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Goal
17

Preprocess an n-vertex planar graph G = (V ,E) with nonnegative arc
lengths, so that given any u, v ∈ V we can compute d(u, v) efficiently.
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Previous work
The trade-off between the query time Q and the size S of the structure:

[5]

[1]

[4]

[5]

[3, 2]

[7]
[6]

4/3 23/2 5/3

1/4
1/3

1/2

1

lgS/ lg n

lgQ/ lg n

Gawrychowski et al. Distance Oracles in Planar Graphs January 7, 2018 4 / 16



Previous work
The trade-off between the query time Q and the size S of the structure:

[5]

[1]

[4]

[5]

[3, 2]

[7]
[6]

4/3 23/2 5/3

1/4
1/3

1/2

1

lgS/ lg n

lgQ/ lg n

Djidjev [5] and Arikati et al. [1] achieved Q = O(n2/S2).
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Fakcharoenphol and Rao [6] show that S = Õ(n) and Q = Õ(
√

n) is
possible.
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This has been extended to Q = Õ(n/
√

S) for essentially the whole
range of S in a series of papers.
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Last year, Cohen-Addad, Dahlgaard, and Wulff-Nilsen [4] showed that
this is not optimal, and S = O(n5/3) with Q = O(log n) is possible.
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We improve this to S = O(n1.5) and Q = O(log n).
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Main result

For any S ∈ [n,n2], we construct an oracle of size S that answers an
exact distance query in Q = Õ(max{1,n1.5/S}) time.

At the heart of the above construction is a structure with S = O(n1.5)
and Q = O(log n) that, similarly to the result of Cohen-Addad et al.,
uses the Voronoi diagram technique introduced by Cabello.
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Basic recursion
Miller
There always exists a Jordan curve separator of size O(

√
n) such that

there are at most 2
3n nodes on its inside/outside.
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Basic recursion

Recursively build an exact distance oracle for the inside.
Recursively build an exact distance oracle for the outside.
Build a structure that that can be used to find the shortest path
from u to v that visits at least one node of the separator.
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Basic recursion

u

v
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Basic recursion

u

v

Shortest path can cross the separator multiple times!
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Basic recursion

u

v

w

Find w ∈ Sep minimising dG(u,w) + din(w , v).
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Single step

Consider the inside of graph and a fixed node u.

u

1 For technical reasons, triangulate.
2 For every w ∈ Sep define ω(w) = dG(u,w).
3 Construct the Voronoi diagram.
4 ... finding w reduces to point location!
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Voronoi diagram
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Voronoi diagram

Look at the dual and create many copies of the node corresponding to
the external face.
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Voronoi diagram

Because all sites are adjacent to the external face, the diagram can be
described by a tree on O(|Sep|) nodes.
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Point location

Any tree on k nodes contains a centroid node u such that every
component of T \ {u} is of size 2

3k .
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Point location
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v

check that v is on the left of p2,
check that v is on the right of p0,
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Point location

y0

y1

y2

si0

si1

si2

p0

p1

p2

v

pj plus the extra edge is a path in the shortest paths tree rooted at sij
that doesn’t depend on ω.
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Point location

By storing preorder numbers for the shortest paths tree rooted at
sij we can check if v is on the left/right of pij in constant time.
This allows us to detect in constant time the relevant smaller
component of the tree representing the Voronoi diagram that
needs to be recursively searched for the cell of v (if it is not the
cell of any sij ).

Time: O(log n)
Space: |Sep| ·O(n) to store the shortest path tree for every

site,
n ·O(

√
n) to store the Voronoi diagram and its

centroid decomposition for every u,
O(n1.5) in total.
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Basic recursion, again

Recursively build an exact distance oracle for the inside.
Recursively build an exact distance oracle for the outside.
Build a structure that that can be used to find the shortest path
from u to v that visits at least one node of the separator.

The overall space is roughly S(n) = O(n1.5) + 2S(n/2), so O(n1.5)
overall. But the query would take O(log2 n)...

Can we decrease the number of subproblems where we use the point
location structure?

It is enough to query only the structure corresponding to the topmost
subproblem where u and v lie on different sides of the separator if we
choose the separators more carefully. The query time becomes
O(log n).
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Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.
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Tradeoff

Use r -divisions to decrease the number of stored Voronoi
diagrams by a factor of

√
r . Then, we need to guess the boundary

node u′ in the region of u, there are
√

r possibilities.
Replace the explicitly stored shortest paths trees with the MSSP
structure of Klein, except that we need to slightly extend the
interface of the link-cut trees used to maintain the current tree.

After some calculations...
Time: O(

√
r log2 n)

Space: O(n1.5/
√

r + n log n log(n/r))

Time can be decreased to O(
√

r log n log r) with an additional trick.
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