
J Comb Optim
DOI 10.1007/s10878-011-9414-2

The Stackelberg minimum spanning tree game
on planar and bounded-treewidth graphs

Jean Cardinal · Erik D. Demaine · Samuel Fiorini ·
Gwenaël Joret · Ilan Newman · Oren Weimann

© Springer Science+Business Media, LLC 2011

Abstract The Stackelberg Minimum Spanning Tree Game is a two-level combinato-
rial pricing problem played on a graph representing a network. Its edges are colored
either red or blue, and the red edges have a given fixed cost, representing the com-
petitor’s prices. The first player chooses an assignment of prices to the blue edges,
and the second player then buys the cheapest spanning tree, using any combination
of red and blue edges. The goal of the first player is to maximize the total price of
purchased blue edges.

A preliminary version of this paper appeared in Cardinal et al. (2009)
G. Joret is a Postdoctoral Researcher of the Fonds National de la Recherche Scientifique
(F.R.S.–FNRS).

J. Cardinal · G. Joret
Département d’Informatique, CP 212, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium

J. Cardinal
e-mail: jcardin@ulb.ac.be

G. Joret
e-mail: gjoret@ulb.ac.be

E.D. Demaine
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA
e-mail: edemaine@mit.edu

S. Fiorini
Département de Mathématique, CP 216, Université Libre de Bruxelles (ULB), 1050 Brussels,
Belgium
e-mail: sfiorini@ulb.ac.be

I. Newman · O. Weimann (!)
Department of Computer Science, University of Haifa, Haifa 31905, Israel
e-mail: oren@cs.haifa.ac.il

I. Newman
e-mail: ilan@cs.haifa.ac.il

mailto:jcardin@ulb.ac.be
mailto:gjoret@ulb.ac.be
mailto:edemaine@mit.edu
mailto:sfiorini@ulb.ac.be
mailto:oren@cs.haifa.ac.il
mailto:ilan@cs.haifa.ac.il

J Comb Optim

We study this problem in the cases of planar and bounded-treewidth graphs. We
show that the problem is NP-hard on planar graphs but can be solved in polynomial
time on graphs of bounded treewidth.

Keywords The Stackelberg games · Network pricing games · Minimum spanning ·
Baunded treewidth

1 Introduction

A young startup company has just acquired a collection of point-to-point tubes be-
tween various sites on the Interweb. The company’s goal is to sell the use of these
tubes to a particularly stingy client, who will buy a minimum-cost spanning tree of the
network. Unfortunately, the company has a direct competitor: the government sells
the use of a different collection of point-to-point tubes at publicly known prices. Our
goal is to set the company’s tube prices to maximize the company’s income, given the
government’s prices and the knowledge that the client will buy a minimum spanning
tree made from any combination of company and government tubes. Naturally, if we
set the prices too high, the client will rather buy the government’s tubes, while if we
set the prices too low, we unnecessarily reduce the company’s income.

This problem is called the Stackelberg Minimum Spanning Tree Game (Cardinal
et al. 2011), and is an example in the growing family of algorithmic game-theoretic
problems about combinatorial optimization in graphs (Grigoriev et al. 2005, 2009,
Roch et al. 2005, Briest et al. 2008, 2009, 2010, van Hoesel 2006, Bilò et al. 2008,
2010). More formally, we are given an undirected graph G (possibly with parallel
edges, but no loops), whose edge set E(G) is partitioned into a red edge set R(G)
and a blue edge set B(G). We are also given a cost function c : R(G) → R+ assigning
a positive cost to each red edge. The STACKMST problem is to assign a price p(e)
to each blue edge e, resulting in a weighted graph (G, c ∪ p), to maximize the total
price of blue edges in a minimum spanning tree. We assume that, if there is more than
one minimum spanning tree, we obtain the maximum possible income. (Otherwise,
we could decrease the prices slightly and get arbitrarily close to the same income.)
Figure 1 shows an example.

This problem is thus a two-player two-level optimization problem, in which the
leader (the company) chooses a strategy (a price assignment), taking into account
the strategy of the follower (the client), which is determined by a second-level opti-
mization problem (the minimum spanning tree problem). Such a game is known as a
Stackelberg game in economics (von Stackelberg 1934).

Motivations and scope. The Stackelberg Minimum Spanning Tree Game is a suit-
able model for real-life network pricing problems, of the same flavor as those previ-
ously used for taxation and freight tariff-setting in the operations research community
(see for instance Labbé et al. 1998; Brotcorne et al. 2000, 2001). It can be used to
model pricing in communication or transportation networks, and is easily amenable
to meaningful generalizations (see previous works below).

In this contribution, we aim at studying the problem under two natural restrictions.
First, we consider the class of planar instances, i.e., in which the input graph is planar.

J Comb Optim

Fig. 1 (Color online) A sample instance of the STACKMST problem. The goal is to assign prices to the
blue edges to maximize the total price of the blue edges purchased in a minimum spanning tree

This can model situations in which the input network corresponds to geographic con-
nections. Many important combinatorial optimization problems admit polynomial-
time approximation schemes on planar graphs. Among the first such results, Baker’s
technique (Baker 1994) is well known. Since then, many more powerful techniques
have been proposed (Klein 2005, 2006; Borradaile et al. 2007; Demaine et al. 2007,
2009), which ultimately rely on the ability to efficiently solve the problem in graphs
of bounded treewidth in polynomial time.

This leads us to the second structural restriction we will tackle. Bounded-treewidth
graphs have the property of being “close” to trees, in the sense that they have can
be augmented into chordal graphs with a bounded clique number. They also consti-
tute a natural structural restriction, that may be verified in real-life cases, and have
proven fundamental in many other combinatorial problems (see for instance the sur-
veys from Bodlaender 2006 and Bodlaender and Koster 2008).

Optimization algorithms on bounded-treewidth graphs are generally based on dy-
namic programming, using a textbook technique for well-behaved problems. In par-
ticular, it was shown by Courcelle (2008) that the problem of checking a graph-
theoretic property expressible in monadic second-order logic is fixed-parameter
tractable with respect to the treewidth of the graph. However, few if any such dy-
namic programs have been developed for a bilevel optimization problem such as
STACKMST, and standard techniques do not seem to apply. We expect our contri-
bution to give a basis for further application of graph decompositions to other bilevel
optimization problems.

Previous results. The complexity and approximability of the STACKMST problem
has been studied in a previous paper (Cardinal et al. 2011). It was shown that the
problem is APX-hard, but can be approximated within a logarithmic factor. Also,
constant-factor approximation exist for the special cases in which the given costs are
bounded or take a bounded number of distinct values. Finally, an integer program-
ming formulation has an integrality gap corresponding to the best known approxima-
tion factors.

Briest et al. (2008) generalized the above results to a wider class of pricing prob-
lems on graphs. This includes, in particular, pricing problems with many followers

J Comb Optim

and shortest path pricing games. They show that the single-price strategy proposed
in Cardinal et al. (2011) yields logarithmic approximation factors for these games as
well. They also tackle a Stackelberg bipartite vertex cover game, which is shown to
be solvable in polynomial time.

Recently, Bilò et al. (2010) studied special cases and another generalization of
the STACKMST problem. In particular, they show that the problem is approximable
within a constant factor whenever the set of blue edges of G forms a complete graph,
and is solvable in polynomial time if, additionally, there are only two distinct red
costs. The generalization involves activation costs for the blue edges, and a leader
with a bounded activation budget. They generalize previous results to that case, and
give an approximation factor parameterized by the radius of the spanning tree induced
by the red edges.

Our results. In Sect. 2, we prove that STACKMST remains NP-hard when restricted
to planar graphs (Theorem 1). The reduction is a strengthening from our previous
result, and is from the minimum connected vertex cover problem.

In Sect. 3, we develop the tools required for the design of a polynomial-time
dynamic programming algorithm for STACKMST in series-parallel graphs. These
graphs have treewidth at most 2 and are planar, and they can be alternatively defined
in an inductive fashion using two composition operations. We show (Theorem 2) that
the STACKMST problem can be solved in O(m4) time on series-parallel graphs with
m edges.

Finally, Sect. 4 deals with graphs of arbitrary treewidth t . Our Theorem 3 states
that the problem can be solved in 2O(t3)m + mO(t2) time on those graphs.

2 Planar graphs

We consider the STACKMST problem on planar graphs. We strengthen the hardness
result given in Cardinal et al. (2011) by showing that the problem remains NP-hard in
this special case. The reduction is from the minimum connected vertex cover problem,
which is known to be NP-hard, even when restricted to planar graphs of maximum
degree 4 (see Garey and Johnson 1979). The minimum connected vertex cover prob-
lem consists of finding a minimum-size subset C of the vertices of a graph, such that
every edge has at least one endpoint in C, and C induces a connected graph.

Theorem 1 The STACKMST problem is NP-hard, even when restricted to planar
graphs.

Proof Given a planar graph G = (V ,E), with |V | = n and |E| = m, we construct an
instance of STACKMST with red costs in {1,2}. Let G′ = (V ′,R ∪ B) be the graph
for this instance, with (R,B) a bipartition of the edge set. We first let V ′ = V ∪ E.
The set of blue edges B is the set {ve : e ∈ E,v ∈ e}. Thus the blue subgraph is the
vertex-edge incidence graph of G, which is clearly planar. Given a planar embedding
of the blue subgraph, we connect all vertices e ∈ E of G′ by a tree, all edges of which
are red and have cost 1. The graph can be kept planar by letting those red edges be

J Comb Optim

Fig. 2 Illustration of the proof
of Theorem 1

nonintersecting chords of the faces of the embedding. Finally, we double all blue
edges by red edges of cost 2. The whole construction is illustrated in Fig. 2(a).

Let t be a positive integer. We show that the revenue for an optimal price function
for G′ is at least m + 2n − t − 1 if and only if there exists a connected vertex cover
of G of size at most t .

(⇐) We first suppose that there exists such a connected vertex cover C ⊆ V , and
show how to construct a price function yielding the given revenue.

From the set C, we can construct a tree made of blue edges that spans all vertices
e ∈ E of G′. The set of vertices of this tree is C ∪ E, and its edges are of the form
ue ∈ E′, with u ∈ C and e ∈ E (see Fig. 2(b)). This tree has t + m − 1 blue edges,
to which we assign price 1. Now we have to connect the remaining n − t vertices
belonging to V . Since the only red edges incident to these vertices have cost 2, we
can use n− t blue edges of price 2 to include these vertices in the minimum spanning
tree. The price of the other blue edges is set to ∞. The revenue for this price function
is exactly (t + m − 1) + 2(n − t) = m + 2n − t − 1.

(⇒) Now suppose that we have a price function yielding revenue at least m +
2n − t − 1. We can assume (see Cardinal et al. 2011) that all the prices belong to the
set {1,2,∞}. We also assume that the price function is optimal and minimizes the
number of red edges in the resulting spanning tree T .

J Comb Optim

First, we observe that T does not contain any red edge. By contradiction, if T
contains a red edge of cost 2, then this edge can be replaced by the parallel blue edge.
On the other hand, if T contains a red edge f of cost 1, we consider the cut defined
by removing f from T . In the face used to define f , there exists a blue edge having
its endpoints across the cut and does not belong to T . So we can use this blue edge,
with a price equal to 1, to reconnect the tree.

Now let us consider the blue edges of price 1 in T . We claim that the graph H
induced by these edges contains all vertices e ∈ E of G′ and is connected.

Clearly, all vertices e ∈ E of G′ are incident to a blue edge of price 1, otherwise
it can be reconnected to T with a red edge of cost 1, and T is not minimum. Thus
E ⊆ V (H), where V (H) is the vertex set of H . Letting C := V (H)∩V , we conclude
that C is a vertex cover of the original graph G.

Now we show that H is connected. Suppose otherwise; then there exist two ver-
tices of G′ in E that are connected by a red edge of cost 1, and belonging to two
different connected components H1 and H2 of H . Consider the (blue) edge that con-
nects H1 and H2 in T . This edge cannot have price 2 in T , since H1 and H2 are
connected by a red edge of cost 1. Hence the blue edge has price 1 and belongs to H .
Therefore H is connected and C is a connected vertex cover of G.

Finally the remaining vertices V − C of G′ must be leaves of T , since otherwise
they belong to a cycle containing a red edge of cost 1. The total cost of T is therefore
(m + |C| − 1) + 2(n − |C|) = m + 2n − |C| − 1. Since we know this is at least
m + 2n − t − 1, we conclude that |C| ≤ t . !

3 Series-parallel graphs

We now describe a polynomial-time dynamic programming algorithm for solving the
STACKMST problem on series-parallel graphs. These graphs are planar and have
treewidth at most 2.

We use the following inductive definition of (connected) series-parallel graphs.
Consider a connected graph G with two distinguished vertices s and t . The graph
(G, s, t) is a series-parallel graph if either G is a single edge (s, t), or G is a series or
parallel composition of two series-parallel graphs (G1, s1, t1) and (G2, s2, t2). The
series composition of G1 and G2 is formed by setting s = s1, t = t2 and identifying
t1 = s2; the parallel composition is formed by identifying s = s1 = s2 and t = t1 = t2.

We first give a number of useful lemmas and an outline of the dynamic program-
ming algorithm. This algorithm will use two main rules, corresponding to the series
and parallel composition operations. Once the two rules are defined, the description
of the algorithm is straightforward.

3.1 Preliminaries

Let us fix an instance of STACKMST, that is, a graph G with E(G) = R(G) ∪ B(G)
endowed with a cost function c : R(G) → R+. Denote by c1, c2, . . . , ck the different
values taken by c, in increasing order. Let also c0 := 0.

For two distinct vertices s, t ∈ V (G) of G and a subset F ⊆ B(G) of blue edges,
define P (G,F, s, t) as the set of st-paths in the graph (V (G),R(G) ∪ F). Let also

J Comb Optim

P̃ (G,F, s, t) denote the subset of paths in P (G,F, s, t) that contain at least one red
edge. A lemma of Cardinal et al. (2011) can be restated as follows.

Lemma 1 (Cardinal et al. 2011) Suppose that G contains a red spanning tree, and let
F ⊆ B(G) be an acyclic subset of blue edges. Then, the maximum revenue achievable
by the leader, over solutions where the set of blue edges bought by the follower is
exactly F , is obtained by setting the price of each edge st ,∈ F to +∞, and the price
of each edge st ∈ F to

min
{

max
e∈P∩R(G)

c(e) | P ∈ P̃(G,F, s, t)
}
.

This lemma states that if we know the set of blue edges that will eventually be
bought, the price of a selected blue edge st is given by the minimum, over the paths
from s to t , of the largest red cost on this path.

Motivated by this result, we introduce some more notations. For a subset Z ⊆
E(G) of edges, we define mc(Z) as the maximum cost of a red edge in Z if Z ∩
R(G) ,= ∅, as c0 = 0 otherwise. (The two letters mc stand for “max cost”.) We define
w(G,F, s, t) as

w(G,F, s, t) :=
{

min{mc(P) | P ∈ P (G,F, s, t)} if P (G,F, s, t) ,= ∅;
ck otherwise.

Similarly,

w̃(G,F, s, t) :=
{

min{mc(P) | P ∈ P̃(G,F, s, t)} if P̃ (G,F, s, t) ,= ∅;
ck otherwise.

Thus, the price assigned to the edge st ∈ F in Lemma 1 is w̃(G,F, s, t). Also, for
the purpose of induction, we will consider graphs that do not necessarily contain
a red spanning tree; this is why we need to treat the case where P (G,F, s, t) or
P̃ (G,F, s, t) is empty in the above definitions.

In what follows, we let [k] := {0,1, . . . , k}. Our dynamic programming solution
for series-parallel graphs associates a value to each pair (H,q), where q ∈ [k]2, and
H is a graph appearing in the series-parallel decomposition of G.

A subset F ⊆ B(G) of blue edges realizes q = (i, j) ∈ [k]2 in (G, s, t) if F is
acyclic and w(G,F, s, t) = ci . Although this property does not depend on j , the
formulation will appear to be convenient. Similarly, we say that q is realizable in
(G, s, t) if there exists such a subset F .

For j ∈ [k] and distinct vertices s, t ∈ V (G), let G+ denote the graph G with an
additional red edge between s and t of cost cj . We define

OPT(i,j)(G, s, t)

:= max
{ ∑

uv∈F

w̃(G+,F,u, v)
∣∣∣F ⊆ B(G),F realizes (i, j) in (G, s, t)

}
,

if such a subset F exists, and set OPT(i,j)(G, s, t) := −∞ otherwise.

J Comb Optim

Intuitively, we want to keep track of optimal acyclic subsets of blue edges for every
graph G obtained during the construction of a series-parallel graph. The problem is,
that the weights of the blue edges in the optimal solution might change as we compose
graphs in the series-parallel decomposition. However, the weights of edges depend
only on the maximum red costs, or bottlenecks, of the new st-paths that will be added
to G. We can thus prepare OPT(G, s, t) for every possible set of bottlenecks. These
bottlenecks are the values j in what precedes. The value i then corresponds to the
new bottleneck that is realized, to be taken into account in future compositions.

Note that by Lemma 1, if G has a red spanning tree, then the maximum revenue
achievable by the leader on instance G equals

max
i∈[k]

OPT(i,j)(G, s, t).

This will be the result returned by the dynamic programming solution.

3.2 Series compositions

Let q = (i, j), q1 = (i1, j1), and q2 = (i2, j2), with q, q1, q2 ∈ [k]2. We say that the
pair (q1, q2) is series-compatible with q if

1. max{i1, i2} = i;
2. max{j, i2} = j1, and
3. max{j, i1} = j2.

Notice that (q1, q2) is series-compatible with q if and only if (q2, q1) is.
This condition allows us to use the following recursion in our dynamic program-

ming algorithm.

Lemma 2 Suppose that (G, s, t) is a series composition of (G1, s1, t1) and
(G2, s2, t2), and that q ∈ [k]2 is realizable in (G, s, t). Then

OPTq(G, s, t) = max{OPTq1(G1, s1, t1)

+ OPTq2(G2, s2, t2) | (q1, q2) is series-compatible with q}.

We now prove that the recursion is valid. We need the following lemmas. In what
follows, (G, s, t) is a series composition of (G1, s1, t1) and (G2, s2, t2); q, q1, q2 ∈
[k]2 with q = (i, j), q1 = (i1, j1), and q2 = (i2, j2) are such that (q1, q2) is series-
compatible with q; and F! ⊆ B(G!) realizes q! in (G!, s, t), for ! = 1,2.

We first observe that F := F1 ∪ F2 realizes q .

Lemma 3 F realizes q in (G, s, t).

Proof Since V (G1) ∩ V (G2) = {t1} (= {s2}), the set F is clearly acyclic. It remains
to show w(G,F, s, t) = ci . Every st-path in P (G,F, s, t) is the combination of an
s1t1-path of P (G1,F1, s1, t1) with an s2t2-path of P (G2,F2, s2, t2). It follows

w(G,F, s, t) = max{w(G1,F1, s1, t1),w(G2,F2, s2, t2)} = max{ci1, ci2} = ci,

J Comb Optim

where the last equality is from (S1). !

The proof of the next lemma is illustrated on Fig. 3. It motivates the definition of
series-compatibility.

Lemma 4 Let G+ be the graph G augmented with a red edge st of cost cj , and
G+

! (for ! = 1,2) the graph G! augmented with a red edge s!t! of cost cj! . Then for
! = 1,2 and every edge uv ∈ F!,

w̃(G+,F,u, v) = w̃(G+
! ,F!, u, v).

Proof We prove the statement for ! = 1, the case ! = 2 follows by symmetry. Let
uv ∈ F1, and let e = st and e1 = s1t1 be the additional red edges in G+ and G+

1 ,
respectively.

We first show:

Claim 3.1 w̃(G+,F,u, v) ≥ w̃(G+
1 ,F1, u, v).

Proof The claim is true if P̃(G+,F,u, v) = ∅, since then w̃(G+,F,u, v) = ck ≥
w̃(G+

1 ,F1, u, v). Suppose thus P̃ (G+,F,u, v) ,= ∅, and let P ∈ P̃(G+,F,u, v). It
is enough to show that mc(P) ≥ w̃(G+

1 ,F1, u, v). This clearly holds if e /∈ E(P), as
P belongs then also to P̃ (G+

1 ,F1, u, v) (recall that |V (G1) ∩ V (G2)| = 1). Hence,
we may assume e ∈ E(P). It follows s1, t1 ∈ V (P).

Let s1P t1 denote the subpath of P comprised between s1 and t1. Also let P1 denote
the path of P̃ (G+

1 ,F1, u, v) obtained by replacing the subpath s1P t1 of P with the
edge e1. Using (S2), we obtain

mc(s1P t1) = max{cj ,mc(t2P t1)} ≥ max{cj , ci2} = cj1,

implying mc(P) ≥ mc(P1) ≥ w̃(G+
1 ,F1, u, v). !

Conversely, we prove:

Claim 3.2 w̃(G+,F,u, v) ≤ w̃(G+
1 ,F1, u, v).

Proof Again, this trivially holds if P̃(G+
1 ,F1, u, v) is empty. Suppose thus

P̃ (G+
1 ,F1, u, v) ,= ∅, and let P1 ∈ P̃ (G+

1 ,F1, u, v). Similarly as before, it is enough
to show that w̃(G+,F,u, v) ≤ mc(P1). This is true if e1 /∈ E(P1), since then
P1 ∈ P̃ (G+,F,u, v). Assume thus e1 ∈ E(P1).

If P (G2,F2, s2, t2) = ∅, then i2 = k and mc(P1) ≥ cj1 = max{cj , ci2} = ck ≥
w̃(G+,F,u, v) by (S2). We may thus assume that P (G2,F2, s2, t2) contains a path
P2; we choose P2 such that mc(P2) = ci2 .

J Comb Optim

Fig. 3 Series composition:
illustration of the proof of
Lemma 4

Denote by P the path obtained from P1 by replacing the edge e1 with the combi-
nation of edge e and path P2. Since P ∈ P̃(G+,F,u, v), (S2) yields

mc(P1) = max
{
cj1,mc(P1 − e1)

}

= max
{
cj , ci2,mc(P1 − e1)

}

= max
{
cj ,mc(P2),mc(P1 − e1)

}

= mc(P)

≥ w̃(G+,F,u, v).

!

The lemma follows from Claims 3.1 and 3.2. !

We are now ready to prove the correctness of the recursion step in Lemma 2.

Proof of Lemma 2 Let q and G+ be defined as before. We first show:

Claim 3.3 There exist q1, q2 ∈ [k]2 such that (q1, q2) is series-compatible with q and
OPTq(G, s, t) ≤ OPTq1(G1, s, t) + OPTq2(G2, s, t).

Proof Let F ⊆ B(G) be a subset of blue edges realizing q in (G, s, t) such that

OPTq(G, s, t) =
∑

uv∈F

w̃(G+,F,u, v).

For ! = 1,2, let also F! := F ∩ E(G!) and q! := (i!, j!), with i! the index such
that ci! = w(G!,F!, s!, t!), and j! := max{j, i!+1} (indices are taken modulo 2). F!

(! = 1,2) clearly realizes q! in (G!, s!, t!). It is also easily verified that (q1, q2) is
series-compatible with q . Hence we can apply Lemma 4:

OPTq(G, s, t) =
∑

uv∈F

w̃(G+,F,u, v)

=
∑

uv∈F1

w̃(G+
1 ,F1, u, v) +

∑

uv∈F2

w̃(G+
2 ,F2, u, v)

J Comb Optim

≤ OPTq1(G1, s1, t1) + OPTq2(G2, s2, t2),

as claimed. !

We now prove:

Claim 3.4 OPTq(G, s, t) ≥ OPTq1(G1, s1, t1) + OPTq2(G2, s2, t2) holds for every
q1, q2 ∈ [k]2 such that (q1, q2) is series-compatible with q .

Proof Suppose that (q1, q2) is series-compatible with q . Let F! ⊆ B(G!) (! = 1,2)
be a subset of blue edges of G! such that

OPTq!(G!, s!, t!) =
∑

uv∈F!

w̃(G+
! ,F!, u, v).

By Lemma 3, F := F1 ∪ F2 realizes q in (G, s, t). Using again Lemma 4, we have:

OPTq(G, s, t) ≥
∑

uv∈F

w̃(G+,F,u, v)

=
∑

uv∈F1

w̃(G+
1 ,F1, u, v) +

∑

uv∈F2

w̃(G+
2 ,F2, u, v)

= OPTq1(G1, s1, t1) + OPTq2(G2, s2, t2),

and the claim follows. !

The lemma follows from Claims 3.3 and 3.4. !

3.3 Parallel compositions

The recursion step for parallel compositions follows a similar scheme. Let q, q1, q2 ∈
[k]2 with q = (i, j), q1 = (i1, j1), and q2 = (i2, j2). We say that the pair (q1, q2) is
parallel-compatible with q if

1. at least one of i1, i2 is non-zero;
2. min{i1, i2} = i;
3. min{j, i2} = j1, and
4. min{j, i1} = j2.

The recursion step for parallel composition is as follows.

Lemma 5 Suppose that (G, s, t) is a parallel composition of (G1, s, t) and (G2, s, t),
and that q ∈ [k]2 is realizable in (G, s, t). Then

OPTq(G, s, t) = max{OPTq1(G1, s, t)

+ OPTq2(G2, s, t) | (q1, q2) is parallel-compatible with q}.

J Comb Optim

In what follows, (G, s, t) is a parallel composition of (G1, s, t) and (G2, s, t);
(q1, q2) is parallel-compatible with q; and F! ⊆ B(G!) realizes q! in (G!, s, t), for
! = 1,2. Also, F := F1 ∪ F2.

Similarly to Lemma 3, the definition of parallel-compatibility implies the follow-
ing lemma.

Lemma 6 F realizes q in (G, s, t).

Proof We have to prove that F is acyclic and that w(G,F, s, t) = ci .
First, suppose that (V (G),F) contains a cycle C. Since F1 and F2 are both

acyclic, C includes the vertices s and t , and moreover E(G1)∩E(C), E(G2)∩E(C)

are both non-empty. But then, there is an st-path in (V (G),F!) for ! = 1,2, implying
i1 = i2 = 0, which contradicts (P1). Hence, F is acyclic.

Now, since each path of P (G,F, s, t) is included in either P (G1,F1, s, t) or
P (G2,F2, s, t), it follows w(G,F, s, t) = min{w(G1,F1, s, t),w(G2,F2, s, t)} =
min{ci1, ci2}, which equals ci by (P2). !

The next lemma is the analogue of Lemma 4 for parallel compositions.

Lemma 7 Let G+ be the graph G augmented with a red edge st of cost cj , and let
G+

! (for ! = 1,2) be the graph G! augmented with a red edge s!t! of cost cj! . Then
for ! = 1,2 and every edge uv ∈ F!,

w̃(G+,F,u, v) = w̃(G+
! ,F!, u, v).

Proof We prove the statement for ! = 1, the case ! = 2 follows by symmetry. Let
e = st and e1 = s1t1 be the additional red edges in G+ and G+

1 , respectively.
Let uv ∈ F1. Observe that P̃ (G+,F,u, v) is empty if and only if P̃(G+

1 ,F1, u, v)

is. If both are empty, then w̃(G+,F,u, v) = w̃(G+
1 ,F1, u, v) = ck , and the claim

holds. Hence, we may assume P̃ (G+,F,u, v) ,= ∅ and P̃(G+
1 ,F1, u, v) ,= ∅.

We first show:

Claim 3.5 w̃(G+,F,u, v) ≤ w̃(G+
1 ,F1, u, v).

Proof Let P1 ∈ P̃(G+
1 ,F1, u, v). It is enough to show w̃(G+,F,u, v) ≤ mc(P1).

If e1 /∈ E(P1), then P1 ∈ P̃ (G+,F,u, v), and w̃(G+,F,u, v) ≤ mc(P1) holds by
definition. Hence we may assume e1 ∈ E(P1).

By (P3), we have j1 = min{j, i2}. If j1 = j , then replacing the edge e1 of P1 by e

yields a path P ∈ P̃(G+,F,u, v) with mc(P) = mc(P1), implying w̃(G+,F,u, v) ≤
mc(P1). Similarly, if j1 = i2 < j , then i2 < k, implying that P (G2,F2, s, t) is
not empty. Replacing in P1 the edge e1 with any path P2 ∈ P (G2,F2, s, t) with
mc(P2) = ci2 gives again a path P with mc(P) = mc(P1). While the path P2 does
not necessarily contain a red edge, the path P , on the other hand, cannot be com-
pletely blue. This is because otherwise F contains the cycle P ∪ {uv}, contradicting
the fact that F is acyclic (as follows from Lemma 6). Hence, P ∈ P̃(G+,F,u, v),
and w̃(G+,F,u, v) ≤ mc(P) = mc(P1). Claim 3.5 follows. !

J Comb Optim

Conversely, we prove:

Claim 3.6 w̃(G+,F,u, v) ≥ w̃(G+
1 ,F1, u, v).

Proof Let P ∈ P̃ (G+,F,u, v). Again, it is enough to show mc(P) ≥ w̃(G+
1 ,F1, u, v).

This clearly holds if P ∈ P̃ (G+
1 ,F1, u, v). Hence, we may assume s, t ∈ V (P), and

that the subpath sP t of P either belongs to P (G2,F2, s, t), or corresponds to the
edge e (by sP t we denote the subpath of P that is between vertices s and t).

In the first case, ci2 ≤ mc(sP t) holds by definition. Moreover, j1 ≤ i2 follows
from (P3). Therefore, replacing the subpath sP t of P with the edge e1 yields a path
P1 ∈ P̃ (G+

1 ,F1, u, v) with mc(P1) ≤ mc(P), implying w̃(G+
1 ,F1, u, v) ≤ mc(P).

Similarly, (P3) implies j1 ≤ j in the second case. Hence, replacing the edge e of
P with e1 results in a path P1 ∈ P̃ (G+

1 ,F1, u, v) with mc(P1) ≤ mc(P), showing
w̃(G+

1 ,F1, u, v) ≤ mc(P). This completes the proof of Claim 3.6. !

Lemma 7 follows from Claims 3.5 and 3.6. !

Using the two previous lemmas, the proof of Lemma 5 is the same as that of
Lemma 2 for series composition. We omit it.

3.4 The Algorithm

Theorem 2 The STACKMST problem can be solved in O(m4) time on series-
parallel graphs.

Proof A series-parallel decomposition of a connected series-parallel graph can be
computed in linear time (Valdes et al. 1982). Given such a decomposition, Lemmas 2
and 5 yield the following algorithm: consider each graph (H, s, t) in the decomposi-
tion tree in a bottom-up fashion.

If H is a single edge st , we directly compute OPTq(H, s, t) for every q ∈ [k]2. In
particular, if H is a single red edge of cost ch, then OPT(i,j)(H, s, t) = 0 if i = h, and
−∞ otherwise. On the other hand, if H is a single blue edge, then OPT(i,j)(H, s, t) is
equal to cj if i = 0 (corresponding to the case F = {st}), to 0 if i = k (corresponding
to the case F = ∅), and to −∞ otherwise.

If (H, s, t) is a series or parallel composition of (H1, s1, t1) and (H2, s2, t2), com-
pute OPTq(H, s, t) for every q ∈ [k]2 based on the previously computed values for
(H1, s1, t1) and (H2, s2, t2), relying on Lemmas 2 and 5.

For every q = (i, j) ∈ [k]2, there are O(k) possible values for either series-
compatible or parallel-compatible pairs (q1, q2). Hence every step costs O(k) times.
Since there are O(k2) possible values for q , and O(m) graphs in the decomposition
of G, the overall complexity is O(k3m) = O(m4).

This results in a polynomial-time algorithm computing the maximum revenue
achievable by the leader. Moreover, using Lemmas 3 and 6, it is not difficult
to keep track at each step of a witness F ⊆ B(H) for OPTq(H, s, t), whenever
OPTq(H, s, t) > −∞. This proves the theorem. !

An example of execution of the algorithm is given in Fig. 4.

J Comb Optim

Fig. 4 An example of execution of the dynamic programming algorithm for STACKMST on series-par-
allel graphs. The graph is constructed using two series compositions and two parallel compositions. The
pairs (i, j),OPT(i,j)(H, s, t) are shown for each intermediate graph (H, s, t) of the decomposition. The
value 3 shown in boldface in the top table is the maximum achievable profit

4 Bounded-treewidth graphs

In the previous section, we gave a polynomial-time algorithm for solving the
STACKMST problem on series-parallel graphs, which have treewidth at most 2. In
this section, we extend the algorithm to handle graphs of bounded treewidth, as indi-
cated by the following theorem.

Theorem 3 The STACKMST problem can be solved in 2O(t3)m + mO(t2) time on
graphs of treewidth t .

The treewidth of a graph G is usually defined as the minimum width of a tree
decomposition of G. Since we will not use tree decompositions explicitly, we skip the
definition (see for instance Diestel 2005). Instead we will rely on the fact, first proved
by Abrahamson and Fellows (1993), that every graph of treewidth t is isomorphic to a
t-boundaried graph, which is defined as a graph with t distinguished vertices (called
boundary vertices), each uniquely labeled by a label in {1, . . . , t}, which can be build
recursively using the following operators:

J Comb Optim

1. The null operator ∅ creates an t-boundaried graph having only t boundary ver-
tices, and they are all isolated.

2. The binary operator ⊕ takes the disjoint union of two t-boundaried graphs and
identify the ith boundary vertex of the first graph with the ith boundary vertex
of the second graph. Thus the edges between two boundary vertices of G1 ⊕ G2
correspond to the union of the edges between these vertices in G1 and in G2.
(Observe that this operation is exactly a parallel-composition if there are only two
boundary vertices.)

3. The unary operator η introduces a new isolated vertex and makes this the new
vertex with label 1 in the boundary. The previous vertex that was labeled 1 is
removed from the boundary (but not from the graph).

4. The unary operator ε adds an edge between the vertices labeled 1 and 2 in the
boundary.

5. Unary operators that permute the labels of the boundary vertices.

We note that, conversely, every t-boundaried graph has treewidth at most t (but
not necessarily exactly t). The set of boundary vertices of a t-boundaried graph G

is denoted by ∂(G). Every t-boundaried graph on n vertices can be constructed by
applying O(tn) compositions according to the above five operators. This construction
as well as the boundary vertices can be found in 2O(t3)m time (Bodlaender 1996)
(note that is linear time is t is a fixed constant).

To summarize, in order to prove Theorem 3, it is enough to show that the
STACKMST problem can be solved in mO(t2) time on t-boundaried graphs when
the above-mentioned construction is also given in input.

4.1 Definitions

Consider an instance G of the STACKMST problem with R(G) and B(G) denoting
the set of red and blue edges, respectively, and with cost function c : R(G) → R+ on
the set of red edges. As usual, denote by c1, c2, . . . , ck the different values taken by
c, in increasing order, and let c0 := 0.

For two distinct vertices u,v ∈ V (G) of G and a subset F ⊆ B(G) of blue edges,
the sets P (G,F,u, v) and P̃ (G,F,u, v) are defined exactly as in Sect. 3.1, that is,
P (G,F,u, v) is the set of uv-paths in (V (G),R(G) ∪ F), while P̃(G,F,u, v) de-
notes the subset of those paths that contain at least one red edge. The correspond-
ing quantities w(G,F,u, v) and w̃(G,F,u, v) are also defined as before, that is,
w(G,F,u, v) is the minimum of mc(P) over every path P ∈ P (G,F,u, v), with
w(G,F,u, v) := ck if there is no such path, and w̃(G,F,u, v) is defined in the same
way but with respect to P̃ (G,F,u, v).

Now let us further assume the instance G is a t-boundaried graph, and let us con-
sider two distinct boundary vertices a, b ∈ ∂(G). An ab-path of G is said to be inter-
nal if the only boundary vertices of G it includes are a and b. For F ⊆ B(G), the sets
Pint(G,F,a, b) and P̃int(G,F,a, b) are defined as P (G,F,a, b) and P̃(G,F,a, b),
respectively, but with the additional requirement that the ab-paths under considera-
tion are internal ab-paths. The quantities wint(G,F,a, b) and w̃int(G,F,a, b) are de-
fined with respect to Pint(G,F,a, b) and P̃int(G,F,a, b), respectively, as expected.

J Comb Optim

For clarity, in what follows we will use the following convention: the letters a and
b will always denote vertices in the boundary of G, while u and v will be used for
arbitrary (possibly non-boundary) vertices of G.

A k-graph on the boundary of G, or simply k-graph when G is clear from the
context, is a triple I = (K,f,g) where K is a complete graph with vertex set ∂(G),
and f : E(K) → [k] and g : E(K) → [k] are two functions assigning weights in
[k] to the edges of K . (Let us recall that, by our convention, [k] denotes the set
{0,1, . . . , k}.) We say that a subset F ⊆ B(G) of blue edges of G realizes a k-graph
I = (K,f,g) if F is acyclic, and for every two distinct vertices a, b ∈ ∂(G) we have
wint(G,F,a, b) = cf (ab) (thus there is no condition on g). The k-graph I is said
to be realizable in G if there exists such a subset F of blue edges. Notice that this
is a direct extension of the notion of realizability introduced in Sect. 3.1 for series-
parallel graphs. We define G + I as the (t-boundaried) graph obtained from G by
adding, for every two distinct vertices a, b ∈ ∂(G), a red edge connecting a and b
with cost cg(ab). We let OPTI (G) be defined as follows:

OPTI (G) := max
{ ∑

uv∈F

w̃(G + I,F,u, v)
∣∣∣F ⊆ B(G),F realizes I in G

}
.

In cases where OPTI (G) is undefined (that is, I is not realizable), then we set
OPTI (G) = −∞.

With these definitions, the dynamic program that will be used is a straightforward
generalization of the series-parallel case: We store for every t-boundaried graph H
appearing in the construction of our t-boundaried input graph G the value OPTI (H)
for every k-graph I , together with a corresponding optimal acyclic subset F of blue
edges (if OPTI (H) > −∞). The value returned by the dynamic programming so-
lution is then the maximum of OPTI (G) over all k-graphs I , and a corresponding
acyclic subset of blue edges of G is returned. By Lemma 1, this is the maximum
revenue achievable by the leader.

Now we consider the five operators appearing in the definition of t-boundaried
graphs, and show for each of them how to compute OPTI (G) from already computed
values when G results from the application of the operator.

4.2 The null operator ∅

We begin with the null operator ∅ that creates a new graph G with t isolated boundary
vertices labeled 1, . . . , t . Consider an arbitrary k-graph I = (K,f,g) on the boundary
of G. If f (ab) < k for some edge ab ∈ E(K), then I is not realizable in G, because
there is no internal ab-path in G. Thus we set OPTI (G) := −∞ in this case.

If, on the other hand, f (e) = k for every e ∈ E(K), then the subset F = ∅ of blue
edges of G realizes I , and it is of course the only one since B(G) = ∅. Hence we let
OPTI (G) := 0 (associated with the set F = ∅).

4.3 The binary operator ⊕

The ⊕ operator is very similar to a parallel-composition of series-parallel graphs.
Suppose that G = G1 ⊕ G2, and let I = (K,f,g) be an arbitrary k-graph on the

J Comb Optim

boundary of G. We extend the notion of parallel-compatibility from Sect. 3.3 as fol-
lows: If I1 = (K1, f1, g1) and I2 = (K2, f2, g2) are two k-graphs, then we say that the
pair (I1, I2) is ⊕-compatible with I if Ii (i = 1,2) is realizable in Gi , and moreover
the following five conditions are satisfied for every e ∈ E(K):

(1) at least one of f1(e) and f2(e) is non-zero;
(2) f (e) = min{f1(e), f2(e)};
(3) g1(e) = min{g(e), f2(e)};
(4) g2(e) = min{g(e), f1(e)}, and
(5) for every cycle C in K , there exists i ∈ {1,2} such that fi(e) > 0 for every e ∈

E(C).

Our goal is to compute OPTI (G) based on values already computed for G1 and G2.
This is achieved by the following lemma.

Lemma 8 Assume that G, I , G1 and G2 are as above, and suppose further that I is
realizable in G. Then

OPTI (G) = max{OPTI1(G1) + OPTI2(G2) | (I1, I2) is ⊕-compatible with I }.

(Let us remark that, if I is not realizable in G, then we trivially have OPTI (G) =
−∞.) The proof of Lemma 8 is a generalization of the proof of Lemma 5 for parallel
compositions and consists of a few steps. First we prove the following lemma, which
is similar to Lemma 6.

Lemma 9 Suppose that Ii = (Ki, fi, gi) is a k-graph realized in Gi by a subset
Fi ⊆ B(Gi) of blue edges of Gi , for i = 1,2, and assume further that (I1, I2) is
⊕-compatible with I . Then F := F1 ∪ F2 realizes I in G.

Proof We have to prove that F is acyclic and that wint(G,F,a, b) = cf (ab) for every
edge ab ∈ E(K).

First, suppose that (V (G),F) contains a cycle C. Since F1 and F2 are both
acyclic, C includes at least two distinct boundary vertices a and b, and moreover
E(G1)∩E(C), E(G2)∩E(C) are both non-empty. If a and b are the only boundary
vertices in C then there is an ab-path in (V (G),F1) and an ab-path in (V (G),F2),
implying that f1(ab) = f2(ab) = 0, which contradicts condition (1) from the defini-
tion of ⊕-compatibility.

If, on the other hand, C contains at least three boundary vertices, choose an ori-
entation of C and an arbitrary vertex a1 ∈ ∂(G) ∩ V (C), and enumerate the vertices
in ∂(G) ∩ V (C) as a1, a2, . . . , ap according to the order in which they appear when
walking on C from a1 in the chosen orientation. By condition (5), there is an index
j ∈ {1,2} such that fj (aiai+1) > 0 for every i ∈ {1, . . . , p} (taking indices modulo
p). We may assume without loss of generality that this is the case for j = 1.

For every i ∈ {1, . . . , p}, the (oriented) path from ai to ai+1 in C is a subgraph of
(V (G),F1) or (V (G),F2), since it does not contain other boundary vertices than ai

and ai+1. This path cannot be a subgraph of (V (G),F1) since f1(aiai+1) > 0, hence
it is contained in (V (G),F2). However, it follows then that C itself is a subgraph

J Comb Optim

of (V (G),F2), which contradicts the fact that F2 is acyclic. Therefore, F must be
acyclic.

Now, consider two distinct vertices a, b ∈ ∂(G). Clearly Pint(G1,F1, a, b) ∪
Pint(G2,F2, a, b) ⊆ Pint(G,F,a, b). By definition, each path P ∈ Pint(G,F,a, b)

has no other boundary vertices than a and b, hence P is included in either
Pint(G1,F1, a, b) or Pint(G2,F2, a, b). It follows that Pint(G,F,a, b) =
Pint(G1,F1, a, b) ∪ Pint(G2,F2, a, b). This in turn implies wint(G,F,a, b) =
min{wint(G1,F1, a, b),wint(G2,F2, a, b)} = min{cf1(ab), cf2(ab)}, which is equal to
cf (ab) by condition (2). !

The next lemma is the analogue of Lemma 7 from Sect. 3.3.

Lemma 10 Let I1 = (K1, f1, g1), I2 = (K2, f2, g2), F1, F2, and F be as in
Lemma 9. Then, for i = 1,2, and every edge uv ∈ Fi , we have

w̃(G + I,F,u, v) = w̃(Gi + Ii,Fi, u, v).

Proof We prove the statement for i = 1, the case i = 2 follows by symmetry.
For every two distinct vertices a, b ∈ ∂(G), let eab and eab

1 be the additional red
edges in G + I and G + I1, respectively, between the boundary vertices a and b.

Let uv ∈ F1. We first show:

Claim 4.1 w̃(G + I,F,u, v) ≤ w̃(G + I1,F1, u, v).

Proof If P̃(G+ I1,F1, u, v) is empty then trivially w̃(G+ I,F,u, v) ≤ ck = w̃(G+
I1,F1, u, v), thus we may assume P̃(G + I1,F1, u, v) ,= ∅.

Let P1 be a path in P̃(G + I1,F1, u, v) with mc(P1) = w̃(G + I1,F1, u, v) and
minimizing its length. We will show the existence of a path P in P̃ (G + I,F,u, v)

with mc(P) ≤ mc(P1). Since w̃(G + I,F,u, v) ≤ mc(P), this will imply the claim.
If P1 includes at most one boundary vertex, then P1 ∈ P̃ (G + I,F,u, v) and we

are done. Hence we may assume that P1 includes at least two boundary vertices.
Enumerate the boundary vertices that are included in P1 as a1, . . . , ap , in the order
in which they appear when going from u to v. Let X be the set of indices i ∈ {1, . . . ,

p − 1} such that the subpath aiP1ai+1 of P1 consists of the edge e
aiai+1
1 . The latter

edges are exactly the edges of P1 that do no exist in G + I . (Note that there could be
none, that is, X could be empty.)

For every i ∈ X, we have by condition (3) from the definition of ⊕-compatibility
that g1(aiai+1) is equal to the minimum of g(aiai+1) and f2(aiai+1). We define
an internal aiai+1-path Qi as follows: If g1(aiai+1) = g(aiai+1), then Qi consists
simply of the edge eaiai+1 . Otherwise, we let Qi be a path in Pint(G2,F2, ai, ai+1)

with mc(Qi) = f2(aiai+1) = g1(aiai+1). (Observe that such a path exists since F2
realizes I2 in G2.) In both cases, Qi is a path which is a subgraph of G + I .

We claim that, for every i, j ∈ X with i < j , the path Qi is internally disjoint from
Qj (that is, the only vertex they may have in common is ai+1 provided j = i + 1).
Arguing by contradiction, assume otherwise. Then the union of Qi and Qj contains
an internal aiaj+1-path R, and this path satisfies mc(R) ≤ max{mc(Qi),mc(Qj)} =

J Comb Optim

max{g1(aiai+1), g1(aj aj+1)} ≤ mc(P1). But then it follows from condition (3) that
g1(aiaj+1) ≤ mc(R) ≤ mc(P1). Thus, replacing the aiP1aj+1 subpath of P1 with
the edge e

aiaj+1
1 gives a path P ′

1 in P̃ (G + I1,F1, u, v) with mc(P ′
1) ≤ mc(P1) =

w̃(G+ I1,F1, u, v) (and hence with mc(P ′
1) = w̃(G+ I1,F1, u, v)), which is shorter

than P1, a contradiction.
For each i ∈ X, the path Qi has no other vertex in common with P1 than its two

endpoints (since Qi is an internal aiai+1-path from G2). Relying on the fact that
the Qi ’s are pairwise internally disjoint, we let P be the path obtained from P1 by
replacing, for every i ∈ X, the edge e

aiai+1
1 with the path Qi . The path P must contain

at least one red edge, because otherwise P + uv would be a cycle in (V (G),F),
contradicting Lemma 9. Thus P is in P̃ (G + I,F,u, v). Moreover, by our choice of
the Qi ’s, we have mc(P) ≤ mc(P1), as desired. !

Conversely, we prove:

Claim 4.2 w̃(G + I,F,u, v) ≥ w̃(G + I1,F1, u, v).

Proof If P̃ (G + I,F,u, v) is empty then w̃(G + I,F,u, v) = ck ≥ w̃(G + I1,

F1, u)v, thus we may suppose that P̃ (G + I,F,u, v) is not empty.
We have to show that mc(P) ≥ w̃(G + I1,F1, u, v) for every P ∈ P̃ (G +

I,F,u, v). Consider such a path P . If P includes at most one boundary vertex, then
P ∈ P̃ (G + I,F,u, v) and we are done. So assume P contains at least two boundary
vertices, and enumerate them as a1, . . . , ap as in the proof of the previous claim.

For every i ∈ {1, . . . , p − 1}, the subpath Qi := aiPai+1 of P is either in
Pint(G1,F1, ai, ai+1), or in Pint(G2,F2, ai, ai+1), or consists of the edge eaiai+1 .
Observe that, in the second case, we have g1(aiai+1) ≤ f2(aiai+1) ≤ mc(Qi) by
condition (3), and in the last case g1(aiai+1) ≤ g(aiai+1) = mc(Qi) by the same con-
dition. Hence, if for every i ∈ {1, . . . , p − 1} such that Qi /∈ Pint(G1,F1, ai, ai+1),
we replace the subpath Qi of P with the edge eaiai+1 , we obtain a path P1 which
is in P̃(G + I1,F1, u, v) and which satisfies mc(P1) ≤ mc(P). Since w̃(G +
I1,F1, u, v) ≤ mc(P1), this completes the proof. !

Lemma 10 follows from Claims 4.1 and 4.2. !

We may now turn to the proof of Lemma 8.

Proof of Lemma 8 We first show:

Claim 4.3 There exist k-graphs I1 and I2 such that (I1, I2) is ⊕-compatible with I

and OPTI (G) ≤ OPTI1(G1) + OPTI2(G2).

Proof Let F ⊆ B(G) be a subset of blue edges realizing I in G such that

OPTI (G) =
∑

uv∈F

w̃(G + I,F,u, v).

J Comb Optim

For i = 1,2, let Fi := F ∩ E(Gi), and let Ii = (Ki, fi, gi) be the k-graph ob-
tained by letting, for every ab ∈ E(K), fi(ab) be the index j ∈ [k] such that
cj = wint(Gi,Fi, a, b), and gi(ab) := min{g(ab), fi+1(ab)} (indices are taken mod-
ulo 2). Observe that Fi realizes Ii in Gi , for i = 1,2.

Let us show that (I1, I2) is ⊕-compatible with I . Condition (1) from the definition
of ⊕-compatibility is satisfied because otherwise the graph (V (G),F) would have a
cycle. It should be clear from the definitions of I1 and I2 that conditions (2), (3) and
(4) are also satisfied. Hence, it remains to check condition (5). Arguing by contradic-
tion, let us assume it is not satisfied, that is, that there exists a cycle in K containing
two edges e and e′ such that f1(e) = 0 and f2(e

′) = 0. Such a cycle is said to be bad.
Let C be a shortest bad cycle in K . Consider an arbitrary orientation of C and

enumerate the vertices of C as a1, a2, . . . , ap , in order. By condition (1), for every
i ∈ {1, . . . , p} there is a unique index j ∈ {1,2} such that fj (aiai+1) = 0 (indices are
taken modulo p); let ϕ(i) denote this index.

Let Qi be the (unique) aiai+1-path in (V (Gϕ(i)),Fϕ(i)), for every i ∈ {1, . . . , p}.
Note that Qi is necessarily an internal aiai+1-path, that is, Qi does not contain any
other boundary vertex than ai and ai+1. We claim that the Qi ’s are pairwise internally
disjoint. Assume this is not the case, that is, that Qi and Qj share an internal vertex
v for some i, j ∈ {1, . . . , p} with i < j . Since v is not a boundary vertex, we must
have ϕ(i) = ϕ(j). For simplicity, assume without loss of generality that ϕ(i) = 1.
For every a ∈ {ai, ai+1} and b ∈ {aj , aj+1} with a ,= b, there is an internal ab-path
in the union of Qi and Qj , implying f1(ab) = 0. If |C| ≥ 4 then a and b can be
chosen such that ab is not an edge of C. Then the chord ab splits C into two cycles,
at least one of which is bad. However, this implies that there is a bad cycle in K that is
shorter than C, a contradiction. If |C| = 3, then it follows that f1(a1a2) = f1(a2a3) =
f1(a3a1) = 0. But we also have f2(aiai+1) = 0 for some i ∈ {1,2,3} since C is bad,
which contradicts condition (1). Since in both cases we reach a contradiction, we
deduce that the Qi ’s must be pairwise internally disjoint.

Let C′ be obtained from the cycle C by replacing each edge aiai+1 (i ∈ {1, . . . , p})
with the path Qi . Then C′ is a cycle, since Qi and Qj are internally disjoint for
every i < j , and is a subgraph of (V (G),F), contradicting the fact that F is acyclic.
Therefore, there cannot be any bad cycle in K , and condition (5) holds.

Now that we know that (I1, I2) is ⊕-compatible with I , we may apply Lemma 10:

OPTI (G) =
∑

uv∈F

w̃(G + I,F,u, v)

=
∑

uv∈F1

w̃(G + I1,F1, u, v) +
∑

uv∈F2

w̃(G + I2,F2, u, v)

≤ OPTI1(G1) + OPTI2(G2).

!

Next we prove:

Claim 4.4 OPTI (G) ≥ OPTI1(G1) + OPTI2(G2) holds for every I1, I2 such that
(I1, I2) is ⊕-compatible with I .

J Comb Optim

Proof Suppose that (I1, I2) is ⊕-compatible with I . Let Fi ⊆ B(Gi) (i = 1,2) be a
subset of blue edges of Gi realizing Ii such that

OPTIi (Gi) =
∑

uv∈Fi

w̃(G + Ii,Fi, u, v).

By Lemma 9, F := F1 ∪ F2 realizes I in G. By Lemma 10, we have:

OPTI (G) ≥
∑

uv∈F

w̃(G + I,F,u, v)

=
∑

uv∈F1

w̃(G + I1,F1, u, v) +
∑

uv∈F2

w̃(G + I2,F2, u, v)

= OPTI1(G1) + OPTI2(G2).

!

Lemma 8 follows from Claims 4.3 and 4.4. !

4.4 The unary operator η

Suppose that G = η(G′), that is, that G is obtained from G′ by adding a new isolated
boundary vertex b̃ and labeling it 1. Thus the vertex ã with label 1 in the boundary of
G′ is no longer a boundary vertex in G.

The graphs G and G′ have exactly the same set of edges. However, an ab-path
between two distinct boundary vertices a, b ∈ ∂(G) ∩ ∂(G′) that goes through ã is
not an internal path in G′, but could be in G (if the path does not contain any other
boundary vertex). This leads us to the following definition. Let I = (K,f,g) be an
arbitrary k-graph on the boundary of G. Then a k-graph I ′ = (K ′, f ′, g′) on the
boundary of G′ is η-compatible with I if I ′ is realizable in G′ and, for every two
distinct vertices a, b ∈ ∂(G) ∩ ∂(G′), the following four conditions hold:

(1) f (ab) = min
{
f ′(ab),max{f ′(aã), f ′(ãb)}

}
;

(2) g′(ab) = min
{
g(ab),max{g(ab̃), g(b̃b)}

}
;

(3) f (ab̃) = k, and
(4) g′(aã) = k.

Lemma 11 Assume that G, I , and G′ are as above, and suppose further that I is
realizable in G. Then

OPTI (G) = max{OPTI ′(G) | I ′ is η-compatible with I }.

(Again, if I is not realizable in G, then trivially OPTI (G) = −∞.) The proof of
Lemma 11 is split into a few lemmas, as in the previous section. We begin with the
following lemma.

Lemma 12 Suppose that F ′ ⊆ B(G′) realizes a k-graph I ′ = (K ′, f ′, g′) in G′

which is η-compatible with I . Then F := F ′ realizes I in G.

J Comb Optim

Proof Since F ′ realizes I ′ in G′, the set F = F ′ is acyclic, we are left with proving
that wint(G,F,a, b) = cf (ab) for every edge ab ∈ E(K). Let thus ab be an arbitrary
edge in E(K).

First suppose that a or b is equal to b̃, say without loss of generality b = b̃. Since b

is an isolated vertex of G, we have Pint(G,F,a, b) = ∅, and thus wint(G,F,a, b) =
ck . We also have f (ab) = k by condition (3) from the definition of η-compatibility;
hence wint(G,F,a, b) = cf (ab) as desired.

Next suppose that a, b ,= b̃. For every path P ∈ Pint(G,F,a, b), either P includes
the vertex ã or not. If ã ,∈ V (P), then P is also an internal ab-path in G′. If ã ∈ V (P),
then P is not internal in G′ but P is the concatenation of an internal aã-path P1 in
G′ with an internal ãb-path P2 in G′, and thus mc(P) = max{mc(P1),mc(P2)}. It
follows that

wint(G,F,a, b) ≥ min
{
wint(G

′,F, a, b),max{wint(G
′,F, a, ã),wint(G

′,F, ã, b)}
}
.

Let us show that the reverse inequality also holds. This is easy to see if
wint(G

′,F, a, b) ≤ max{wint(G
′,F, a, ã),wint(G

′,F, ã, b)}, since every path in
Pint(G

′,F, a, b) is included in Pint(G,F,a, b), implying wint(G,F,a, b) ≤
wint(G

′,F, a, b).
Let us thus assume wint(G

′,F, a, b) > max{wint(G
′,F, a, ã),wint(G

′,F, ã, b)},
and let P1 ∈ Pint(G

′,F, a, ã) and P2 ∈ Pint(G
′,F, ã, b) be such that mc(P1) =

wint(G
′,F, a, ã) and mc(P2) = wint(G

′,F, ã, b). Then P1 and P2 cannot have
another vertex in common than ã, because otherwise their union would contain
an ab-path P avoiding ã, which is thus in Pint(G

′,F, a, b). This in turn im-
plies wint(G

′,F, a, b) ≤ mc(P) ≤ max{mc(P1),mc(P2)} = max{wint(G
′,F, a, ã),

wint(G
′,F, ã, b)}

}
, which contradicts our hypothesis. Hence, V (P1) ∩ V (P2) = {ã},

and the concatenation of P1 and P2 gives an ab-path P which is internal in G (but not
in G′), and which is thus included in Pint(G,F,a, b). This implies wint(G,F,a, b) ≤
mc(P) = max{mc(P1),mc(P2)} = max{wint(G

′,F, a, ã),wint(G
′,F, ã, b)}, as de-

sired.
Therefore,

wint(G,F,a, b) = min
{
wint(G

′,F, a, b),max{wint(G
′,F, a, ã),wint(G

′,F, ã, b)}
}

= min
{
cf ′(ab),max{cf ′(aã), cf ′(ãb)}

}
,

which is equal to cf (ab) by condition (1). !

Lemma 13 Let I ′ = (K ′, f ′, g′) and F ′ be as in Lemma 12, and let F := F ′. Then,
for every edge uv ∈ F ,

w̃(G + I,F,u, v) = w̃(G′ + I ′,F,u, v).

Proof For every ab ∈ E(K), let eab be the extra red edge in G + I between the
boundary vertices a and b. Similarly, for every ab ∈ E(K ′), let e′ab be the extra red
edge in G′ + I ′ between the boundary vertices a and b.

Let uv ∈ F . The proof consists of three claims.

J Comb Optim

Claim 4.5 If P̃ (G + I,F,u, v) = ∅ or P̃ (G′ + I ′,F,u, v) = ∅ then w̃(G +
I,F,u, v) = w̃(G′ + I ′,F,u, v) = ck .

Proof First suppose that P̃(G + I,F,u, v) = ∅. Then w̃(G + I,F,u, v) = ck by
definition. If P̃ (G′ + I ′,F,u, v) = ∅ as well then w̃(G + I,F,u, v) = w̃(G′ +
I ′,F,u, v) = ck , and we are done. Let us thus assume that P̃(G′ + I ′,F,u, v) is
not empty. Every path P ∈ P̃(G′ + I ′,F,u, v) contains an extra red edge of the form
e′ab with a or b being equal to ã, since P̃(G + I,F,u, v) = ∅. The cost of this extra
edge is cg′(ab), which is equal to ck by condition (4). It follows that mc(P) = ck , and
hence w̃(G′ + I ′,F,u, v) = ck , as desired.

Now assume that P̃(G′ + I ′,F,u, v) = ∅. We show that this implies P̃ (G +
I,F,u, v) = ∅ as well, which reduces this case to the case treated above. Arguing
by contradiction, suppose that P̃ (G+ I,F,u, v) ,= ∅, and let P ∈ P̃(G+ I,F,u, v).
Since P̃ (G′ + I ′,F,u, v) = ∅, the path P must contain the vertex b̃. The two edges
of P incident to b̃ are extra red edges of the form eab̃ and ebb̃ , respectively, with
a, b ∈ ∂(G) ∩ ∂(G′) and a ,= b. However, replacing the subpath of P consisting of
these two edges with the edge eab gives a path in P̃(G + I,F,u, v) avoiding b̃,
implying that P̃ (G′ + I ′,F,u, v) is not empty, a contradiction. The claim follows. !

Claim 4.6 If P̃(G + I,F,u, v) ,= ∅ and P̃ (G′ + I ′,F,u, v) ,= ∅ then w̃(G +
I,F,u, v) ≤ w̃(G′ + I ′,F,u, v).

Proof We have to show that w̃(G+ I,F,u, v) ≤ mc(P ′) for every path P ′ ∈ P̃ (G′ +
I ′,F,u, v). Consider such a path P ′. If P ′ contains no extra red edge (that is, a red
edge of the form e′ab with a, b ∈ ∂(G′)), then P ′ ∈ P̃(G + I,F,u, v), and w̃(G +
I,F,u, v) ≤ mc(P ′) holds. Thus we may assume that P ′ contains at least one such
edge.

If P ′ includes an edge of the form e′ab with a or b being equal to ã, then this
edge has cost cg′(ab) = ck by condition (4), implying mc(P ′) = ck , and thus we have
w̃(G + I,F,u, v) ≤ ck = mc(P ′). Hence we may assume that P ′ has no such edge.

Let H be the subgraph of G + I obtained from P ′ as follows: for each extra
red edge e′ab included in P ′, replace e′ab with eab if g′(ab) = g(ab), with the path
consisting of the two edges eab̃ , eb̃b otherwise. Note that H is connected but is not
necessarily a path, since the vertex b̃ could have degree more than 2 in H . On the
other hand, we have mc(H) = mc(P ′) by condition (2). Also, note that every uv-path
in H contains at least one red edge (since the edges of H not in P ′ are all red). Let
P be such a path. Then mc(P) ≤ mc(H) = mc(P ′). Since P is in P̃(G + I,F,u, v),
it follows that w̃(G + I,F,u, v) ≤ mc(P) ≤ mc(P ′), as desired. !

Claim 4.7 If P̃(G + I,F,u, v) ,= ∅ and P̃ (G′ + I ′,F,u, v) ,= ∅ then w̃(G +
I,F,u, v) ≥ w̃(G′ + I ′,F,u, v).

Proof We have to show that w̃(G′ + I ′,F,u, v) ≤ mc(P) for every path P ∈
P̃ (G + I,F,u, v). Consider such a path P . We proceed similarly as in the proof
of the previous claim.

J Comb Optim

If P contains no extra red edge of G+I then P ∈ P̃(G′ +I ′,F,u, v), and w̃(G′ +
I ′,F,u, v) ≤ mc(P) holds. Thus we may assume that P contains at least one such
edge.

Let P ′ be the path obtained from P as follows: First, for each extra red edge eab

in P with a, b ,= b̃, replace eab with e′ab . Now, if P includes the vertex b̃, then it
has two extra red edges of the form eab̃ and ebb̃ , respectively, with a, b ∈ ∂(G) ∩
∂(G′) and a ,= b. Replace then the subpath of P consisting of these two edges with
the edge eab . The resulting path P ′ is in P̃(G′ + I ′,F,u, v). Moreover, it follows
from condition (2) that mc(P ′) ≤ mc(P). Therefore, w̃(G′ + I ′,F,u, v) ≤ mc(P ′) ≤
mc(P), as claimed. !

Lemma 13 follows from Claims 4.5, 4.6, and 4.7. !

We may now proceed with the proof of Lemma 11.

Proof of Lemma 11 We first show:

Claim 4.8 There exists a k-graph I ′ = (K ′, f ′, g′) on the boundary of G′ such that
I ′ is η-compatible with I and OPTI (G) ≤ OPTI ′(G′).

Proof Let F ⊆ B(G) be a subset of blue edges realizing I in G such that

OPTI (G) =
∑

uv∈F

w̃(G + I,F,u, v).

Let I ′ = (K ′, f ′, g′) be the k-graph on the boundary of G′ defined by set-
ting, for every ab ∈ E(K ′), f ′(ab) := j where j is the index in [k] such that
cj = wint(G

′,F, a, b), and letting g′(ab) := min{g(ab),max{g′(aã), g′(ãb)}} for ev-
ery two distinct vertices a, b ∈ ∂(G′) \ {ã}, and g′(aã) := k for every a ∈ ∂(G′) \ {ã}.
By definition, the set F realizes I ′ in G′. Let us show that I ′ is η-compatible
with I . By definition, I ′ satisfies conditions (2) and (4) of the definition of η-
compatibility. Also, condition (3) is satisfied, since b̃ is isolated in G. Thus it remains
to show that f (ab) = min{f ′(ab),max{f ′(aã), f ′(ãb)}} for every two distinct ver-
tices a, b ∈ ∂(G) ∩ ∂(G′). Consider two such vertices a and b.

First we show that f (ab) ≤ min{f ′(ab),max{f ′(aã), f ′(ãb)}}. If f ′(ab) ≤
max{f ′(aã), f ′(ãb)}, then either f ′(ab) = k and the claimed upper bound on f (ab)
trivially holds, or f ′(ab) < k and hence there is a path P ′ ∈ Pint(G

′,F, a, b) with
mc(P ′) = wint(G

′,F, a, b) = cf ′(ab). The path P ′ is also included in Pint(G
′,F, a, b);

hence wint(G,F,a, b) ≤ cf ′(ab), which implies f (ab) ≤ f ′(ab) (since F realizes I
in G). Now suppose that f ′(ab) > max{f ′(aã), f ′(ãb)}. Since the righthand side
of this inequality is strictly less than k, both Pint(G

′,F, a, ã) and Pint(G
′,F, ã, b)

are nonempty. Let P ′
1 ∈ Pint(G

′,F, a, ã) and P ′
2 ∈ Pint(G

′,F, ã, b) be paths such
that mc(P ′

1) = cf ′(aã) and mc(P ′
2) = cf ′(ãb). These two paths cannot have any ver-

tex in common other than ã, because otherwise their union would contain an ab-
path P ∗ with mc(P ∗) ≤ max{mc(P ′

1),mc(P ′
2)} and avoiding ã, which would imply

f ′(ab) ≤ max{f ′(aã), f ′(ãb)}, contradicting our hypothesis. Thus the concatena-
tion of P ′

1 and P ′
2 gives an ab-path P which is internal in G (but not in G′) satisfying

J Comb Optim

mc(P) = max{mc(P ′
1),mc(P ′

2)}. Since wint(G,F,a, b) ≤ mc(P), we deduce that
f (ab) ≤ max{f ′(aã), f ′(ãb)}, as desired.

Next we prove that f (ab) ≥ min{f ′(ab),max{f ′(aã), f ′(ãb)}}. This is obvi-
ously true if Pint(G,F,a, b) is empty, so let us assume this is not the case and
let P ∈ Pint(G,F,a, b) be such that mc(P) = cf (ab). If P does not include the
vertex ã, then P ∈ Pint(G

′,F, a, b) and hence mc(P) ≥ wint(G
′,F, a, b), imply-

ing f (ab) ≥ f ′(ab). If P includes ã, the path P is the concatenation of an aã-
path P1 from Pint(G

′,F, a, ã) with an ãb-path P2 from Pint(G
′,F, ã, b), imply-

ing mc(P) = max{mc(P1),mc(P2)} ≥ max{wint(G
′,F, a, ã),wint(G

′,F, ã, b)}, and
hence f (ab) ≥ max{f ′(aã), f ′(ãb)}, as desired.

Therefore, f (ab) = min{f ′(ab),max{f ′(aã), f ′(ãb)}} holds, and I ′ is η-compat-
ible with I . Now we may apply Lemma 13, giving

OPTI (G) =
∑

uv∈F

w̃(G + I,F,u, v) =
∑

uv∈F

w̃(G′ + I ′,F,u, v) ≤ OPTI ′(G′).

!

Next we prove:

Claim 4.9 OPTI (G) ≥ OPTI ′(G) holds for every k-graph I ′ = (K ′, f ′, g′) on the
boundary of G′ such that I ′ is η-compatible with I .

Proof Let F ′ ⊆ B(G′) be a subset of blue edges of G′ such that

OPTI ′(G′) =
∑

uv∈F ′
w̃(G′ + I ′,F ′, u, v).

By Lemma 12, F := F ′ realizes I in G. Using again Lemma 13, we have:

OPTI (G) ≥
∑

uv∈F

w̃(G + I,F,u, v) =
∑

uv∈F

w̃(G′ + I ′,F,u, v) = OPTI ′(G′).

!

Lemma 11 follows from Claims 4.8 and 4.9. !

4.5 The unary operator ε

If G = ε(G′), then G is obtained from G′ by adding an edge e∗ between the
two boundary vertices labeled 1 and 2. Notice that G = G′ ⊕ H , where H is the
t-boundaried graph having only boundary vertices, and only the edge e∗. Thus, in-
stead of dealing with the ε operator we can use the ⊕ operator that we already treated,
and introduce two new null-like operators that create the graph H with the edge e∗

being either red or blue. Therefore, it is enough to describe how to compute OPTI (H)

for every k-graph I on the boundary of H in both cases, which we do now.

J Comb Optim

– If e∗ is red with cost c(e∗) then we have OPTI (H) = 0 (associated with the acyclic
set F = ∅ of blue edges) for every k-graph I = (K,f,g) such that f (e′) = c(e∗)
and f (e) = k for every e ∈ E(K) \ {e′}, where e′ is the edge in E(K) with the
same endpoints as e∗. For all other k-graphs I we have OPTI (H) = −∞ (since
none of them are realizable in H).

– If e∗ is blue then we have OPTI (H) = 0 (associated with F = ∅) for every k-
graph I = (K,f,g) such that f (e) = k for every e ∈ E(K). In addition, for every
k-graph I = (K,f,g) such that f (e′) = 0 and f (e) = k for every e ∈ E(K) \ {e′}
(where e′ is defined as previously), we have OPTI (H) = w̃(H + I,F, a, b) where
F = {e∗} and a, b are the two endpoints of e∗. Let us emphasize that the quantity
w̃(H + I,F, a, b) is easily computed here, since it is the minimum of mc(P) over
all ab-paths P in H + I containing at least one red edge (with w̃(H + I,F, a, b) =
ck if there is no such path), and there are at most t ! such paths. Finally, for all
k-graphs I not considered above, we have OPTI (H) = −∞.

4.6 Unary operators that permute labels

Unary operators that permute the labels of the boundary vertices are handled in the
obvious way.

4.7 The Algorithm

We may now prove Theorem 3, which we restate here.

Theorem 3 The STACKMST problem can be solved in 2O(t3)m + mO(t2) time on
graphs of treewidth t .

Proof As noted after the definition of t-boundaried graphs in the beginning of Sect. 4,
it is enough to show that the problem can be solved in mO(t2) time on a given
t-boundaried graph when the construction according to the five operators is also given
in input, thanks to the result of Bodlaender (1996).

Our algorithm considers each graph H appearing in the decomposition tree in
a bottom–up fashion, maintaining the OPTI (H) values (and associated acyclic sets
F of blue edges) as described by the previous subsections on the five composition
operators.

The operators ⊕ and η require us to check every combination of at most three dif-
ferent k-graphs for compatibility (three for ⊕-compatibility, two for η-compatibility).
There are ((k + 1)2)(

t
2) = (k + 1)t (t−1) different k-graphs on a given boundary, so we

need to check O(k3t2
) combinations. Each check can be done in O(t2) time.

The most time-consuming check is the one for the ε operator when it adds a blue
edge, since the computation of OPTI (H) for one k-graph I may require considering
O(t !) paths.

The total time complexity of the algorithm is therefore bounded by O(k3t2 · t !) =
mO(t2).

This results in a polynomial-time algorithm, when the input graph is of bounded
treewidth, for computing the maximum revenue achievable by the leader. Moreover,

J Comb Optim

as mentioned earlier, it is not difficult to keep track of a witness F ⊆ B(H) for
OPTI (H) whenever OPTI (H) > −∞ when applying any one of the five operators. !

5 Conclusion and open problems

To our knowledge, our algorithms are the first examples of a bilevel pricing problem
solved by dynamic programming on a graph decomposition tree. Several interesting
problems are left open.

We proved that the problem can be solved in polynomial time for every constant
value of the treewidth t . However, it is unclear whether there exists a fixed-parameter
algorithm of complexity O(f (t)nc) for an arbitrary (possibly large) function f of t

and a constant c. In fact, we conjecture that under reasonable complexity-theoretic
assumptions, such an algorithm does not exist.

We believe that our results provide insights into the structure of the problem,
and could be a stepping stone toward a polynomial-time approximation scheme
for planar graphs. Also, the proposed techniques could be useful in the design of
dynamic programming algorithms for other important pricing problems in graphs,
including pricing problems with many followers (Briest et al. 2008; Grigoriev et
al. 2009), and Stackelberg problems involving shortest paths (Roch et al. 2005;
Briest et al. 2010) or shortest path trees (Bilò et al. 2008).

Acknowledgements We would like to thank the anonymous referees for their helpful comments.

References

Abrahamson KR, Fellows MR (1993) Finite automata, bounded treewidth, and well-quasiordering. In:
Robertson N, Seymour P (eds) Graph structure theory, pp 539–564

Baker BS (1994) Approximation algorithms for NP-complete problems on planar graphs. J ACM
41(1):153–180

Briest P, Chalermsook P, Khanna S, Laekhanukit B, Nanongkai D (2010) Improved hardness of approxima-
tion for Stackelberg shortest-path pricing. In: Proc 6th workshop on internet and network economics
(WINE), pp 444–454

Bilò D, Gualà L, Leucci S, Proietti G (2010) Specializations and generalizations of the Stackelberg min-
imum spanning tree game. In: Proc 6th workshop on internet & network economics (WINE), pp
75–86

Bilò D, Gualà L, Proietti G, Widmayer P (2008) Computational aspects of a 2-player Stackelberg shortest
paths tree game. In: Proc 4th workshop on internet and network economics (WINE), pp 251–262

Briest P, Hoefer M, Gualà L, Ventre C (2009) On Stackelberg pricing with computationally bounded
consumers. In: Proc 5th workshop on internet and network economics (WINE), pp 42–54

Briest P, Hoefer M, Krysta P (2008) Stackelberg network pricing games. In: Proc 25th international sym-
posium on theoretical aspects of computer science (STACS), pp 133–142

Bodlaender HL, Koster AMCA (2008) Combinatorial optimization on graphs of bounded treewidth. Com-
put J 51(3):255–269

Borradaile G, Kenyon-Mathieu C, Klein PN (2007) A polynomial-time approximation scheme for Steiner
tree in planar graphs. In: Proc 18th annual ACM-SIAM symposium on discrete algorithms (SODA)

Brotcorne L, Labbé M, Marcotte P, Savard G (2000) A bilevel model and solution algorithm for a freight
tariff-setting problem. Transp Sci 34(3):289–302

Brotcorne L, Labbé M, Marcotte P, Savard G (2001) A bilevel model for toll optimization on a multicom-
modity transportation network. Transp Sci 35(4):345–358

J Comb Optim

Bodlaender HL (1996) A linear time algorithm for finding tree-decompositions of small treewidth. SIAM
J Comput 25:1305–1317

Bodlaender HL (2006) Treewidth: Characterizations, applications, and computations. In: Proc 32nd inter-
national workshop on graph-theoretic concepts in computer science (WG), pp 1–14

Cardinal J, Demaine ED, Fiorini S, Joret G, Newman I, Weimann O (2009) The Stackelberg minimum
spanning tree game on planar and bounded-treewidth graphs. In: Proc 5th workshop on internet &
network economics (WINE), pp 125–136

Cardinal J, Demaine ED, Fiorini S, Joret G, Langerman S, Newman I, Weimann O (2011) The Stackelberg
minimum spanning tree game. Algorithmica 59(2):129–144

Courcelle B (2008) Graph structure and monadic second-order logic: Language theoretical aspects. In:
Proc international conference on automata, languages, and programming (ICALP). Lecture notes in
computer science, vol 5125. Springer, Berlin, pp 1–13

Demaine ED, Hajiaghayi M, Kawarabayashi K (2009) Approximation algorithms via structural results for
apex-minor-free graphs. In: Proc 36th international colloquium on automata, languages and program-
ming (ICALP)

Demaine ED, Hajiaghayi M, Mohar B (2007) Approximation algorithms via contraction decomposition.
In: Proc 18th annual ACM-SIAM symposium on discrete algorithms (SODA), pp 278–287

Diestel R (2005) Graph theory. Graduate texts in mathematics, vol 173. Springer, Berlin, 3rd edn
Garey MR, Johnson DS (1979) Computers and intractability, a guide to the theory of NP-completeness.

Freeman, New York
Grigoriev A, van Hoesel S, van der Kraaij A, Uetz M, Bouhtou M (2005) Pricing network edges to cross

a river. In: Proc workshop on approximation and online algorithms (WAOA), pp 140–153
Grigoriev A, van Loon J, Sitters R, Uetz M (2009) Optimal pricing of capacitated networks. Networks

53(1):79–87
Klein PN (2005) A linear-time approximation scheme for TSP for planar weighted graphs. In: Proc 46th

IEEE symposium on foundations of computer science (FOCS), pp 146–155
Klein PN (2006) A subset spanner for planar graphs, with application to subset TSP. In: Proc 38th ACM

symposium on theory of computing (STOC), pp 749–756
Labbé M, Marcotte P, Savard G (1998) A bilevel model of taxation and its application to optimal highway

pricing. Manag Sci 44(12):1608–1622
Roch S, Savard G, Marcotte P (2005) An approximation algorithm for Stackelberg network pricing. Net-

works 46(1):57–67
van Hoesel S (2006) An overview of Stackelberg pricing in networks. Research memoranda 042, Maas-

tricht: METEOR, Maastricht Research School of Economics of Technology and Organization
von Stackelberg H (1934) Marktform und Gleichgewicht (Market and Equilibrium). Springer, Vienna
Valdes J, Tarjan RE, Lawler EL (1982) The recognition of series parallel digraphs. SIAM J Comput

11(2):298–313

	The Stackelberg minimum spanning tree game on planar and bounded-treewidth graphs
	Abstract
	Introduction
	Motivations and scope.
	Previous results.
	Our results.

	Planar graphs
	Series-parallel graphs
	Preliminaries
	Series compositions
	Parallel compositions
	The Algorithm

	Bounded-treewidth graphs
	Definitions
	The null operator ø
	The binary operator
	The unary operator eta
	The unary operator epsilon
	Unary operators that permute labels
	The Algorithm

	Conclusion and open problems
	Acknowledgements
	References

