The Stackelberg Minimum Spanning Tree Game on Planar and Bounded-Treewidth Graphs

Gwenaël Joret

Erik Demaine

Ilan Newman

Samuel Fiorini

Problem Statement

Stackelberg game, one leader and one follower

Given a graph G with red and blue edges

- Each red edge has a fixed cost $c(e)$
- The leader has to set a price $p(e)$ for each blue edge
- The follower then computes a MST with the resulting weights

Goal: maximize total weight of the blue edges in a MST
(= profit of leader)

Example

Assumption: blues have priority over reds of same weight

Stackelberg Games \& Combinatorial Optimization

Stackelberg Shortest Path Game

- follower computes a shortest $s-t$ path in a directed graph
- $O(\log |E(G)|)$-approx. algorithm

Roch, Savard, Marcotte 2005

- NP-hard Roch, Savard, Marcotte 2005
- APX-hard
J. 2008
- NP-hard to approximate within $2-\varepsilon$

Briest and Khanna 2009 \& Chalermsook, Lekhanukit, Nanongkai 2009

- Polyhedral studies
(numerous papers)
- Variants and special cases
- River tarification problem

Bouhtou, Grigoriev, van Hoesel, van der Kraaij, Spieksma, Uetz 2007

- Highway problem

Stackelberg Games \& Combinatorial Optimization

Stackelberg Shortest Paths Tree Game (symmetric \& assymetric)
Bilò, Gualà, Proietti, Widmayer 2008 \& Bilò, Gualà, Proietti 2009

Stackelberg Bipartite Vertex Cover Game
Briest, Hoefer, Krysta 2008

Stackelberg Minimum Spanning Tree Game
CDFJLNW 2007
$b:=$ \#blue edges
$c_{1} \leq c_{2} \leq \cdots \leq c_{k}$ red costs

- $O(\log n)$-approx. algorithm (single price algorithm) More precisely: $\min \left\{k, 1+\ln b, 1+\ln \frac{c_{k}}{c_{1}}\right\}$-approx.
- NP- and APX-hard, even when $k=2$
- Integrality gap of natural LP-relaxation matches guarantee of single price

This Talk

Special cases of Stackelberg Minimum Spanning Tree Game: G is planar / G has bounded treewidth

- NP-hard on planar graphs
- can be solved in poly-time on graphs of bounded treewidth (NB: not a FPT algorithm)

This Talk

Special cases of Stackelberg Minimum Spanning Tree Game:
G is planar / G has bounded treewidth

- NP-hard on planar graphs
- can be solved in poly-time on graphs of bounded treewidth (NB: not a FPT algorithm)

Motivation:

- Baker's decomposition of planar graphs in onion layers
- Stackelberg games and dynamic programs do not mix well
- Even for series-parallel graphs the problem is not trivial

NP-Hardness on Planar Graphs

Reduction from Minimum Connected Vertex Cover

- NP-hard even if G planar with maximum degree 4 Garey and Johnson 1979

NP-Hardness on Planar Graphs

Reduction from Minimum Connected Vertex Cover

- NP-hard even if G planar with maximum degree 4 Garey and Johnson 1979

\exists cover of size $\leq t \Leftrightarrow \exists$ pricing giving $\geq|E(G)|+2|V(G)|-t-1$

Series-Parallel Graphs

(G, s, t) series-parallel if $G \cong K_{2}$, or (G, s, t) results from a series or parallel composition:

series

A Lemma

Assume:

- F acyclic subset of blue edges
- \exists red spanning tree
$\Rightarrow \exists$ unique pricing maximizing revenue over all solutions where follower buys F :

$$
p(v w)=\min \left\{\max _{e \in P \cap R} c(e) \mid P \in \widetilde{\mathcal{P}}(G, F, v, w)\right\} \quad \forall v w \in F
$$

where $\widetilde{\mathcal{P}}(G, F, v, w)=\{v-w$ paths in $(V, R \cup F-\{v w\})$ with ≥ 1 red edge $\}$

Parallel Compositions

revenue $=2$

Cannot simply combine optimal solutions!

Parallel Compositions

Parallel Compositions

Parallel Compositions

Parallel Compositions

\rightarrow can prepare optimal solution for every possible bottleneck:

Parallel Compositions

\rightarrow can prepare optimal solution for every possible bottleneck:

Still not enough: what about bottlenecks on our side?

Parallel Compositions

Solution: prepare optimal solution for every

$$
(i, j) \in\left\{0, c_{1}, \ldots, c_{k}\right\} \times\left\{0, c_{1}, \ldots, c_{k}\right\}
$$

where

- i: internal bottleneck
- j: external bottleneck

$(1,2)$

$(3,1)$

NB: some pairs (i, j) are not feasible

Bounded Treewidth Graphs

G has treewidth $\leq \omega \Longleftrightarrow G$ is an ω-boundaried graph
Abrahamson and Fellows 1993
ω-boundaried graph:

- ω boundary vertices, labeled with $1,2, \ldots, \omega$
- operator \varnothing
- operator \oplus
- operator η
- operator ϵ
- operators that permute labels

Bounded Treewidth Graphs

G has treewidth $\leq \omega \Longleftrightarrow G$ is an ω-boundaried graph
Abrahamson and Fellows 1993
ω-boundaried graph:

- ω boundary vertices, labeled with $1,2, \ldots, \omega$
- operator \varnothing

- operator \oplus
- operator η
- operator ϵ
- operators that permute labels

Bounded Treewidth Graphs

G has treewidth $\leq \omega \Longleftrightarrow G$ is an ω-boundaried graph
Abrahamson and Fellows 1993
ω-boundaried graph:

- ω boundary vertices, labeled with $1,2, \ldots, \omega$
- operator \varnothing
- operator \oplus

\oplus

- operator η
- operator ϵ
- operators that permute labels

Bounded Treewidth Graphs

G has treewidth $\leq \omega \Longleftrightarrow G$ is an ω-boundaried graph
Abrahamson and Fellows 1993
ω-boundaried graph:

- ω boundary vertices, labeled with $1,2, \ldots, \omega$
- operator \varnothing
- operator \oplus
- operator η

- operator ϵ
- operators that permute labels

Bounded Treewidth Graphs

G has treewidth $\leq \omega \Longleftrightarrow G$ is an ω-boundaried graph
Abrahamson and Fellows 1993
ω-boundaried graph:

- ω boundary vertices, labeled with $1,2, \ldots, \omega$
- operator \varnothing
- operator \oplus
- operator η
- operator ϵ

- operators that permute labels

Bounded Treewidth Graphs

G has treewidth $\leq \omega \Longleftrightarrow G$ is an ω-boundaried graph
Abrahamson and Fellows 1993
ω-boundaried graph:

- ω boundary vertices, labeled with $1,2, \ldots, \omega$
- operator \varnothing
- operator \oplus
- operator η
- operator ϵ
- operators that permute labels

Decomposition can be found in linear time (for fixed ω)

Bounded Treewidth Graphs

General approach: handle each operator as in series-parallel case

Here, we compute $k^{\omega^{2}}$ solutions for each piece in the decomposition

Total complexity of the algorithm is $m^{O\left(\omega^{2}\right)}$

Conclusion

\exists FPT algorithm parameterized by treewidth?
i.e. algorithm with complexity $O\left(f(\omega) \cdot n^{c}\right)$ for some absolute constant $c>0$

Conclusion

\exists FPT algorithm parameterized by treewidth?
i.e. algorithm with complexity $O\left(f(\omega) \cdot n^{c}\right)$ for some absolute constant $c>0$

Conjecture: NO (under some reasonable complexity-theoretic assumption)

Conclusion

\exists FPT algorithm parameterized by treewidth?
i.e. algorithm with complexity $O\left(f(\omega) \cdot n^{c}\right)$ for some absolute constant $c>0$

Conjecture: NO (under some reasonable complexity-theoretic assumption)

For general graphs:

- APX-hard
- can be approximated within $\min \left\{k, 1+\ln b, 1+\ln \frac{c_{k}}{c_{1}}\right\}$
\exists constant-factor approx. algorithm?

Thank You!

