
Better Tradeoffs for Exact Distance Oracles in Planar Graphs

Paweł Gawrychowski∗ Shay Mozes† Oren Weimann‡ Christian Wulff-Nilsen§

Abstract
We present an O(n1.5)-space distance oracle for directed
planar graphs that answers distance queries in O(log n) time.
Our oracle both significantly simplifies and significantly
improves the recent oracle of Cohen-Addad, Dahlgaard
and Wulff-Nilsen [FOCS 2017], which uses O(n5/3)-space
and answers queries in O(log n) time. We achieve this
by designing an elegant and efficient point location data
structure for Voronoi diagrams on planar graphs.

We further show a smooth tradeoff between space and
query-time. For any S ∈ [n, n2], we show an oracle of size
S that answers queries in Õ(max{1, n1.5/S}) time. This
new tradeoff is currently the best (up to polylogarithmic
factors) for the entire range of S and improves by polynomial
factors over all previously known tradeoffs for the range
S ∈ [n, n5/3].

1 Introduction
Computing shortest paths is a classical and fundamen-
tal algorithmic problem that has received considerable
attention from the research community for decades. A
natural data structure problem in this context is to com-
pactly store information about distances in a graph in
such a way that the distance between any pair of query
vertices can be computed efficiently. A data structure
that supports such queries is called a distance oracle.
Naturally, there is a tradeoff between the amount of
space consumed by a distance oracle and the time re-
quired by distance queries. Another quantity of interest
is the preprocessing time required for constructing the
oracle.

Distance oracles in planar graphs. It is natural
to consider the class of planar graphs in this setting since
planar graphs arise in many important applications in-
volving distances, most notably in navigation applica-
tions on road maps. Moreover, planar graphs exhibit
many structural properties that facilitate the design of
very efficient algorithms. Indeed, distance oracles for

∗University of Haifa, Department of Computer Science,
gawry@cs.uni.wroc.pl. Partially supported by the Israel Science
Foundation grant 794/13.

†IDC Herzliya, Efi Arazi School of Computer Science,
smozes@idc.ac.il. Partially supported by the Israel Science Foun-
dation grants 794/13 and 592/17.

‡University of Haifa, Department of Computer Science,
oren@cs.haifa.ac.il. Partially supported by the Israel Science
Foundation grants 794/13 and 592/17.

§University of Copenhagen (DIKU), Department of Computer
Science, koolooz@di.ku.dk.

planar graphs have been extensively studied. These or-
acles can be divided into two groups: exact distance
oracles which always output the correct distance, and
approximate distance oracles which allow a small stretch
in the distance output. For approximate distance ora-
cles, one can obtain near-linear space and near-constant
query-time at the cost of a (1+ 󰂃) stretch (for any fixed
󰂃) [16–18,29,32]. In this paper we focus on the tradeoff
between space and query-time of exact distance oracles
for planar graphs.

Exact distance oracles. The following results as
well as ours all hold for directed planar graphs with
real arc-lengths (but no negative length cycles). Djid-
jev [8] and Arikati et al. [1] obtained distance or-
acles with the following tradeoff between space and
query-time. For any S ∈ [n, n2], they show an or-
acle with space S and query-time of O(n2/S). For
S ∈ [n4/3, n1.5], Djidjev’s oracle achieves an improved
bound of O(n/

√
S). This bound (up to polylogarith-

mic factors) was extended to the entire range S ∈
[n, n2] in a number of papers [3, 6, 10, 24, 27]. Wulff-
Nilsen [31] showed how to achieve constant query-time
with O(n2(log log n)4/ log n) space, improving the above
tradeoff for close to quadratic space. Very recently,
Cohen-Addad, Dahlgaard, and Wulff-Nilsen [7], inspired
by the ideas of Cabello [4] made significant progress by
presenting an oracle with O(n5/3) space and O(log n)
query-time. This is the first oracle for planar graphs
that achieves truly subquadratic space and subpolyno-
mial query-time. They also showed that with S ≥ n1.5

space, a query-time of O(n2.5/S1.5 log n) is possible. To
summarize, prior to the results described in the current
paper the best known tradeoff was Õ(n/

√
S) query-

time for space S ∈ [n, n1.5], Õ(n2.5/S1.5) query-time
for space S ∈ [n1.5, n5/3], and O(log n) query-time for
S ∈ [n5/3, n2]. See Figure 1 for a summary of prior
results.

Our results and techniques. In this paper we
show a distance oracle with O(n1.5) space and O(log n)
query-time. More generally, for any r ≤ n we construct
a distance oracle with O(n1.5/

√
r + n log r log(n/r))

space and O(
√
r log n log r) query-time. This improves

the currently best known tradeoffs for essentially the
entire range of S: for space S ∈ [n, n1.5] we obtain
an oracle with Õ(n1.5/S) query-time, while for space

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

mailto:gawry@cs.uni.wroc.pl
mailto:smozes@idc.ac.il
mailto:oren@cs.haifa.ac.il
mailto:koolooz@di.ku.dk

S ∈ [n1.5, n2], our oracle has query-time of O(log n).
To explain our techniques we need the notion of an

additively weighted Voronoi diagram on a planar graph.
Let P = (V,E) be a directed planar graph, and let
S ⊆ V be a subset of the vertices, which are called
the sites of the Voronoi diagram. Each site u ∈ S has
a weight ω(u) ≥ 0 associated with it. The distance
between a site u ∈ S and a vertex v ∈ V , denoted by
d(u, v), is defined as ω(u) plus the length of the u-to-v
shortest path in P .

Definition 1.1. The additively weighted Voronoi dia-
gram of (S,ω) within P , denoted VD(S,ω), is a par-
tition of V into pairwise disjoint sets, one set Vor(u)
for each site u ∈ S. The set Vor(u), which is called
the Voronoi cell of u, contains all vertices in V that are
closer (w.r.t. d(·, ·)) to u than to any other site in S
(assuming that the distances are unique).

There is a dual representation VD∗(S,ω) of a Voronoi
diagram VD(S,ω) as a planar graph with O(|S|) vertices
and edges. See Section 2.

We obtain our results using point location in ad-
ditively weighted Voronoi diagrams. This approach is
also the one taken in [7]. However, our construction
is arguably simpler and more elegant than that of [7].
Our main technical contribution is a novel point location
data structure for Voronoi diagrams (see below). Given
this data structure, the description of the preprocessing
and query algorithms of our O(n1.5)-space oracle are
extremely simple and require a few lines each. In a nut-
shell, the construction is recursive, using simple cycle
separators. We store a Voronoi diagram for each node
u of the graph. The sites of this diagram are the vertices
of the separator and the weights are the distances from
u to each site. To get the distance from u to v it suffices
to locate the node v in the Voronoi diagram stored for
u using the point location data structure. Since the cy-
cle separator has O(

√
n) vertices, this yields an oracle

requiring O(n1.5) space.
The oracles for the tradeoff are built upon this

simple oracle by storing Voronoi diagrams for just a
subset of the nodes in a graph (the so called boundary
vertices of an r-division). This requires less space, but
the query-time increases. This is because a node u now
typically does not have a dedicated Voronoi diagram.
Therefore, to find the distance from u to v, we now we
need to locate v in multiple Voronoi diagrams stored for
nodes in the vicinity of u.

As we mentioned above, our main technical tool is
a data structure that supports point location queries in
Voronoi diagrams in O(log n) time. This is summarized
in the following theorem.

4/3 23/2 5/3

1/4

1/3

1/2

1

lgS/ lg n

lgQ/ lg n

[10]

[8]

[1][8]

[3, 6]

[7]

[24]

[Sec. 5]

Figure 1: Tradeoff of the Space [S] vs. the Query time
[Q] for different exact distance oracles on a doubly
logarithmic scale, ignoring constant and logarithmic
factors. Prior results are indicated by solid lines. The
new improved tradeoff is indicated by dashed lines.

Theorem 1.1. Let P be a directed planar graph with
real arc-lengths, and no negative length cycles. Let S
be a set of sites that lie on a single face of P . We can
preprocess P in O(|S| · |P |) time and O(|S| · |P |) space
so that, given the dual representation of any additively
weighted Voronoi diagram, V D∗(S,ω), we can extend
it in O(|S|) time and space to support the following
queries. Given a vertex v of P , report in O(log |S|)
time the site u such that v belongs to Vor(u).

A data structure for the same task was described in [7].
Our data structure is both significantly simpler and
more efficient. Roughly speaking, the idea is as follows.
We prove that VD∗(S,ω) is a ternary tree. This allows
us to use a straightforward centroid decomposition of
depth O(log |S|) for point location. To locate the
Voronoi cell Vor(u) containing a node v we traverse
the centroid decomposition. At any given level of
the decomposition we only need to know which of the
three subtrees in the next level contains Vor(u). To
this end we associate with each centroid node three
shortest paths. These paths partition the plane into
three parts, each containing exactly one of the three
subtrees. Identifying the desired subtree then boils
down to determining the position of v relative to these
three shortest paths. We show that this can be easily
done by examining the preorder number of v in the
shortest path trees rooted at three sites. In contrast,
the point location data structure of [7] relies on more

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

complicated and less elegant characterization of the
structure of Voronoi diagrams, and hence on slower and
more complicated data structures. Consequently, their
distance oracle is both slower and more complicated
than ours.

Roadmap. Theorem 1.1 is proved in Section 4
under a simplifying assumption that every site belongs
to its Voronoi cell (i.e., that there are no empty Voronoi
cells). This suffices to design our distance oracle with
space O(n1.5) and query-time O(log n), which is done in
Section 3, assuming that Theorem 1.1 holds. Section 5
describes the improved space to query-time tradeoff.
Finally, in Section 6 we describe how to remove the
simplifying assumption. Additional details and some
omitted proofs appear in the appendix.

2 Preliminaries
For completeness we review some basic relevant defini-
tions and facts concerning planar graph. See e.g., [19]
for a formal introduction of these concepts.

Reduced lengths. We assume arc lengths are
non-negative. There is a standard transformation [15]
that, given a graph with real arc lengths (but no
negative-length cycles), transforms the lengths to be
non-negative while preserving the shortest paths be-
tween any pair of vertices. This is done by computing
distances from an arbitrary vertex r, and shifting the
length of each arc e by the difference of distances of the
endpoints of e from r. It is easy to show that the result-
ing lengths are non-negative, and that shortest paths
are preserved. In planar graphs this transformation can
be performed in O(n log2 n/ log log n) time [25].

Plane graphs. A plane graph G is a graph
equipped with an embedding mapping vertices to points
on the plane and edges to curves on the place. The faces
of G are the maximal regions of the plane after removing
the images of the edges of G. The dual of a plane graph
G is another plane graph G∗ whose vertices correspond
to faces of G and vice versa. Two vertices in G∗ are
joined by an edge if and only if the corresponding faces
of G are separated by an edge of G. Thus, every edge
e in G has a corresponding dual edge e∗ in G. For any
face f of G, let f∗ denote the corresponding vertex of
G∗. Similarly, for any vertex v of G, let v∗ denote the
corresponding face of G∗. Each dual edge e∗ is embed-
ded so that it crosses the corresponding primal edge e
exactly once, and intersects no other primal edge. For
an arc (directed edge) e = uv, we call u the tail of e
and v the head of e. An arc uv emanates left (right) of
a simple path P if there exist two arcs e1, e2 in P , such
that u is the head of e1 and the tail of e2, and e appears
between e1 and e2 in the clockwise (counterclockwise)
order of arcs incident to u.

We assume that shortest paths are unique. This
can be ensured in linear time by a random perturbation
of the edge lengths [23, 26] or deterministically in near-
linear time using lexicographic comparisons [5, 13]. It
will also be convenient to assume that graphs are
strongly connected; if not, we can always triangulate
them (i.e., add edges while respecting the embedding,
so that each face has size 3) with bidirected edges of
infinite length.

Separators in planar graphs. Given a planar
embedded graph G, a Jordan curve separator is a simple
closed curve in the plane that intersects the embedding
of G only at vertices. Miller [22] showed that any
n-vertex planar embedded graph has a Jordan curve
separator of size O(

√
n) such that the number of vertices

on each side of the curve is at most 2n/3. In fact,
the balance of 2/3 can be achieved with respect to any
weight function on the vertices, faces and edges of the
graph rather than just the uniform weight function on
the vertices. Miller also showed that the vertices of the
separator ordered along the curve can be computed in
O(n) time.

An r-division [11,21] of a planar graph G, for some
r ∈ (1, n), is a partition of the edges of G into parts.
The subgraphs of G induces by the parts of the partition
are called the pieces of the r-division. Each piece in an
r-division has at most r vertices and O(

√
r) boundary

vertices (vertices shared with other pieces). There is an
O(n) time algorithm that computes an r-division of a
planar graph with the additional property that, in every
piece, the number of faces of the piece that are not faces
of the original graph G is constant [21, 30] (such faces
are called holes).

Voronoi diagrams on planar graphs. Recall
the definition of additively weighted Voronoi diagrams
VD(S,ω) from the introduction. We write just VD
when the particular S and ω are not important, or when
they are clear from the context.

We restrict our discussion to the case where the
sites S lie on a single face, denoted by h. We work with
a dual representation of VD(S,ω), denoted VD∗(S,ω)
or simply VD∗. Let P ∗ be the planar dual of a planar
graph P . Let VD∗

0 be the subgraph of P ∗ consisting
of the duals of edges uv of P such that u and v
are in different Voronoi cells. Let VD∗

1 be the graph
obtained from VD∗

0 by contracting edges incident to
degree-2 vertices one after another until no degree-2
vertices remain. The vertices of VD∗

1 are called Voronoi
vertices. A Voronoi vertex f∗ is dual to a face f such
that the nodes incident to f belong to at least three
different Voronoi cells. In particular, h∗ (i.e., the dual
vertex corresponding to the face h to which all the sites
are incident) is a Voronoi vertex. Each face of VD∗

1

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

corresponds to a cell Vor(vi). Hence there are at most
|S| faces in VD∗

1. By sparsity of planar graphs, and by
the fact that the minimum degree of a vertex in VD∗

1

is 3, the complexity (i.e., the number of vertices, edges
and faces) of VD∗

1 is O(|S|). Finally, we define VD∗

to be the graph obtained from VD∗
1 after replacing the

node h∗ by multiple copies, one for each occurrence of h
as an endpoint of an edge in VD∗

1. The original Voronoi
vertices are called real. See Figure 2.

Given a planar graph P with r nodes and a set S
of b sites on a single face h, one can compute any ad-
ditively weighted Voronoi diagram VD(S,ω) naively in
O(r) time by adding an artificial source node, connect-
ing it to every site s with an edge of length ω(s), and
computing the shortest path tree using [14]. The dual
representation VD∗(S,ω) can then be obtained in addi-
tional O(r) time by following the constructive descrip-
tion above. There are more efficient algorithms [4, 12]
when one wants to construct many different additively
weighted Voronoi diagrams for the same set of sites S.
The basic approach is to invest superlinear time in pre-
processing P , but then construct VD(S,ω) for multiple
choices of ω in Õ(|S|) time each (instead of O(r)). Since
the focus of this paper is on the tradeoff between space
and query-time, and not on the preprocessing time, the
particular algorithm used for constructing the Voronoi
diagrams is less important.

3 The Oracle
In this section we describe our distance oracle assuming
Theorem 1.1. Let G be a directed planar graph with
non-negative arc-lengths. At a high level, our oracle
is based on a recursive decomposition of G into pieces
using Jordan curve separators. Each piece R = (V,E)
is a subgraph of G. The boundary vertices of R are
vertices of R that are incident (in G) to edges not in
R. The holes of R are faces of R that are not faces of
G. Note that every boundary vertex of R is incident to
some hole of P .

A piece R = (V,E) is decomposed into two smaller
pieces on the next level of the decomposition as fol-
lows. We choose a Jordan curve separator C =
(v1, v2, . . . , vk), where k = O(

󰁳
|V |). This separates

the plane into two parts and defines two smaller pieces
P and Q corresponding to, respectively, the subgraphs
of R inside and the outside of C. Every edge of R is as-
signed to either P or Q. Thus, on every level of the re-
cursive decomposition into pieces, an edge of G appears
in exactly one piece. The separators in levels congruent
to 0 modulo 3 are chosen to balance the total number of
nodes (i.e., finding a separator with respect to a weight
function assigning uniform weight to all nodes). The
separators in levels congruent to 1 modulo 3 are chosen

to balance the number of boundary nodes (i.e., assigning
uniform weight to all boundary nodes and zero weight to
all other nodes). The separators in levels congruent to 2
modulo 3 are chosen to balance the number of holes (i.e.,
assigning uniform weight just to holes, and zero weight
to all other faces). This guarantees that the number of
holes in each piece is constant, and that the number of
vertices and boundary vertices decrease exponentially
along the recursion. In particular, the depth of the de-
composition is logarithmic in |V |. These properties are
summarized in the following lemma whose proof is in
the appendix.

Lemma 3.1. Choosing the separators as described above
guarantees that (i) each piece has O(1) holes, (ii) the
number of nodes in a piece on the ℓ-th level in the
decomposition is O(n/c

ℓ/3
1), for some constant c1 > 1,

(iii) the number of boundary nodes in a piece on the ℓ-
th level in the decomposition is O(

√
n/c

ℓ/3
2), for some

constant c2 > 1.

Preprocessing. We compute a recursive decom-
position of G using Jordan separators as described
above. For each piece R = (VR, ER) in the recursive
decomposition we perform the following preprocessing.
We compute and store, for each boundary node v of
R, the shortest path tree TR

v in R rooted at v. Ad-
ditionally, we store for every node u of R the distance
from v to u and the distance from u to v in the whole
G. For a non-terminal piece R, let P = (VP , EP) and
Q = (VQ, EQ) be the two pieces into which R is sep-
arated. For every node u ∈ VQ and for every hole h
of P we store an additively weighted Voronoi diagram
VD(Sh,ω) for P , where the set of sites Sh is the set of
boundary nodes of P incident to the hole h, and the ad-
ditive weights ω correspond to the distances in G from
u to each site in Sh. We enhance each Voronoi diagram
with the point location data structure of Theorem 1.1.
We also store the same information with the roles of Q
and P exchanged.

Query. To compute the distance from u to v, we
traverse the recursive decomposition starting from the
piece that corresponds to the whole initial graph G.
Suppose that the current piece is R = (V,E), which is
partitioned into P and Q with a Jordan curve separator
C. If v ∈ C then, because the nodes of C are boundary
nodes in both P and Q, we return the additive weight
ω(v) in the Voronoi diagram stored for u, which is equal
to the distance from u to v in G. Similarly, if u ∈ C
then we retrieve and return the distance from u to v
in the whole G. The remaining case is that both u
and v belong to a unique piece P or Q. If both u and
v belong to the same piece on the lower level of the
decomposition, we continue to that piece. Otherwise,

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 2: A planar graph (black edges) with four sites on the infinite face together with the dual Voronoi diagram
VD∗ (in blue). The sites are shown together with their corresponding shortest path trees (in turquoise, red,
yellow, and green). Two of the Voronoi vertices (in blue) are real.

assume without loss of generality that u ∈ Q and v ∈ P .
Then, the shortest path from u to v must go through a
boundary node vi of P . We therefore perform a point
location query for v in each of the Voronoi diagrams
stored for u and for some hole h of P . Let s1, . . . , sg be
the sites returned by these queries, where g = O(1) is
the number of holes of P . The distance in G from u to
si is ω(si), and the distance in P from si to v is stored
in TP

si . We compute the sum of these two terms for each
si, and return the minimum sum computed.

Analysis. First note that the query-time is
O(log n) since, at each step of the traversal, we either
descend to a smaller piece in O(1) time or terminate
after having found the desired distance in O(log n) time
by O(1) queries to a point location structure.

Next, we analyze the space. Consider a piece R
with O(1) holes. Let n(R) and b(R) denote the number
of nodes and boundary nodes of R, respectively. The
trees TR

u and the stored distances in G require a total of
O(b(R) ·n(R)) space. Let R be further decomposed into
pieces P and Q. We bound the space used by all Voronoi
diagrams created for R. Recall that every Voronoi
diagram and point location structure corresponds to a
node u of P and a hole of Q, or vice versa. The size
of each additively weighted Voronoi diagram stored for
a node of P is O(b(Q)), so O(n(P) · b(Q)) for all nodes
of P . The additional space required by Theorem 1.1 is
also O(n(P) · b(Q)). Finally, for every node of R we

record if it belongs to the Jordan curve separator used
to further divide R, and, if not, to which of the resulting
two pieces it belongs. This takes only O(n(R)) space.
The total space for each piece R is thus O(n(R) · b(R))
plus O(n(P) · b(Q) + n(Q) · b(P)) if R is decomposed
into P and Q.

We need to bound the sum of O(n(R) · b(R)) over
all the pieces R. Consider all pieces R1, R2, . . . , Rs on
the same level ℓ in the decomposition. Because these
pieces are edge-disjoint,

󰁓
i n(Ri) = O(n). Addition-

ally, b(Ri) = O(
√
n/cℓ) for any i, where c > 1, so󰁓

i O(n(Ri) · b(Ri)) = O(n1.5/cℓ). Summing over all
levels ℓ, this is O(n1.5). The sum of O(n(P) · b(Q) +
n(Q) · b(P)) over all pieces R that are decomposed into
P and Q can be analysed with the same reasoning to
obtain that the total size of the oracle is O(n1.5).

Finally, we analyze the preprocessing time. For
each piece R, the preprocessing of Theorem 1.1 takes
O(n(R) · b(R)). Then, we compute O(n(R)) different
additively weighted Voronoi diagrams for R. Each
diagram is built in O(n(R)) time, and its representation
is extended in O(b(R)) time to support point location
with Theorem 1.1. The total preprocessing time for R
is hence O((n(R))2), which sums up to O(n2) overall
by Lemma 3.1. We also need to compute the distances
between pairs of vertices in G. This can be also done in
O(n2) total time by computing the shortest path tree
rooted at each vertex in O(n) [14].

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

4 Point Location in Voronoi Diagrams
In this section we prove Theorem 1.1. Let P be a piece
(i.e., a planar graph), and S be a set of sites that lie on
a single face (hole) h of P .

Our goal is to preprocess P once in O(|P ||S|) time
and space, and then, given any additively weighted
Voronoi diagram VD∗(S,ω) (denoted VD∗ for short),
preprocess it in O(|S|) time and space so as to answer
point location queries in O(log |S|) time.

We assume that the hole h incident to all nodes in
S is the external face. We assume that all nodes of
P ∗, except for h∗, have degree 3. This can be achieved
by triangulating P with infinite length edges. We also
assume that all nodes incident to the external face
belong to S and denote them s1, s2, . . . , sb, according
to their clockwise order on h. We assume b ≥ 3 (for any
constant b point location is trivial).

Recall that for a site u and a vertex v we define
d(u, v) as ω(u) plus the length of the u-to-v shortest
path in P . We further assume that no Voronoi cell
is empty. That is, we assume that, for every pair
of distinct sites u, u′ ∈ S, ω(u) < d(u′, u). If this
assumption does not hold, let S′ be the subset of the
sites whose Voronoi cells are non empty. We can embed
inside the hole h infinite length edges between every pair
of consecutive sites in S′, and then again triangulate
with infinite length edges. This results in a new face
h′ whose vertices are the sites in S′. Replacing S with
S′ and h with h′ enforces the assumption. Note that
since this transformation changes P , it is not suitable
when working with Voronoi diagrams constructed by
algorithms that preprocess P , such as the ones in [4,12]
mentioned in Section 2. The transformation, however, is
suitable, when computing Voronoi diagrams naively, as
we do in this work. In Section 6 we prove Theorem 1.1
without this assumption. As we argued above, this
generalization is not required for the distance oracles
in this paper. It makes the theorem slightly stronger,
but also complicates the proof.

4.1 Preprocessing P The preprocessing for P con-
sists of computing shortest path trees Tv for every
boundary node v ∈ S, decorated with some additional
information which we describe next. We stress that the
additional information does not depend on any weights
ω (which are not available at preprocessing time).

Let Ti be the shortest path tree in P rooted at si.
For a technical reason that will become clear soon, we
add some artificial vertices to Ti. For each face f of
P other than h, we add an artificial vertex vf whose
embedding coincides with the embedding of the dual
vertex f∗. Let yf be closest vertex to si in P that is
incident to f . We add a zero length arc yfvf to Ti. Note

that vf is a leaf of Ti. Let pi,f be the shortest si-to-vf
path in Ti. We say that a vertex v of Ti is to the right
(left) of pi,f if the shortest si-to-v path emanates right
(left) of pi,f . Note that, since vf is a leaf of Ti, v is either
right of pi,f , left of pi,f , or a vertex of pi,f ; the goal
of adding the artificial vertices vf is to guarantee that
these are the only options. The following proposition
can be easily obtained using preorder numbers and a
lowest common ancestor (LCA) data structure [2] for
Ti.

Proposition 4.1. There is a data structure with
O(|P |) preprocessing time that can decide in O(1) time
if for a given query vertex v and query face f , v is right
of pi,f , left of pi,f , or a vertex of pi,f .

Proof. We assign to each vertex u its preorder number
in a depth-first-search of Ti, where the descendants of
u are visited according to their clockwise order in the
embedding, starting from the parent edge of u in Ti.

A vertex u is a vertex of pi,f if and only if u =
LCA(u, vf). If u ∕= LCA(u, vf) then, by definition of
preorder, u is right (left) of pi,f if the preorder number
of u is lower (greater) than that of vf . □

We compute and store the shortest path trees Ti

rooted at each site si, along with preorder numbers and
LCA data structures required by Proposition 4.1. This
requires preprocessing time O(|P ||S|) by computing
each Ti in O(|P |) time [14], and can be stored in
O(|P ||S|) space.

4.2 Handling a Voronoi diagram VD∗(S,ω) We
now describe how to handle an additively weighted
(dual) Voronoi diagram VD∗ = VD∗(S,ω). This
consists of a preprocessing stage and a query algorithm.
The description in this section relies on the fact that,
under the assumption that each site is in its own Voronoi
cell, VD∗ is a tree.

Lemma 4.1. VD∗ is a tree.

Proof. Suppose that VD∗ contains a cycle C∗. Since
the degree of each copy of h∗ is one, the cycle does
not contain h∗. Therefore, since all the sites are on
the boundary of the hole h, the vertices of P enclosed
by C∗ are in a Voronoi cell that contains no site, a
contradiction.

To prove that VD∗ is connected, observe that in
VD∗

1, every Voronoi cell is a face (cycle) going through
h∗. Let C∗ denote this cycle. If C∗ is disconnected in
VD∗ then, in VD∗

1, C∗ must visit h∗ at least twice. But
this implies that the cell corresponding to C∗ contains
more than a single site, contradicting our assumption.
Thus, the boundary of every Voronoi cell is a connected

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

subgraph of VD∗. Since the boundaries of the cell of
si and the cell of si+1 both contain the dual of the
edge sisi+1, it follows that the entire modified VD∗ is
connected. □

We briefly describe the intuition behind the design
of the point location data structure. To find the Voronoi
cell Vor(s) to which a query vertex v belongs, it suffices
to identify an edge e∗ of VD∗ that is adjacent to
Vor(s). Given e∗ we can simply check which of its two
adjacent cells contains v by comparing the distances
from the corresponding two sites to v. Our point
location structure is based on a centroid decomposition
of VD∗ into connected subtrees, and on the ability to
determine, in constant time, which of the subtrees is the
one that contains the desired edge e∗.

Preprocessing. The preprocessing consists of just
computing a centroid decomposition of VD∗. A centroid
of an n-node tree T is a node u ∈ T such that removing u
and replacing it with copies, one for each edge incident
to u, results in a set of trees, each with at most n+1

2
edges. A centroid always exists in a tree with more than
one edge. In every step of the centroid decomposition
of VD∗, we work with a connected subtree T ∗ of VD∗.
Recall that there are no nodes of degree 2 in VD∗. If
there are no nodes of degree 3, then T ∗ consists of a
single edge of VD∗, and the decomposition terminates.
Otherwise, we choose a centroid f∗, and partition T ∗

into the three subtrees T ∗
0 , T

∗
1 , T

∗
2 obtained by splitting

f∗ into three copies, one for each edge incident to f∗.
Clearly, the depth of the recursive decomposition is
O(log |S|). The decomposition can computed in O(|S|)
time and be represented as a ternary tree, which we call
the decomposition tree, in O(|S|) space.

Point location query. We first describe the struc-
ture that gives rise to the efficient query, and only then
describe the query algorithm. Consider a centroid f∗

used at some step of the decomposition. Let si0 , si1 , si2
denote the three sites adjacent to f∗, listed in clockwise
order along h. Let f be the face of P whose dual is f∗.
Let y0, y1, y2 be the three vertices of f , such that yj is
the vertex of f in Vor(sij). Let e∗j be the edge of V D∗

incident to f∗ that is on the boundary of the Voronoi
cells of sij and sij−1 (indices are modulo 3). Let T ∗

j be
the subtree of T that contains e∗j . Let pj denote the
shortest sj-to-vf path. Note that the vertex preceding
vf in pj is yj . See Figure 3 (right).

Lemma 4.2. Let s be the site such that v ∈ Vor(s). If
T ∗ contains all the edges of VD∗ incident to Vor(s), and
if v is closer to site sij than to sites sij−1

, sij+1
(indices

are modulo 3), then one of the following is true:

• s = sij ,

• v is to the right of pj and all the boundary edges of
Vor(s) are contained in T ∗

j ,

• v is to the left of pj and all the boundary edges of
Vor(s) are contained in T ∗

j+1.

Proof. In the following, let rev(q) denote the reverse of
a path q. See Figure 3 for an illustration of the proof.

Let p be the shortest path from sij to v. If p
is a subpath of pj , then s = sij . Assume that p
emanates right of pj (the other case is symmetric). First
observe that the path consisting of the concatenation
pj ◦ rev(pj−1) intersects VD∗ only at f∗. This is
because, apart from the artificial arc yjvf , each shortest
path pj is entirely contained in the Voronoi cell of sj .
Therefore, none of the subtrees T ∗

j′ contains an edge
dual to pj ◦ rev(pj−1). Since the path pj ◦ rev(pj−1)
starts on h, ends on h and contains no other vertices of
h, it partitions the embedding into two subgraphs, one
to the right of pj ◦ rev(pj−1), and the other to its left.
Since e∗j is the only edge of T ∗ that emanates right of
pj◦rev(pj−1), the only edges of T ∗ in the right subgraph
are those of T ∗

j .
Next observe that p does not cross pj (since shortest

paths from the same source do not cross), and does not
cross pj−1 (since v is closer to sij than to sij−1). Since
we assumed p emanates right of pj , the only edges of
T ∗ whose duals belong to p are edges of T ∗

j . Consider
the last edge e∗ of p that is not strictly in Vor(s). If e∗
does not exist then p consists only of edges of Vor(sij),
so s = sij . If e∗ does exist then it is incident to Vor(s).
By the statement of the lemma all edges of VD∗ incident
to Vor(s) are in T ∗. Therefore, by the discussion above,
e∗ ∈ T ∗

j . We have established that some edge of VD∗

incident to Vor(s) is in T ∗
j . It remains to show that all

such edges are in T ∗
j . The only two Voronoi cells that

are partitioned by the path pj ◦ rev(pj−1) are Vor(sij)
and Vor(sij−1). Since v is closer to sij than to sij−1 ,
s ∕= sij−1

. Hence either s = sij , or all the edges of VD∗

incident to Vor(s) are in T ∗
j . □

We can finally state and analyze the query algo-
rithm. We have already argued that, to locate the
Voronoi cell Vor(s) to which v belongs, it suffices to
show how to find an edge e∗ incident to Vor(s). We
start with the tree T ∗ = VD∗ which trivially contains
all edges of VD∗ incident to Vor(s). We use the no-
tation from Lemma 4.2. Note that we can determine
in constant time which of the three sites sij is closest
to v by explicitly comparing the distances stored in the
shortest path trees Tsij

. We use Proposition 4.1 to de-
termine, in constant time, whether v is right of pj , left
of pj , or a node on pj . In the latter case we can im-
mediately infer that v is in the Voronoi cell of sij . In

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

f ⇤

si0

si1

si2

y0

y1

y2

f ⇤

y0

y1

y2

si0

si1

si2

p0

p1

p2
e1

e2

e0

Figure 3: Illustration of the setting and proof of Lemma 4.2. Left: A decomposition of VD∗ (shown in blue) by
a centroid f∗ into three subtrees, and a corresponding partition of P into three regions delimited by the paths pi
(shown in red, yellow, and turquoise). Right: a schematic illustration of the same scenario.

the former two cases we recurse on the appropriate sub-
tree. By Lemma 4.2, either v is in the Voronoi cell of
sij or the subtree we recurse on contains all the edges
of VD∗ incident to Vor(s). The total time is dominated
by the depth of the centroid decomposition, which is
O(log |S|).

5 The Tradeoff
In this section we generalize the construction presented
in Section 3 to yield a smooth tradeoff between space
and query-time. In the following, an MSSP data
structure refers to Klein’s multiple-source shortest paths
data structure [5,20]. This data structure represents all
the shortest path trees rooted at the vertices of a single
face f in a planar graph using a persistent dynamic
tree. It can be constructed in O(n log n) time, requires
O(n log n) space, and can report any distance between a
vertex of f and any other vertex in the graph in O(log n)
time.

5.1 Preprocessing The data structure achieving the
tradeoff is recursive using Jordan curve separators as
described in Section 3; at each recursive level we
have a piece R = (VR, ER), which is decomposed
by a Jordan curve separator C into P = (VP , EP)
and Q = (VQ, EQ), where C is chosen to balance
the number of nodes, the number of boundary nodes,
or the number of holes, depending on the remainder
modulo 3 of the recursive level. The main difference
compared to the oracle of Section 3 is that we do not

store an additively weighted Voronoi diagram of P for
each node u in Q (and similarly we do not store a
diagram of Q for each node of P). Instead, we use
an r-division to decrease the number of stored Voronoi
diagrams by a factor of

√
r. Additionally, we stop the

decomposition when the number of vertices drops below
r. More specifically, for every non-terminal piece R in
the recursive decomposition such that n(R) > r that is
decomposed into P and Q with a Jordan curve separator
C, we store the following:

1. For each hole h of P , an MSSP data structure cap-
turing the distances in P from all the boundary
nodes of P incident to h to all nodes of P . The
MSSP data structure is augmented with predeces-
sor and preorder information (see below).

2. An r-division for Q, denoted DQ, with O(1) MSSP
data structures for each piece of DQ, one for each
hole of the piece. All the boundary nodes of Q
(in particular, all nodes of C) are considered as
boundary nodes of DQ (see below).

3. For each boundary node u of DQ, and for each
boundary node v of P , the distance dG(u, v) from
u to v in G, and also the distance dG(v, u) from v
to u in G.

4. For each boundary node u of DQ, and for each hole
h of P , an additively weighted Voronoi diagram
VD(Sh,ω) for P , where the set of sites Sh is the set
of boundary nodes of P incident to the hole h, and

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

the additive weights ω correspond to the distances
in G from u to each site in Sh. We enhance
each Voronoi diagram with the point location data
structure of Theorem 1.1.

We also store the same information with the roles
of Q and P exchanged. For a terminal piece R, i.e.
when n(R) ≤ r, instead of further subdividing R we
revert to the oracle of Fakcharoenphol and Rao [10],
which needs O(n(R) log n(R)) space, answers a query
in O(

󰁳
n(R) log2 n(R)) time, and can be constructed in

O(n(R) log2 n(R)) time. We also construct an r-division
DR for R together with the MSSP data structures. The
boundary nodes of R are considered as boundary nodes
of DR. For each boundary node u ∈ ∂DR, and for each
boundary node v ∈ R, we store the distance dG(u, v)
from u to v in G and, for each hole of R, an enhanced
additively weighted Voronoi diagram VD(Sh,ω) for R,
where the set of sites Sh is the set of boundary nodes
of R incident to the hole h, and the additive weights ω
correspond to the distances in G from u to each site in
Sh.

The MSSP data structure in item 1 is a modification
of the standard MSSP of Klein [20], where we change
the interface of the persistent dynamic tree representing
the shortest path tree rooted at the boundary nodes of
R incident to h, as stated by the following lemma whose
proof is in the appendix.

Lemma 5.1. Consider a directed planar embedded
graph on n nodes with non-negative arc-lengths, and let
v1, v2, . . . , vs be the nodes on the boundary of its infinite
face, in clockwise order. Then, in O(n log n) time and
space, we can construct a representation of all short-
est path trees Ti rooted at vi, that allow answering the
following queries in O(log n) time:

• for a vertex vi and a vertex v ∈ V , return the length
of the vi-to-v path in Ti.

• for a vertex vi and vertices u, v ∈ V , return whether
u is an ancestor of v in Ti.

• for a vertex vi and vertices u, v ∈ V , return whether
u occurs before v in the preorder traversal of Ti.

In the r-division in item 2 we extend the set of
boundary nodes ∂DQ of DQ to also include all the
boundary nodes of Q. In more detail, DQ is obtained
from Q by the same recursive decomposition process
as the one used to partition G; on every level of
the recursive decomposition we choose a Jordan curve
separator as to balance the total number of nodes,
boundary nodes, or holes, depending on the remainder
of the level modulo 3, and terminate the recursion when

the number of nodes in a piece is O(r) and the number of
boundary nodes is O(

√
r). Every piece of DQ consists

of O(r) nodes and, because the boundary nodes of Q
are incident to O(1) holes, its O(

√
r) boundary nodes

are incident to O(1) holes. Because of the boundary
nodes inherited from Q, the number of pieces in DQ

is not O(n(Q)/r), and |∂DQ| is not O(n(Q)/
√
r). We

will analyze |∂DQ| later. The MSSP data structures in
item 2 stored for every piece of DQ are the standard
structures of Klein. The distances in item 3 are stored
explicitly. The point location mechanism used for the
Voronoi diagrams in item 4 is the one described in
Section 4 with the following important modification.
Instead of storing the shortest path trees rooted at
every site of the Voronoi diagram explicitly to report
distances, preorder numbers, and ancestry relations in
O(1) time, use the MSSP data structure stored in
item 1. Clearly, with such queries one can implement
Proposition 4.1 in O(log(|P |)) time instead of O(1).

5.2 Query To compute the distance from u to v, we
traverse the recursive decomposition starting from the
piece that corresponds to the whole initial graph G as
in Section 3. Eventually, we reach a piece R = (VR, ER)
such that u, v ∈ VR and either (i) n(R) ≤ r, or (ii)
n(R) > r and R is decomposed into P and Q with a
Jordan curve separator C such that either u ∈ Q and
v ∈ P or vice versa.

We first consider the case when n(R) > r. Let
Q′ be the piece of the r-division DQ that contains u.
Any path from u to v must visit a boundary node of
Q′. Thus, we can iterate over the boundary nodes u′ of
Q′, retrieve dQ′(u, u′) (from the MSSP data structure
in item 2), and then, for each hole h of P , use the
Voronoi diagram VD(Sh,ω) for P (item 4) to find the
node v′ ∈ Sh that minimizes dG(u

′, v′) + dP (v
′, v)

(computed from item 3 and item 1). The minimum
value of dQ′(u, u′) + dG(u

′, v′) + dP (v
′, v) found during

this computation corresponds to the shortest path from
u to v.

The remaining possibility is that n(R) ≤ r. Then
the shortest path from u to v either visits some bound-
ary node of R or not. To check the former case, we
proceed similarly as above: we find the piece R′ of the
r-division DR that contains u, iterate over the boundary
nodes u′ of R′, retrieve dR′(u, u′), and use the diagram
VD(Sh,ω) for R to find the node v′ ∈ Sh that minimizes
dG(u

′, v′)+dR(v
′, v). To check the latter case, we query

the oracle of Fakcharoenphol and Rao [10] stored for R,
and return the minimum of these two distances.

5.3 Analysis For a piece R, we denote by n(R) and
b(R) the number of nodes and boundary nodes of R, re-

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

spectively. We first analyze the query-time. In O(log n)
time we reach the appropriate piece R. Then, we it-
erate over O(

√
r) boundary nodes. For each of them,

we first spend O(log r) time to retrieve the distance
from u to u′. Then, we need O(log(b(P)) log(n(P)))
time to query the Voronoi diagram. If n(R) ≤ r,
this changes into O(log(b(R)) log(n(R))) and additional
O(

󰁳
n(R) log2(n(R))) = O(

√
r log2 r) time for the or-

acle of Fakcharoenphol and Rao [10]. Thus, the total
query-time is O(

√
r log2 n).

We bound the space required by the data structure
for a piece R which is divided into pieces P and
Q. Each MSSP data structure in item 1 requires
O(n(P) log(n(P))) space, and there are O(1) of them.
Representing the r-division DQ and the MSSP data
structures for all the pieces in item 2 can be done within
O(n(Q) log r) space. Then, for every boundary node
of DQ the distances in item 3 and the O(1) Voronoi
diagrams in item 4 can be stored in O(b(P)) space.
Thus, we need to analyze the total number of boundary
nodes of DQ. As we explained above, |∂DQ| would be
simply O(n(Q)/r) if not for the additional boundary
nodes of Q. We claim that |∂DQ| = O(n(Q)/

√
r+b(Q)).

To prove the claim we slightly modify the reasoning
used by Klein, Mozes, and Sommer [21] to bound the
total number of boundary nodes in an r-division without
additional boundary vertices. They analyzed the same
recursive decomposition process of a planar graph Q
on n nodes by separating to balance the number of
nodes, boundary nodes, or holes, depending on the
remainder modulo 3 of the current level.1 Let T be
a tree representing this process, and x̂ be the root of
T . Every node x of T corresponds to a piece. For
example, the piece corresponding to the root x̂ is all of
Q. We denote by n(x) and b(x) the number of nodes and
boundary nodes, respectively, of the piece corresponding
to x. Define Sr to be the set of rootmost nodes y of T
such that n(y) ≤ r.

Lemma 5.2.
󰁓

x∈Sr
b(x) = O(n(Q)/

√
r + b(Q))

Proof. For a node x of T and a set S of descendants
of x such that no node of S is an ancestor of any
other, define L(x, S) := −n(x)+

󰁓
y∈S n(y). Essentially,

L(x, S) counts the number of new boundary nodes with
multiplicities created when replacing x by all pieces in S.
Lemma 8 in [21] states that L(x̂, Sr) = O(n/

√
r). I.e.,

the number of new boundary nodes (with multiplicities)
created when replacing the single piece Q by the pieces
in Sr is O(n(Q)/

√
r). We assume that each node of

1In [21] simple cycle separators are used (rather than Jordan
curve separators), and thus every piece along the recursion needs
to be re-triangulated. The analysis of the number of boundary
nodes, however, is the same.

Q has constant degree (this can be guaranteed with a
standard transformation). Thus, each boundary vertex
of Q appears in a constant number of pieces in Sr. Since
the number of boundary vertices in Q is b(Q), the lemma
follows. □

Let S′
r(x) be the set of rootmost descendants y

of x such that b(y) ≤ c′
√
r, where c′ is a fixed

known constant. The r-division found by the recursive
decomposition process is S′

r =
󰁖

x∈Sr
S′
r(x). Indeed,

each piece x in S′
r has n(x) ≤ r, b(x) ≤ c′

√
r, and O(1)

holes. This is true by definition of S′
r, even though,

instead of starting with a graph with no boundary
nodes, we start with a graph containing b(Q) boundary
nodes incident to O(1) holes.

The following claim is proved in Lemma 9 of [21].

Lemma 5.3. |S′
r(x)| ≤ max{1, 40b(x)

c′
√
r
}

Corollary 5.1. |∂DQ| = O(n(Q)/
√
r + b(Q))

Proof.

|∂DQ| ≤
󰁛

x∈S′
r

b(x) ≤ c′
√
r
󰁛

x∈Sr

|S′
r(x)| ≤

c′
√
r

󰀣
|Sr|+

40

c′
√
r

󰁛

s∈Sr

b(x)

󰀤
= O(n(Q)/

√
r + b(Q)).

Here, the first inequality follows by definition of DQ

and S′
r. The second inequality follows by definition of

S′
r(x) and by the fact that for any x ∈ S′

r, b(x) ≤ c′
√
r.

The third inequality follows by Lemma 5.3. The last
inequality follows from the fact that |Sr| = O(n(Q)/r),
and from Lemma 5.2. □

We have shown that, starting the recursive decom-
position of Q with b(Q) boundary nodes incident to O(1)
holes, we obtain an r-division DQ consisting of pieces
containing O(r) nodes and O(

√
r) boundary nodes in-

cident to O(1) holes, and O(n(Q)/
√
r + b(Q)) bound-

ary nodes overall. Consequently, the space required by
the data structure for a piece R with n(R) > r that is
separated into pieces P and Q is O(n(P) log(n(P)) +
n(Q) log r + (n(Q)/

√
r + b(Q))b(P)), plus a symmetric

term with the roles of P and Q exchanged. If n(R) ≤ r
the space is O(n(R) log(n(R))+(n(R)/

√
r+b(R))b(R)).

Overall, O(n(R) log(n(R)) sums up O(n log n log(n/r)).
On the ℓ-th level of the decomposition, O(n(P)/

√
r ·

b(Q) + n(Q)/
√
r · b(P)) sums up to O(n1.5/(

√
r · cℓ)),

so O(n1.5/
√
r) over all levels. O(b(P) · b(Q)) can be

bounded by O(b(Q) ·
√
n), so we only need to bound

the total number of boundary nodes in all pieces of the
recursive decomposition of the whole graph. For the
terminal pieces R, it directly follows from Lemma 5.2

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

(with Q being the entire graph G) that the total num-
ber of boundary nodes is O(n/

√
r), but we also need

to analyse the non-terminal pieces. Because the size
of a piece decreases by a constant factor after at most
three steps of the recursive decomposition process, it
suffices to bound only the total number of boundary
nodes for pieces in the sets Sri , for ri = r · 2i, i =
0, 1, . . . , log(n/r). By applying Lemma 5.2, with r = ri
and Q = G we get that the total number of boundary
nodes for pieces in Sri is O(n/

√
ri), which sums up to

O(n/
√
r) over all i. Thus, the sum of O(b(P) · b(Q))

over all non-terminal pieces O(n1.5/
√
r). For all termi-

nal pieces R, O(n(R)/
√
r ·b(R)) adds up to O(n1.5/

√
r).

O(b(R) · b(R)) can be bounded by O(b(R) ·
√
n), which

we have already shown to be O(n1.5/
√
r) overall. Thus,

the total space is O(n1.5/
√
r + n log n log(n/r)).

The preprocessing time can be analyzed similarly as
in Section 3, except that now we need to compute only
O(n(P)/

√
r + b(P)) Voronoi diagrams for P , each in

Õ(n(P)) time. As shown above, the overall number of
boundary nodes is O(n/

√
r), so this is Õ(n2/

√
r) total

time. Additionally, we need to compute the distance be-
tween pairs of vertices of P in G (item 3). One of these
vertices is always a boundary node of the r-division, so
overall we need Õ(n/

√
r) single-source shortest paths

computations in G, which takes Õ(n2/
√
r) total time.

Additionally, we need to construct the oracles when
n(R) ≤ r in O(n log2 r) total time. Thus, the total
construction time is Õ(n2/

√
r) overall.

5.4 Improved query-time The final step in this
section is to replace log2 n with log n · log r in the query-
time. This is done by observing that the augmented
MSSP data structure takes linear space, but for smaller
values of r we can actually afford to store more data. In
the appendix we show the following lemma.

Lemma 5.4. For any r ∈ [1, n], the representation from
Lemma 5.1 can be modified to allow answering queries
in O(log r) time in O(s · n/

√
r + n log r) space after

O(s · n/
√
r log r + n log n) time preprocessing.

This decreases the query-time to O(
√
r log n log r)

at the expense of increasing the space taken by the
MSSP data structures in item 1 to O(n(P)/

√
r · b(P) +

n(P) log r). Summing over all levels ℓ and including the
space used by all other ingredients, this is O(n1.5/

√
r+

n log r log(n/r)).

6 Removing the Assumption on Sites
We now remove the assumption that all the vertices
on the hole h are sites of the Voronoi diagram whose
Voronoi cells are non-empty. Recall that VD∗(S,ω)
is obtained from V D∗

1 by replacing h∗ with multiple

copies, one copy h∗
e for each edge e of VD∗

0(S,ω) incident
to h∗. Consider the proof of Lemma 4.1. The argument
showing that VD∗(S,ω) contains no cycles still holds.
However, because now vertices incident to the hole are
not necessarily sites, the argument showing connectivity
fails, and indeed, VD∗(S,ω) might be a forest. We turn
the forest VD∗ into a tree 󰁧VD

∗
by identifying certain

pairs of copies of h∗ as follows. Consider the sequence
Eh of edges of VD∗ incident to h∗, ordered according
to their clockwise order on the face h. Each pair of
consecutive edges e, e′ in Eh delimits a subpath Q of
the boundary walk of h. Note that Q belongs to a
single Voronoi cell of some site s ∈ S . If Q does not
contain s we connect the two copies h∗

e and h∗
e′ with an

artificial edge. We denote the resulting graph by 󰁧VD
∗
.

See Figure 4.

Lemma 6.1. 󰁧VD
∗

is a tree.

Proof. We show that 󰁧VD
∗

is connected and has no
cycles. Consider the Voronoi cell of a site s ∈ S. In VD∗

1

(i.e., before splitting h∗) the boundary of this cell is a
non-self-crossing cycle C∗. Consider the restriction of C
to edges incident to h∗. Consider two consecutive edges
e, e′ in the restriction. If e and e′ are not consecutive in
C∗ (i.e., if e and e′ do not meet at h∗), then they remain
connected in VD∗ (i.e., after splitting h∗). If e and e′ are
consecutive on C∗, then they are also consecutive in Eh,
so they become disconnected in VD∗, but get connected
again in 󰁧VD

∗
. This is true unless the subpath Q of the

face h delimited by e and e′ contains s, but this only
happens for one pair of edges in C∗. Therefore, since
C∗ was 2-connected (a cycle) in VD∗

1, it is 1-connected
in 󰁧VD

∗
. Now, since adjacent Voronoi cells share edges,

the boundaries of any two adjacent Voronoi cells are
connected. It follows from the fact that the dual graph
of 󰁧VD

∗
is connected that the boundaries of all cells are

connected after the identification step.
Assume that 󰁧VD

∗
contains a cycle C∗. Then C∗

must also be a cycle in VD∗
1. Since every cycle in VD∗

1

contains h∗ and encloses at least one site, C∗ contains
a copy of h∗ and encloses at least one site. Consider
a decomposition of C∗ into maximal segments between
copies of h∗. By construction of 󰁧VD

∗
, whenever two

segments of C∗ are connected with an artificial edge,
the segment of the boundary of h delimited by these two
segments and enclosed by C∗ does not contain a site.
Since all the sites are on the boundary of h, it follows
that C∗ does not enclose any sites, a contradiction. □

We next describe how to extend the point location
data structure. First observe that since 󰁧VD

∗
is a tree,

it has a centroid decomposition. In VD∗, the copies of

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 4: Left: a Voronoi diagram VD∗ (blue) forms a forest. Right: the tree 󰁧VD
∗

obtained by adding three
artificial edges (thicker blue lines).

h∗ are all leaves. In 󰁧VD
∗

each copy of h∗ is incident
to at most two artificial edges. Hence the maximum
degree in 󰁧VD

∗
is still 3. If the centroid of 󰁧VD

∗
is not

a copy of h∗ then Lemma 4.2 holds. We need a version
of Lemma 4.2 for the case when the centroid is a copy
of h∗ with degree greater than 1 (i.e., incident to one or
two artificial edges). This is in fact a simpler version of
Lemma 4.2. The difference between a copy of h∗ and a
Voronoi vertex f∗ is that f∗ is a triangular face incident
to three specific vertices y0, y1, y2, whereas h∗ is incident
to all vertices of the hole h. Recall that we connect two
copies h∗

e and h∗
e′ if the segment Q of the boundary of h

delimited by the edges e and e′ belongs to the Voronoi
cell of a site s but does not contain s. When we add
this artificial edge, we associate with h∗

e and with h∗
e′

an arbitrary primal vertex y on Q. Thus, each copy f
of h∗ is associated with at most two primal vertices.

We describe the case where the centroid of T ∗ is
a copy ĥ∗ of h∗ with degree 3. The case of degree
2 and one associated vertex is similar. In the case of
degree 3, ĥ∗ is incident to one edge e1 ∈ Eh, and to two
artificial edges which we denote e0, and e2, so that the
counterclockwise order of edges around ĥ∗ is e0, e1, e2.
Removing ĥ∗ breaks T ∗ into three subtrees. Let T ∗

j be
the subtree of T ∗ rooted at the endpoint of ej that is
not ĥ∗. Recall that, since the degree of ĥ∗ is 3, it has
two associated vertices, y0, y1, where yj belongs to the
subpath of the boundary of h delimited by ej and ej+1.
Let sij be the site such that yj belongs to Vor(sij). Let
pj be the shortest path from sij to yj . See Figure 5.

Lemma 6.2. Let s be the site such that v ∈ Vor(s). If
T ∗ contains all the edges of 󰁧VD

∗
incident to Vor(s), and

if v is closer to site sij than to site sij+1
(indices are

modulo 2), then one of the following is true:

• s = sij ,

ĥ⇤e0 e2

e1y0 y1

Figure 5: Illustration of the case when the centroid is
a copy ĥ∗ of h∗ of degree three. ĥ∗ has two incident
artificial edges (e0, e2), and one Voronoi edge (e1). The
two vertices y0, y1 associated with ĥ∗ are shown, as well
as the shortest paths p0 and p1.

• v is to the left of pj and all the edges of 󰁧VD
∗

incident to Vor(s) are contained in T ∗
j ,

• v is to the right of pj and all the edges of 󰁧VD
∗

incident to Vor(s) are contained in T ∗
j+1.

Proof. Observe that all the edges of pj belong to
Vor(sij), while for every i ∈ {0, 1, 2}, the duals of edges
of T ∗

i have endpoints in two different Voronoi cells.
Therefore, the paths pj do not cross the trees T ∗

i . Since
p0 and p1 are paths that start and end on the boundary
of h and do not cross each other, they partition G into
three subgraphs {Gi}2i=0. Let G0 be the subgraph to
the left of p0, G1 the subgraph to the right of p0 and to
the left pf p1, and G2 the graph to the right of p1. It

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

follows from the above that each subtree T ∗
i belongs to

the subgraph Gi.
The remainder of the proof is almost identical to

that of Lemma 4.2. Let p be the shortest path from
sij to v. If p is a subpath of pj then s = sij .
Otherwise, assume p emanates left of p0 (the other cases
are similar). Consider the last edge e∗ of p that is not
strictly in Vor(s). If e∗ does not exist then s = si0 . If
it does exist, then it must be en edge of T ∗

0 . Since the
only Voronoi cell partitioned by p0 is that of si0 , either
s = si0 , or all edges of 󰁧VD

∗
incident to Vors belong to

T ∗
0 . □

References

[1] S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid,
and C. D. Zaroliagis. Planar spanners and approximate
shortest path queries among obstacles in the plane. In
ESA, pages 514–528, 1996.

[2] M. A. Bender and M. Farach-Colton. The LCA
problem revisited. In LATIN, pages 88–94, 2000.

[3] S. Cabello. Many distances in planar graphs. Algorith-
mica, 62(1-2):361–381, 2012.

[4] S. Cabello. Subquadratic algorithms for the diameter
and the sum of pairwise distances in planar graphs. In
SODA, pages 2143–2152, 2017.

[5] S. Cabello, E. Chambers, and J. Erickson. Multiple-
source shortest paths in embedded graphs. SIAM
Journal on Computing, 42(4):1542–1571, 2013.

[6] D. Z. Chen and J. Xu. Shortest path queries in planar
graphs. In STOC, pages 467–478, 2000.

[7] V. Cohen-Addad, S. Dahlgaard, and C. Wulff-Nilsen.
Fast and compact exact distance oracle for planar
graphs. In FOCS, pages 962–973, 2017.

[8] H. Djidjev. On-line algorithms for shortest path
problems on planar digraphs. In WG, pages 151–165,
1996.

[9] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. J. Comput.
Syst. Sci., 38(1):86–124, 1989.

[10] J. Fakcharoenphol and S. Rao. Planar graphs, negative
weight edges, shortest paths, and near linear time. J.
Comput. Syst. Sci., 72(5):868–889, 2006.

[11] G. N. Frederickson. Fast algorithms for shortest paths
in planar graphs, with applications. SIAM Journal on
Computing, 16(6):1004–1022, 1987.

[12] P. Gawrychowski, H. Kaplan, S. Mozes, M. Sharir, and
O. Weimann. Voronoi diagrams on planar graphs, and
computing the diameter in deterministic Õ(n5/3) time.
In SODA, 2018. To appear.

[13] D. Hartvigsen and R. Mardon. The all-pairs min
cut problem and the minimum cycle basis problem
on planar graphs. Journal of Discrete Mathematics,
7(3):403–418, 1994.

[14] M. R. Henzinger, P. N. Klein, S. Rao, and S. Sub-
ramanian. Faster shortest-path algorithms for planar
graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997.

[15] D. B. Johnson. Efficient algorithms for shortest paths
in sparse networks. J. ACM, 24:1–13, 1977.

[16] K. Kawarabayashi, P. N. Klein, and C. Sommer.
Linear-space approximate distance oracles for planar,
bounded-genus and minor-free graphs. In ICALP,
pages 135–146, 2011.

[17] K. Kawarabayashi, C. Sommer, and M. Thorup. More
compact oracles for approximate distances in undi-
rected planar graphs. In SODA, pages 550–563, 2013.

[18] P. Klein. Preprocessing an undirected planar network
to enable fast approximate distance queries. In SODA,
pages 820–827, 2002.

[19] P. Klein and S. Mozes. Optimization algorithms for
planar graphs. http://planarity.org. Book draft.

[20] P. N. Klein. Multiple-source shortest paths in planar
graphs. In SODA, pages 146–155, 2005.

[21] P. N. Klein, S. Mozes, and C. Sommer. Structured
recursive separator decompositions for planar graphs
in linear time. In STOC, pages 505–514, 2013. Full
version at https://arxiv.org/abs/1208.2223.

[22] G. L. Miller. Finding small simple cycle separators
for 2-connected planar graphs. J. Comput. Syst. Sci.,
32(3):265–279, 1986.

[23] R. Motwani and P. Raghavan. Randomized algorithms.
Press Syndicate of the University of Cambridge, 1995.

[24] S. Mozes and C. Sommer. Exact distance oracles for
planar graphs. In SODA, pages 209–222, 2012.

[25] S. Mozes and C. Wulff-Nilsen. Shortest paths in planar
graphs with real lengths in O(n log2 n/ log log n) time.
In Proc. 18th Eur. Symp. Algorithms (ESA), pages
206–217, 2010.

[26] K. Mulmuley, U. Vazirani, and V. Vazirani. Match-
ing is as easy as matrix inversion. Combinatorica,
7(1):105–113, 1987.

[27] Y. Nussbaum. Improved distance queries in planar
graphs. In WADS, pages 642–653, 2011.

[28] D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Comput. Syst. Sci., 26(3):362–391,
1983.

[29] M. Thorup. Compact oracles for reachability and
approximate distances in planar digraphs. Journal of
the ACM, 51(6):993–1024, 2004.

[30] F. van Walderveen, N. Zeh, and L. Arge. Multiway
simple cycle separators and I/O-efficient algorithms for
planar graphs. In SODA, pages 901–918, 2013.

[31] C. Wulff-Nilsen. Algorithms for planar graphs and
graphs in metric spaces, 2010. PhD thesis, University
of Copenhagen.

[32] C. Wulff-Nilsen. Approximate distance oracles for
planar graphs with improved query time-space tradeoff.
In SODA, pages 351–362, 2016.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

http://planarity.org
https://arxiv.org/abs/1208.2223

A Missing Proofs
Lemma 3.1. Choosing the separators as described above
guarantees that (i) each piece has O(1) holes, (ii) the
number of nodes in a piece on the ℓ-th level in the
decomposition is O(n/c

ℓ/3
1), for some constant c1 > 1,

(iii) the number of boundary nodes in a piece on the ℓ-
th level in the decomposition is O(

√
n/c

ℓ/3
2), for some

constant c2 > 1.

Proof. The number of holes increases by at most one
in every recursive call, but decreases by a constant
multiplicative factor every 3 recursive calls, and is
initially equal to 0, so part (i) easily follows. The
number of nodes never increases, and decreases by a
constant multiplicative factor every 3 recursive calls,
and is initially equal to n, so part (ii) follows. The
situation with the number of boundary nodes is slightly
more complex, because it increases by O(

√
n) in every

recursive call, and decreases by a constant multiplicative
factor every 3 recursive calls, where n is the number of
nodes in the current piece. For simplicity, we analyze
a different process, in which the number of boundary
nodes decreases by a constant multiplicative factor and
then increases by O(

√
n) in every recursive call. The

asymptotic behavior of these two processes is identical.
Thus, we want to analyze the following recurrence:

b(ℓ+ 1) = b(ℓ)/c+

√
n

(c′)ℓ
.

for some constants c, c′ > 1. Then

b(ℓ+ 1) =

ℓ󰁛

i=0

√
n

ci(c′)ℓ−i
=

√
n

(c′)ℓ

ℓ󰁛

i=0

(
c′

c
)i.

We consider two cases:

1. c′ ≤ c, then b(ℓ+ 1) ≤
√
n ℓ

(c′)ℓ
≤

√
n

(
√
c′)ℓ

for ℓ large
enough.

2. c′ > c, then b(ℓ+ 1) = O(
√
n

cℓ
).

In both cases, b(ℓ) = O(
√
n

cℓ2
) for some constant c2 > 1

as claimed. □

Lemma 5.1. Consider a directed planar embedded
graph on n nodes with non-negative arc-lengths, and let
v1, v2, . . . , vs be the nodes on the boundary of its infinite
face, in clockwise order. Then, in O(n log n) time and
space, we can construct a representation of all short-
est path trees Ti rooted at vi, that allow answering the
following queries in O(log n) time:

• for a vertex vi and a vertex v ∈ V , return the length
of the vi-to-v path in Ti.

• for a vertex vi and vertices u, v ∈ V , return whether
u is an ancestor of v in Ti.

• for a vertex vi and vertices u, v ∈ V , return whether
u occurs before v in the preorder traversal of Ti.

Proof. We proceed as in the original implementation of
MSSP, that is, we represent every Ti with a persistent
link-cut tree. We discuss some of the details that are
required for explaining how to implement the queries.

In MSSP, we start with constructing T1 with Di-
jkstra’s algorithm in O(n log n) time. Then, we iterate
over i = 2, 3, . . . , s. The current Ti is maintained with a
persistent link-cut tree of Sleator and Tarjan [28]. The
gist of MSSP is that every edge of the graph goes in and
out of the shortest path tree at most once, and that we
can efficiently retrieve the edges that should be removed
from and added to Ti−1 to obtain Ti (in O(log n) time
per edge). Thus, if we are able to remove or insert an
edge from Ti−1 in O(log n) time, the total update time
is O(n log n). With a link-cut tree, we can indeed re-
move or insert edge in such time (note that we prefer
the worst-case version instead of the simpler implemen-
tation based on splay trees). We make our link-cut tree
partially persistent with a straightforward application
of the general technique of Driscoll et al. [9]. This re-
quires that the in-degree of the underlying structure is
O(1), which is indeed the case if the degrees of the nodes
in the graph (and hence in every Ti) are O(1). This can
be guaranteed by replacing a node of degree d > 4 by
a cycle on d nodes, where every node has degree 3. We
now verify that the in-degree is O(1) for such a structure
by presenting a high-level overview of link-cut trees.

The edges of a rooted tree are partitioned into solid
and dashed. There is at most one solid edge incoming
into any node, so we obtain a partition of the tree
into node-disjoint solid paths. For every solid path,
we maintain a balanced search tree on a set of leaves
corresponding to the nodes of the path in the natural
top-bottom order when read from left to right. To
obtain a worst-case time bound, Sleator and Tarjan
use biased binary trees. Every node stores a pointer
to the leaf in the corresponding biased binary tree,
and additionally the topmost node of a heavy path
stores a pointer to its parent in the represented tree
(together with the cost of the corresponding edge). The
nodes of every biased binary tree store standard data (a
pointer to the left child, the right child, and the parent)
and, additionally, every inner node (that corresponds
to a fragment of a solid path) stores the total cost of
the corresponding fragment. An additional component
of the link-cut tree is a complete binary tree on n
leaves corresponding to the nodes of the tree (called
1, 2, . . . , n). This is required, so that we can access a

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

node of the tree on demand in O(log n) time, as random
access is not allowed in this setting. The access pointer
points to the root of the complete binary tree. One can
indeed verify that the in-degree of the structure is O(1).

Assuming that a representation of every Ti with
a partially persistent link-cut tree is available, we can
answer the queries as follows.

First, consider calculating the distance from vi to
some v ∈ V . We retrieve the access pointer of Ti and
navigate the complete binary tree to reach the node v.
Then, we navigate up in the link-cut representation of
Ti starting from v. In every step, we traverse a biased
binary tree starting from a leaf corresponding to some
ancestor u of v. Conceptually, this allows us to jump to
the topmost node of the solid path containing u. While
doing so, we accumulate the total cost of the prefix of
that solid path ending at u. Then, we follow the pointer
from the topmost node of the current solid path to reach
its parent in Ti, add its cost to the answer, and continue
in the next biased binary tree. It is easy to see that in
the end we obtain the total cost of the path from v to
the root of Ti, and by the properties of biased binary
trees the total number of steps is O(log n).

Second, consider checking if u is an ancestor of v
in Ti. We navigate in the link-cut representation of Ti

starting from u and marking the visited solid paths (in
more detail, every solid path stores a timestamp of the
most recent visit; the timestamps are not considered a
part of the original partially persistent structure and
the current time is increased after each query). Then,
we navigate starting from v, but stop as soon as we
reach a solid path already visited in the previous step.
For u to be an ancestor of v, this must be the path
containing u, and furthermore u must be on the left of
v in the corresponding biased binary tree. This can be
all checked in O(log n) time.

Third, consider checking if u occurs before v in
the preorder traversal of Ti. By proceeding as in the
previous paragraph we can identify the LCA of u and
v, denoted w. Assuming that w ∕= u and w ∕= v, we can
also retrieve the edge outgoing from w leading to the
subtree containing u, and similarly for v, in O(log n)
total time. We can also retrieve the edge incoming to
w from its parent in O(1) additional time. Then, we
check the cyclic order on the edges incident to w in the
graph to determine if u comes before v in the preorder
traversal of Ti (this is so that we do not need to think
about an embedding of Ti while maintaining the link-cut
representation). □
Lemma 5.4. For any r ∈ [1, n], the representation from
Lemma 5.1 can be modified to allow answering queries
in O(log r) time in O(s · n/

√
r + n log r) space after

O(s · n/
√
r log r + n log n) time preprocessing.

Proof. We construct an r-division R of the graph. The
structure consists of parts: micro components and
macro component.

Consider a shortest path tree Ti. We construct a
new (smaller) tree T ′

i as follows. First, mark in Ti vi and
all boundary nodes of R. Then, T ′

i is the tree induced
by the marked nodes in Ti (in other words: for any
two marked nodes we also mark their LCA in Ti, and
then construct T ′

i by connecting every marked node to
its first marked ancestor with an edge of length equal
to the total length of the path connecting them in Ti.
Then, |T ′

i | = O(n/
√
r). Intuitively, T ′

i gives us a high-
level overview of the whole Ti. We augment it with the
usual preorder numbers and LCA data structure. We
call this the macro component.

For every piece Rj of R, consider the subgraph
of Ti consisting of all edges belonging to Rj . This
subgraph is a collection of trees rooted at some of the
boundary nodes of Rj . We represent this forest Ti,j with
a persistent link-cut forest. While sweeping through
the nodes v1, v2, . . . , vs, every edge of the graph goes
in and out of the shortest path tree at most once.
Hence, every edge of Rj goes in and out of Ti,j at
most once. Thus, the persistent link-cut representation
of Ti,j takes O(|R| log |R|) time and space. To answer
a query concerning Ti,j , we first need to retrieve the
corresponding version of the link-cut forest. This can
be done with a predecessor search, if we store a sorted
list of the values of i together with a pointer to the
corresponding version, in O(log r) time, as there are at
most O(|R|) versions. Then, a query concerning Ti,j can
be answered in O(log r) time.

We claim that combining the micro and macro
components allows us to answer any query in O(log r)
time. Consider calculating the distance from vi to some
v ∈ V . We retrieve the piece Rj containing v and, by
using the micro component, find the root r of the tree
containing v in the forest Ti,j together with the distance
from r to v in O(log r) time. Then, r is a boundary
node, so the macro component allows us to find the
distance from vi to r in O(1) time. Other queries can be
processed similarly by first look at the pieces containing
u and v, then replacing them by appropriate boundary
nodes, and finally looking at the macro component.

The total space is clearly O(n log r) to represent
all the micro components, and O(s · n/

√
r) for the

macro component. To bound the preprocessing time,
observe that constructing the macro component requires
extracting O(n/

√
r) nodes from the persistent link-cut

representation of Ti. If, instead of accessing them one
by one, we work with all of them at the same time, can
be seen to take O(n/

√
r log r) time by the convexity of

log. □

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

