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Problem Statement

Stackelberg game, one leader and one follower

Given a graph G with red and blue edges

I Each red edge has a fixed cost c(e)

I The leader has to set a price p(e) for each blue edge

I The follower then computes a MST with the resulting weights

Goal: maximize total weight of the blue edges in a MST
(= profit of leader)
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Assumption: blues have priority over reds of same weight



Stackelberg Games & Combinatorial Optimization

Stackelberg Shortest Path Game

I follower computes a shortest s–t path in a directed graph

I O(log |E (G )|)-approx. algorithm Roch, Savard, Marcotte 2005

I NP-hard Roch, Savard, Marcotte 2005

I APX-hard J. 2008

I NP-hard to approximate within 2− ε
Briest and Khanna 2009 & Chalermsook, Lekhanukit, Nanongkai 2009

I Polyhedral studies (numerous papers)

I Variants and special cases
I River tarification problem

Bouhtou, Grigoriev, van Hoesel, van der Kraaij, Spieksma, Uetz 2007

I Highway problem Heilporn, Labbé, Marcotte, Savard 2007



Stackelberg Games & Combinatorial Optimization

Stackelberg Shortest Paths Tree Game (symmetric & assymetric)
Bilò, Gualà, Proietti, Widmayer 2008 & Bilò, Gualà, Proietti 2009

Stackelberg Bipartite Vertex Cover Game Briest, Hoefer, Krysta 2008

Stackelberg Minimum Spanning Tree Game CDFJLNW 2007

b := #blue edges
c1 ≤ c2 ≤ · · · ≤ ck red costs

I O(log n)-approx. algorithm (single price algorithm)
More precisely: min{k, 1 + ln b, 1 + ln ck

c1
}-approx.

I NP- and APX-hard, even when k = 2

I Integrality gap of natural LP-relaxation matches guarantee of
single price



This Talk

Special cases of Stackelberg Minimum Spanning Tree Game:
G is planar / G has bounded treewidth

I NP-hard on planar graphs

I can be solved in poly-time on graphs of bounded treewidth
(NB: not a FPT algorithm)

Motivation:

I Baker’s decomposition of planar graphs in onion layers

I Stackelberg games and dynamic programs do not mix well

I Even for series-parallel graphs the problem is not trivial
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NP-Hardness on Planar Graphs
Reduction from Minimum Connected Vertex Cover

I NP-hard even if G planar with maximum degree 4 Garey and Johnson 1979
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Series-Parallel Graphs
(G , s, t) series-parallel if G ∼= K2, or (G , s, t) results from a series
or parallel composition:
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A Lemma
Assume:

I F acyclic subset of blue edges
I ∃ red spanning tree

⇒ ∃ unique pricing maximizing revenue over all solutions where
follower buys F :

p(vw) = min

{
max

e∈P∩R
c(e) | P ∈ P̃(G ,F , v ,w)

}
∀vw ∈ F

where eP(G , F , v , w) =
˘
v–w paths in (V , R ∪ F − {vw}) with ≥ 1 red edge
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Parallel Compositions
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11optimal solution:

Cannot simply combine optimal solutions!
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Parallel Compositions
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Parallel Compositions
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Parallel Compositions
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Still not enough: what about bottlenecks on our side?



Parallel Compositions
Solution: prepare optimal solution for every

(i , j) ∈ {0, c1, . . . , ck} × {0, c1, . . . , ck},
where

I i : internal bottleneck

I j : external bottleneck
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NB: some pairs (i , j) are not feasible



Bounded Treewidth Graphs

G has treewidth ≤ ω ⇐⇒ G is an ω-boundaried graph
Abrahamson and Fellows 1993

ω-boundaried graph:

I ω boundary vertices, labeled with 1, 2, . . . , ω

I operator ∅
I operator ⊕
I operator η

I operator ε

I operators that permute labels
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Bounded Treewidth Graphs

G has treewidth ≤ ω ⇐⇒ G is an ω-boundaried graph
Abrahamson and Fellows 1993

ω-boundaried graph:

I ω boundary vertices, labeled with 1, 2, . . . , ω

I operator ∅
I operator ⊕
I operator η

I operator ε

I operators that permute labels

Decomposition can be found in linear time (for fixed ω)
Bodlaender 1996



Bounded Treewidth Graphs

General approach: handle each operator as in series-parallel case

Here, we compute kω2
solutions for each piece in the

decomposition

Total complexity of the algorithm is mO(ω2)



Conclusion

∃ FPT algorithm parameterized by treewidth?
i.e. algorithm with complexity O(f (ω) · nc) for some absolute constant c > 0

Conjecture: NO (under some reasonable complexity-theoretic assumption)

For general graphs:

I APX-hard

I can be approximated within min{k, 1 + ln b, 1 + ln ck
c1
}

∃ constant-factor approx. algorithm?
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Thank You!


