Approximating the Diameter of Planar Graphs in Near Linear Time

Raphael Yuster

The Diameter Problem

- Planar graph
- Undirected

The Diameter Problem

- Planar graph
- Undirected
- Non-negative edge-lengths

The Diameter Problem

10

12

- Planar graph
- Undirected
- Non-negative edge-lengths
- Find furthest pair of nodes

U

Related Work

General graphs:

- APSP in $\tilde{O}(n^3)$ (faster for sparse graphs or small edge-lengths)
- Open: Diameter faster than APSP?

Related Work

General graphs:

- APSP in $\tilde{O}(n^3)$ (faster for sparse graphs or small edge-lengths)
- Open: Diameter faster than APSP?

Planar graphs:

- APSP in optimal $O(n^2)$
- Diameter in $O(n^2 (\log \log n)^4 / \log n)$ [Wulff-Nilsen 2008]
- Open: Diameter in $O(n^{2-\varepsilon})$?
- Diameter in O(n) for fixed diameter

[Frederickson 1987] [Wulff-Nilsen 2008] [Chung 1987] [Eppstein 1995]

Related Work

General graphs:

- APSP in $\tilde{O}(n^3)$ (faster for sparse graphs or small edge-lengths)
- Open: Diameter faster than APSP?

Planar graphs:

- APSP in optimal $O(n^2)$
- Diameter in $O(n^2 (\log \log n)^4 / \log n)$ [Wulff-Nilsen 2008]
- Open: Diameter in $O(n^{2-\varepsilon})$?
- Diameter in O(n) for fixed diameter

Planar graphs approximation:

- 2-approximation in O(n) by SSSP tree [Henzinger et al. 1997]
- 1.5-approximation in $O(n^{1.5})$ [Berman et al. 2007]
- $(1+\varepsilon)$ -approximation in $\tilde{O}(n)$ for any fixed $\varepsilon < 1$

- [Frederickson 1987]
- [Chung 1987]
- [Eppstein 1995]

The Algorithm

Planar Separator

Planar Separator

• $O\left(\sqrt{n}\right)$ boundary nodes

Planar Separator

Gout

 G_{in}

- $O\left(\sqrt{n}\right)$ boundary nodes
- At most 2n/3 nodes in each part
- Can be found in *O*(*n*) time [Lipton-Tarjan 1979, Miller 1986]

 \mathcal{V}_{l} • Can have $\Omega(n)$ boundary nodes Q

- Can have $\Omega(n)$ boundary nodes
- At most 2n/3 nodes in each part
- G_{in} and G_{out} both include the boundary (may have n nodes)/

- Can have $\Omega(n)$ boundary nodes
- At most 2n/3 nodes in each part
- G_{in} and G_{out} both include the boundary (may have n nodes)/

- Can have $\Omega(n)$ boundary nodes
- At most 2n/3 nodes in each part
- G_{in} and G_{out} both include the boundary (may have n nodes)/

- Can have $\Omega(n)$ boundary nodes
- At most 2n/3 nodes in each part
- G_{in} and G_{out} both include the boundary (may have n nodes)/

I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$ \mathcal{V}_{l} G_{out} **2.** Find furthest pair in $G_{in} \setminus \{P, Q\}$ Gin Q

I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$ \mathcal{V}_{l} Gout **2.** Find furthest pair in $G_{in} \setminus \{P, Q\}$ **3**. Find furthest pair in $G_{out} \setminus \{P, Q\}$ Ũ G_{in} Q

- Mark all nodes
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$ \mathcal{V}_{l} G_{out} **2.** Find furthest pair in $G_{in} \setminus \{P, Q\}$ **3**. Find furthest pair in $G_{out} \setminus \{P, Q\}$ G_{in} Q

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- **2.** Find furthest pair in $G_{in} \setminus \{P, Q\}$
- **3.** Find furthest pair in $G_{out} \setminus \{P, Q\}$

 \mathcal{V}_{l}

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

 \mathcal{V}_{l}

 G_{out}

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Choose $16/\varepsilon$ portals \bigcirc

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Choose $16/\varepsilon$ portals \bigcirc

 \mathcal{V} 1

 G_{out}

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Choose $16/\varepsilon$ portals \bigcirc

 \mathcal{V} 1

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Choose $16/\varepsilon$ portals \bigcirc

 \mathcal{V}_{I}

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Choose $16/\varepsilon$ portals \bigcirc

 \mathcal{V}_{I}

 G_{out}

 \mathcal{V}_{I}

 G_{in}

St.

 G_{out}

()

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Choose $16/\varepsilon$ portals \bigcirc

 \mathcal{V}_{I}

 G_{in}

St.

 G_{out}

()

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Choose $16/\varepsilon$ portals \bigcirc

Lemma: a shortest u-to-vpath does not cross below the 8x prefix

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$

2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Gin		G_{out}
0		0
0	portals	0
0	0	0
<u>u</u> •	0	0
0	0	0
0	0	0
0		$\mathbf{O}\mathcal{V}$
0		0
0		0

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$

2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$

2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Lemma: we can round the edge lengths to be in $\{1, 2, ..., 1/\epsilon\}$

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$

2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Lemma: we can round the edge lengths to be in $\{1,2,...,1/\varepsilon\}$

proof: Use $x \leq \text{diameter} \leq 2x$

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$

2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Lemma: we can round the edge lengths to be in $\{1,2,...,1/\varepsilon\}$

proof: Use $x \leq \text{diameter} \leq 2x$

Lemma: after rounding we can find the exact diameter of the tripartite graph in time $O(2^{O(1/\epsilon)} \cdot n)$

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$

2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Lemma: we can round the edge lengths to be in $\{1,2,...,1/\varepsilon\}$

proof: Use $x \leq \text{diameter} \leq 2x$

Lemma: after rounding we can find the exact diameter of the tripartite graph in time $O(2^{O(1/\epsilon)} \cdot n)$

proof: $2^{O(1/\varepsilon)}$ config. of what u can "see"

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$

2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Lemma: we can round the edge lengths to be in $\{1,2,...,1/\varepsilon\}$

proof: Use $x \leq \text{diameter} \leq 2x$

Lemma: after rounding we can find the exact diameter of the tripartite graph in time $O(2^{O(1/\epsilon)} \cdot n)$

proof: $2^{O(1/\varepsilon)}$ config. of what u can "see"

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$

2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

First unmark all nodes of $\{P,Q\}$

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$

2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$

2. Find furthest pair in $G_{in} \setminus \{P,Q\}$

3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

- Mark all nodes
- In O(n) time find x s.t $x \leq$ diameter $\leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$

2. Find furthest pair in $G_{in} \setminus \{P,Q\}$

3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

- Mark all nodes
- In O(n) time find x s.t $x \leq$ diameter $\leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

Choose $O((\log n) / \epsilon)$ <u>dense</u> portals \bigcirc

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$
- Choose $O((\log n) / \epsilon)$ <u>dense</u> portals **O**
- Compute all \circ -to- \circ shortest paths in G_{out}

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$
- Choose $O((\log n) / \epsilon)$ <u>dense</u> portals **O**
- Compute all \circ -to- \circ shortest paths in G_{out}
- Contract degree-2 nodes Unmark and append to G_{in}

- Mark all nodes
- In O(n) time find x s.t $x \leq$ diameter $\leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$

- Mark all nodes
- In O(n) time find x s.t $x \le$ diameter $\le 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$
- This graph is still too big

- Mark all nodes
- In O(n) time find x s.t $x \le$ diameter $\le 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$
- This graph is still too big

- Mark all nodes
- In O(n) time find x s.t $x \le$ diameter $\le 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$
- This graph is still too big

- Mark all nodes
- In O(n) time find x s.t $x \le$ diameter $\le 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- 2. Find furthest pair in $G_{in} \setminus \{P,Q\}$ 3. Find furthest pair in $G_{out} \setminus \{P,Q\}$
- This graph is still too big

- Mark all nodes
- In O(n) time find x s.t $x \leq \text{diameter} \leq 2x$
- I. Find furthest pair $u \in G_{in}$ and $v \in G_{out}$
- **2.** Find furthest pair in $G_{in} \setminus \{P,Q\}$
- **3.** Find furthest pair in $G_{out} \setminus \{P, Q\}$

• We obtained $\tilde{O}(f(\varepsilon) \cdot n)$ time where $f(\varepsilon) = 2^{O(1/\varepsilon)}$

- We obtained $\tilde{O}(f(\varepsilon) \cdot n)$ time where $f(\varepsilon) = 2^{O(1/\varepsilon)}$
 - $f(\varepsilon) = \text{poly}(1/\varepsilon) \text{ say } f(\varepsilon) = (1/\varepsilon)^c$ would immediately imply an <u>exact</u> algorithm for diameter in $O(n^{2-\varepsilon})$ when diameter is bounded by $n^{1/c}$

- We obtained $\tilde{O}(f(\varepsilon) \cdot n)$ time where $f(\varepsilon) = 2^{O(1/\varepsilon)}$
 - $f(\varepsilon) = \text{poly}(1/\varepsilon) \text{ say } f(\varepsilon) = (1/\varepsilon)^c$ would immediately imply an <u>exact</u> algorithm for diameter in $O(n^{2-\varepsilon})$ when diameter is bounded by $n^{1/c}$

• We obtained $\tilde{O}(f(\varepsilon) \cdot n)$ time where $f(\varepsilon) = 2^{O(1/\varepsilon)}$

• $f(\varepsilon) = \text{poly}(1/\varepsilon) \text{ say } f(\varepsilon) = (1/\varepsilon)^c \text{ would immediately imply an } \frac{e \times a \times c}{1/\varepsilon}$ algorithm for diameter in $O(n^{2-\varepsilon})$ when diameter is bounded by $n^{1/c}$

General n × 1/ ε × n tripartite graph requires $O(n \cdot \log^{1/\varepsilon} n)$ [Cabello, Knauer 2009], we get $O(n \cdot 2^{1/\varepsilon})$

• We obtained $\tilde{O}(f(\varepsilon) \cdot n)$ time where $f(\varepsilon) = 2^{O(1/\varepsilon)}$

• $f(\varepsilon) = \text{poly}(1/\varepsilon) \text{ say } f(\varepsilon) = (1/\varepsilon)^c \text{ would immediately imply an } \frac{exact}{1/\varepsilon}$ algorithm for diameter in $O(n^{2-\varepsilon})$ when diameter is bounded by $n^{1/c}$

• We obtained $\tilde{O}(f(\varepsilon) \cdot n)$ time where $f(\varepsilon) = 2^{O(1/\varepsilon)}$

• $f(\varepsilon) = \text{poly}(1/\varepsilon) \text{ say } f(\varepsilon) = (1/\varepsilon)^c$ would immediately imply an <u>exact</u> algorithm for diameter in $O(n^{2-\varepsilon})$ when diameter is bounded by $n^{1/c}$

General n × $1/\varepsilon$ × n tripartite graph requires $O(n \cdot \log^{1/\varepsilon} n)$ [Cabello, Knauer 2009], we get $O(n \cdot 2^{1/\varepsilon})$ bounded lengths

- (I) We can settle for an approximation
- (2) Lengths correspond to planar distances (Monge)
- (3) Range max can be easier than sum

Thank You!