Better Tradeoffs for Exact Distance Oracles in Planar Graphs

Paweł Gawrychowski¹ Shay Mozes² Oren Weimann³ Christian Wulff-Nilsen⁴

¹University of Wrocław, Poland

²Interdisciplinary Center Herzliya, Israel

²University of Haifa, Israel

University of Copenhagen, Denmark

January 7, 2018

Preprocess an *n*-vertex planar graph G = (V, E) with nonnegative arc lengths, so that given any $u, v \in V$ we can compute d(u, v) efficiently.

Gawrychowski et al.

Preprocess an *n*-vertex planar graph G = (V, E) with nonnegative arc lengths, so that given any $u, v \in V$ we can compute d(u, v) efficiently.

Gawrychowski et al.

Preprocess an *n*-vertex planar graph G = (V, E) with nonnegative arc lengths, so that given any $u, v \in V$ we can compute d(u, v) efficiently.

Gawrychowski et al.

Preprocess an *n*-vertex planar graph G = (V, E) with nonnegative arc lengths, so that given any $u, v \in V$ we can compute d(u, v) efficiently.

Gawrychowski et al.

The trade-off between the query time Q and the size S of the structure:

The trade-off between the query time Q and the size S of the structure:

Djidjev [5] and Arikati et al. [1] achieved $Q = O(n^2/S^2)$.

The trade-off between the query time Q and the size S of the structure:

Fakcharoenphol and Rao [6] show that $S = \tilde{O}(n)$ and $Q = \tilde{O}(\sqrt{n})$ is possible.

The trade-off between the query time Q and the size S of the structure:

This has been extended to $Q = \tilde{O}(n/\sqrt{S})$ for essentially the whole range of *S* in a series of papers.

Gawrychowski et al.

The trade-off between the query time Q and the size S of the structure:

Last year, Cohen-Addad, Dahlgaard, and Wulff-Nilsen [4] showed that this is not optimal, and $S = O(n^{5/3})$ with $Q = O(\log n)$ is possible.

The trade-off between the query time Q and the size S of the structure:

We improve this to $S = O(n^{1.5})$ and $Q = O(\log n)$.

Gawrychowski et al.

Main result

For any $S \in [n, n^2]$, we construct an oracle of size S that answers an exact distance query in $Q = \tilde{O}(\max\{1, n^{1.5}/S\})$ time.

At the heart of the above construction is a structure with $S = O(n^{1.5})$ and $Q = O(\log n)$ that, similarly to the result of Cohen-Addad et al., uses the Voronoi diagram technique introduced by Cabello.

Main result

For any $S \in [n, n^2]$, we construct an oracle of size S that answers an exact distance query in $Q = \tilde{O}(\max\{1, n^{1.5}/S\})$ time.

At the heart of the above construction is a structure with $S = O(n^{1.5})$ and $Q = O(\log n)$ that, similarly to the result of Cohen-Addad et al., uses the Voronoi diagram technique introduced by Cabello.

Miller

Miller

Miller

Miller

- Recursively build an exact distance oracle for the inside.
- Recursively build an exact distance oracle for the outside.
- Build a structure that that can be used to find the shortest path from *u* to *v* that visits at least one node of the separator.

- Recursively build an exact distance oracle for the inside.
- Recursively build an exact distance oracle for the outside.
- Build a structure that that can be used to find the shortest path from *u* to *v* that visits at least one node of the separator.

- Recursively build an exact distance oracle for the inside.
- Recursively build an exact distance oracle for the outside.
- Build a structure that that can be used to find the shortest path from *u* to *v* that visits at least one node of the separator.

Shortest path can cross the separator multiple times!

Gawrychowski et al.

Find $w \in Sep$ minimising $d_G(u, w) + d_{in}(w, v)$.

Consider the inside of graph and a fixed node *u*.

- For technical reasons, triangulate.
- 3 For every $w \in Sep$ define $\omega(w) = d_G(u, w)$.
- Construct the Voronoi diagram.

u

... finding *w* reduces to point location!

Gawrychowski et al.

Consider the inside of graph and a fixed node *u*.

- For technical reasons, triangulate.
- 3 For every $w \in Sep$ define $\omega(w) = d_G(u, w)$.
- Construct the Voronoi diagram.
 - ... finding *w* reduces to point location!

Gawrychowski et al.

- For technical reasons, triangulate.
- 3 For every $w \in Sep$ define $\omega(w) = d_G(u, w)$.
- Onstruct the Voronoi diagram.
 - ... finding w reduces to point location!

- For technical reasons, triangulate.
- 3 For every $w \in Sep$ define $\omega(w) = d_G(u, w)$.
- Construct the Voronoi diagram.
 - ... finding w reduces to point location!

- For technical reasons, triangulate.
- 3 For every $w \in Sep$ define $\omega(w) = d_G(u, w)$.
- Onstruct the Voronoi diagram.
 - ... finding w reduces to point location!

Consider the inside of graph and a fixed node *u*.

- For technical reasons, triangulate.
- Solution For every $w \in Sep$ define $\omega(w) = d_G(u, w)$.
- Construct the Voronoi diagram.

... finding w reduces to point location!

- For technical reasons, triangulate.
- Solution For every $w \in Sep$ define $\omega(w) = d_G(u, w)$.
- Onstruct the Voronoi diagram.
- In the second second

Voronoi diagram

Voronoi diagram

Look at the dual and create many copies of the node corresponding to the external face.

Voronoi diagram

Because all sites are adjacent to the external face, the diagram can be described by a tree on O(|Sep|) nodes.

Gawrychowski et al.

• check that *v* is on the left of *p*₂,

• check that v is on the right of p_0 ,

- check that *v* is on the left of *p*₂,
- check that v is on the right of p_0 ,

 p_j plus the extra edge is a path in the shortest paths tree rooted at s_{i_j} that doesn't depend on ω .

- By storing preorder numbers for the shortest paths tree rooted at s_{i_i} we can check if v is on the left/right of p_{i_i} in constant time.
- This allows us to detect in constant time the relevant smaller

- Space: $|Sep| \cdot O(n)$ to store the shortest path tree for every
 - $n \cdot O(\sqrt{n})$ to store the Voronoi diagram and its centroid decomposition for every *u*,

• $O(n^{1.5})$ in total.

- By storing preorder numbers for the shortest paths tree rooted at s_{i_i} we can check if v is on the left/right of p_{i_i} in constant time.
- This allows us to detect in constant time the relevant smaller component of the tree representing the Voronoi diagram that needs to be recursively searched for the cell of v (if it is not the cell of any s_{i_i}).

- Space: $|Sep| \cdot O(n)$ to store the shortest path tree for every
 - $n \cdot O(\sqrt{n})$ to store the Voronoi diagram and its centroid decomposition for every *u*,

• $O(n^{1.5})$ in total.

- By storing preorder numbers for the shortest paths tree rooted at s_i, we can check if v is on the left/right of p_i, in constant time.
- This allows us to detect in constant time the relevant smaller component of the tree representing the Voronoi diagram that needs to be recursively searched for the cell of v (if it is not the cell of any s_i).

- By storing preorder numbers for the shortest paths tree rooted at s_i, we can check if v is on the left/right of p_i, in constant time.
- This allows us to detect in constant time the relevant smaller component of the tree representing the Voronoi diagram that needs to be recursively searched for the cell of v (if it is not the cell of any s_i).

- By storing preorder numbers for the shortest paths tree rooted at s_i, we can check if v is on the left/right of p_i, in constant time.
- This allows us to detect in constant time the relevant smaller component of the tree representing the Voronoi diagram that needs to be recursively searched for the cell of v (if it is not the cell of any s_i).

Time: $O(\log n)$

- Space:
- |Sep| · O(n) to store the shortest path tree for every site,
 - *n* · *O*(√*n*) to store the Voronoi diagram and its centroid decomposition for every *u*,

• $O(n^{1.5})$ in total.

- By storing preorder numbers for the shortest paths tree rooted at s_i, we can check if v is on the left/right of p_i, in constant time.
- This allows us to detect in constant time the relevant smaller component of the tree representing the Voronoi diagram that needs to be recursively searched for the cell of v (if it is not the cell of any s_i).

Time: $O(\log n)$

- Space:
- |Sep| · O(n) to store the shortest path tree for every site,
 - *n* · *O*(√*n*) to store the Voronoi diagram and its centroid decomposition for every *u*,
 - $O(n^{1.5})$ in total.

- Recursively build an exact distance oracle for the inside.
- Recursively build an exact distance oracle for the outside.
- Build a structure that that can be used to find the shortest path from *u* to *v* that visits at least one node of the separator.

The overall space is roughly $S(n) = O(n^{1.5}) + 2S(n/2)$, so $O(n^{1.5})$ overall. But the query would take $O(\log^2 n)$...

Can we decrease the number of subproblems where we use the point location structure?

It is enough to query only the structure corresponding to the topmost subproblem where u and v lie on different sides of the separator if we choose the separators more carefully. The query time becomes $O(\log n)$.

- Recursively build an exact distance oracle for the inside.
- Recursively build an exact distance oracle for the outside.
- Build a structure that that can be used to find the shortest path from u to v that visits at least one node of the separator.

The overall space is roughly $S(n) = O(n^{1.5}) + 2S(n/2)$, so $O(n^{1.5})$ overall. But the query would take $O(\log^2 n)$...

Can we decrease the number of subproblems where we use the point location structure?

It is enough to query only the structure corresponding to the topmost subproblem where u and v lie on different sides of the separator if we choose the separators more carefully. The query time becomes $O(\log n)$.

- Recursively build an exact distance oracle for the inside.
- Recursively build an exact distance oracle for the outside.
- Build a structure that that can be used to find the shortest path from u to v that visits at least one node of the separator.

The overall space is roughly $S(n) = O(n^{1.5}) + 2S(n/2)$, so $O(n^{1.5})$ overall. But the query would take $O(\log^2 n)$...

Can we decrease the number of subproblems where we use the point location structure?

It is enough to query only the structure corresponding to the topmost subproblem where u and v lie on different sides of the separator if we choose the separators more carefully. The query time becomes $O(\log n)$.

- Recursively build an exact distance oracle for the inside.
- Recursively build an exact distance oracle for the outside.
- Build a structure that that can be used to find the shortest path from *u* to *v* that visits at least one node of the separator.

The overall space is roughly $S(n) = O(n^{1.5}) + 2S(n/2)$, so $O(n^{1.5})$ overall. But the query would take $O(\log^2 n)$...

Can we decrease the number of subproblems where we use the point location structure?

It is enough to query only the structure corresponding to the topmost subproblem where u and v lie on different sides of the separator if we choose the separators more carefully. The query time becomes $O(\log n)$.

- Use *r*-divisions to decrease the number of stored Voronoi diagrams by a factor of \sqrt{r} . Then, we need to guess the boundary node u' in the region of u, there are \sqrt{r} possibilities.
- Replace the explicitly stored shortest paths trees with the MSSP structure of Klein, except that we need to slightly extend the interface of the link-cut trees used to maintain the current tree.

After some calculations..

Time: $O(\sqrt{r} \log^2 n)$ Space: $O(n^{1.5}/\sqrt{r} + n \log n \log(n/r))$

- Use *r*-divisions to decrease the number of stored Voronoi diagrams by a factor of \sqrt{r} . Then, we need to guess the boundary node u' in the region of u, there are \sqrt{r} possibilities.
- Replace the explicitly stored shortest paths trees with the MSSP structure of Klein, except that we need to slightly extend the interface of the link-cut trees used to maintain the current tree.

After some calculations...

Time: $O(\sqrt{r} \log^2 n)$

Space: $O(n^{1.5}/\sqrt{r} + n \log n \log(n/r))$

- Use *r*-divisions to decrease the number of stored Voronoi diagrams by a factor of \sqrt{r} . Then, we need to guess the boundary node u' in the region of u, there are \sqrt{r} possibilities.
- Replace the explicitly stored shortest paths trees with the MSSP structure of Klein, except that we need to slightly extend the interface of the link-cut trees used to maintain the current tree.

After some calculations...

Time: $O(\sqrt{r} \log^2 n)$ Space: $O(n^{1.5}/\sqrt{r} + n \log n \log(n/r))$

- Use *r*-divisions to decrease the number of stored Voronoi diagrams by a factor of \sqrt{r} . Then, we need to guess the boundary node u' in the region of u, there are \sqrt{r} possibilities.
- Replace the explicitly stored shortest paths trees with the MSSP structure of Klein, except that we need to slightly extend the interface of the link-cut trees used to maintain the current tree.

After some calculations...

Time: $O(\sqrt{r} \log^2 n)$ Space: $O(n^{1.5}/\sqrt{r} + n \log n \log(n/r))$

- Use *r*-divisions to decrease the number of stored Voronoi diagrams by a factor of \sqrt{r} . Then, we need to guess the boundary node u' in the region of u, there are \sqrt{r} possibilities.
- Replace the explicitly stored shortest paths trees with the MSSP structure of Klein, except that we need to slightly extend the interface of the link-cut trees used to maintain the current tree.

After some calculations...

Time: $O(\sqrt{r}\log^2 n)$ Space: $O(n^{1.5}/\sqrt{r} + n\log n\log(n/r))$

