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The Diameter Problem

® Planar graph

¢ Undirected

® Non-negative edge-lengths
® Find furthest pair of nodes ¢




Related Work

General graphs:

e APSP in O(n3) (faster for sparse graphs or small edge-lengths)
e Open: Diameter faster than APSP?
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Related Work

General graphs:

e APSP in O(n3) (faster for sparse graphs or small edge-lengths)

e Open: Diameter faster than APSP?

Planar graphs:

e APSP in optimal O(n?)

¢ Diameter in O(n’ (loglog n)?/ log n)
e Open: Diameter in O(n°¢)?

® Diameter in O(n) for fixed diameter

Planar graphs approximation:

'Frederickson 1987]
'Wulff-Nilsen 2008]

Chung 1987]

[Eppstein 1995]

® 2-approximation in O(n) by SSSP tree [Henzinger et al. 1997]

® 1.5-approximation in O(n'~)

[Berman et al. 2007]

e (1+&)-approximation in O(n) for any fixed <1
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Planar Separator

e O (v/n) boundary nodes
® At most 2n/3 nodes in each part O

e Can be found in O(n) time
[Lipton-Tarjan 1979, Miller 1986]
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® Can have Q(n) boundary nodes

® At most 2n/3 nodes in each part
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Planar Shortest Path Separator

® Can have Q(n) boundary nodes

® At most 2n/3 nodes in each part
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boundary (may have n nodes)
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Recursive Algorithm

|. Find furthest pair u € Gi, and v € Gou A

2. Find furthest pair in Gix N\ {P.Q} ‘.
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Recursive Algorithm

e Mark all nodes

|. Find furthest pair u € Gi; and v out

2. Find furthest pair in Gi,
3. Find furthest pair in




Recursive Algorithm

 Mark all nodes
* In O(n) time find x s.t x <diameter <2x

|. Find furthest pair u € Giy and v € Gou

2. Find furthest pair in Gix N\ {P.Q} ‘. o
3. Find furthest pair in Gour \{P.QO} ,“ o
O | ..’.. O
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Recursive Algorithm

|. Find furthest pair u € Giy and v € Gou

Choose |6/¢ portals ©

Tuesday, May 21, 13



Recursive Algorithm

|. Find furthest pair u € Gi; and v € Gow
V]
Gout
Vjér \Voo
® e
Choose |6/¢ portals © 4
Gin

2

Tuesday, May 21, 13



Recursive Algorithm

|. Find furthest pair u € Gi; and v € Gow
V]
Gout
Vjér \Voo
® e
Choose |6/¢ portals © 4
Gin

e

Tuesday, May 21, 13



Recursive Algorithm

|. Find furthest pair u € Giy and v € Gou

Choose |6/¢ portals ©

Tuesday, May 21, 13



Recursive Algorithm

|. Find furthest pair u € Giy and v € Gou

Choose |6/¢ portals ©

Tuesday, May 21, 13



Recursive Algorithm

* In O(n) time find x s.t x <diameter <2x
|. Find furthest pair u € Gi; and v € Gow

Choose |6/¢ portals ©
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Recursive Algorithm

|. Find furthest pair u € Giy and v € Gou

Choose |6/¢ portals ©

Lemma: a shortest u-to-v

path does not cross below
the &x prefix
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Recursive Algorithm

|. Find furthest pair u € Giy and v € Gou
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Recursive Algorithm

|. Find furthest pair u € Giy and v € Gou

Gin Gout
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Recursive Algorithm

|. Find furthest pair u € Giy and v € Gou

Gin Gout Lemma: we can round the edge
O O :
o portals o lengths to be in {1,2,...,1/¢}
O (o) O
ue---q ©
O O“ O
O ‘\ O
o 9 “ev
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Recursive Algorithm

|. Find furthest pair u € Giy and v € Gou

Gin Gout Lemma: we can round the edge

O O .

o portals o lengths to be in {1,2,...,1/¢}

o O o proof: Use x <diameter <2x
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Recursive Algorithm

|. Find furthest pair u € Giy and v € Gou

Gin Gout Lemma: we can round the edge
* portals < lengths to be in {1,2,...,1/¢}
O O proof: Use x <diameter <2x

U O
0 0 Lemma: after rounding we can find
2 :v the exact diameter of the tripartite
0 0 graph in time O(2°(/4) . n)
O O
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|. Find furthest pair u € Giy and v € Gou
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U O
0 0 Lemma: after rounding we can find
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proof: 2°U/%) config. of what u can “see”
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Recursive Algorithm

|. Find furthest pair u € Giy and v € Gou

Gin Gout Lemma: we can round the edge
O O .
o portals o lengths to be in {1,2,...,1/€}
O proof: Use x <diameter <2x
O
0 Lemma: after rounding we can find
O

the exact diameter of the tripartite
graph in time O(2°(/4) . n)

proof: 2°U/%) config. of what u can “see”
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Recursive Algorithm

2. Find furthest pair in Gix N\ {P.Q}




Recursive Algorithm

2. Find furthest pair in Gix N\ {P.Q}

First unmark all nodes of {PO}
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2. Find furthest pair in Gixn \{P.Q}

Choose O((logn) / €)
dense portals ©

Compute all 0-to-0
shortest paths in Gous
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Recursive Algorithm

2. Find furthest pair in Gixn \{P.Q}

Choose O((logn) / €)
dense portals ©

Compute all 0-to-0
shortest paths in Gous

Contract degree-2 nodes
Unmark and append to G,
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2. Find furthest pair in Gixn \{P.Q} (
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Recursive Algorithm

Y
2. Find furthest pair in Gix N\ {P.Q} 0 o]
e
This graph is still too big \
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Recursive Algorithm

3. Find furthest pair in Gour \ {P,Q}
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e We obtained 0(]‘(5)%) time where f(g) = 2001/¢)

e f(e) = poly(1/e) say f(e) = (1/€)° would immediately imply an exact

algorithm for diameter in O(n°-¢) when diameter is bounded by n'’c
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e We obtained ON(f(e)-n) time where f(g) = 2001/¢)

e f(e) = poly(1/e) say f(e) = (1/€)° would immediately imply an exact

algorithm for diameter in O(n°-¢) when diameter is bounded by n'’c

General n X 1/e X n tripartite graph requires
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Open Problem

e We obtained ON(f(e)-n) time where f(g) = 2001/¢)

e f(e) = poly(1/e) say f(e) = (1/€)° would immediately imply an exact

algorithm for diameter in O(n°-¢) when diameter is bounded by n'’c
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General n X 1/e X n tripartite graph requires

O(n-log'én) [Cabello, Knauer 2009], we get O(n-21/¢)

bounded lengths
(1) We can settle for an approximation
(2) Lengths correspond to planar distances (Monge)
(3) Range max can be easier than sum
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Thank You!




