√

r log n log r) with an additional trick.

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 15 / 16

[5]

[1]

[4]

[5]

[3, 2]

[7]
[6]

4/3 23/2 5/3

1/4
1/3

1/2

1

lgS/ lg n

lgQ/ lg n

Questions?

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 16 / 16

