Approximating the Diameter of Planar Graphs in Near Linear Time

Oren Weimann
Raphael Yuster

The Diameter Problem

- Planar graph
- Undirected

The Diameter Problem

- Planar graph
- Undirected
- Non-negative edge-lengths

The Diameter Problem

- Planar graph
- Undirected
- Non-negative edge-lengths
- Find furthest pair of nodes

Related Work

General graphs:

- APSP in $\tilde{O}\left(n^{3}\right)$ (faster for sparse graphs or small edge-lengths)
- Open: Diameter faster than APSP?

Related Work

General graphs:

- APSP in $\tilde{O}\left(n^{3}\right)$ (faster for sparse graphs or small edge-lengths)
- Open: Diameter faster than APSP?

Planar graphs:

- APSP in optimal $O\left(n^{2}\right)$
- Diameter in $O\left(n^{2}(\log \log n)^{4} / \log n\right) \quad[W u l f f-N i l s e n ~ 2008]$
- Open: Diameter in $O\left(n^{2-\varepsilon}\right)$?
- Diameter in $O(n)$ for fixed diameter
[Frederickson 1987]
[Chung 1987]
[Eppstein 1995]

Related Work

General graphs:

- APSP in $\tilde{O}\left(n^{3}\right)$ (faster for sparse graphs or small edge-lengths)
- Open: Diameter faster than APSP?

Planar graphs:

- APSP in optimal $O\left(n^{2}\right)$
[Frederickson 1987]
- Diameter in $O\left(n^{2}(\log \log n)^{4} / \log n\right) \quad[$ Wulff-Nilsen 2008]
- Open: Diameter in $O\left(n^{2-\varepsilon}\right)$?
[Chung 1987]
- Diameter in $O(n)$ for fixed diameter
[Eppstein 1995]
Planar graphs approximation:
- 2-approximation in $O(n)$ by SSSP tree [Henzinger et al. 1997]
- 1.5-approximation in $O\left(n^{1.5}\right)$ [Berman et al. 2007]
- $(1+\varepsilon)$-approximation in $\tilde{O}(n)$ for any fixed $\varepsilon<1$

The Algorithm

Planar Separator

Planar Separator

- $O(\sqrt{n})$ boundary nodes

Planar Separator

- $O(\sqrt{n})$ boundary nodes
- At most $2 n / 3$ nodes in each part
- Can be found in $O(n)$ time [Lipton-Tarjan 1979, Miller 1986]

Planar Shortest Path Separator

Planar Shortest Path Separator

- Can have $\Omega(n)$ boundary nodes

Planar Shortest Path Separator

- Can have $\Omega(n)$ boundary nodes
- At most $2 n / 3$ nodes in each part
- $G_{\text {in }}$ and $G_{\text {out }}$ both include the boundary (may have n nodes)

Planar Shortest Path Separator

- Can have $\Omega(n)$ boundary nodes
- At most $2 n / 3$ nodes in each part
- $G_{\text {in }}$ and $G_{\text {out }}$ both include the boundary (may have n nodes)

Planar Shortest Path Separator

- Can have $\Omega(n)$ boundary nodes
- At most $2 n / 3$ nodes in each part
- $G_{\text {in }}$ and $G_{\text {out }}$ both include the boundary (may have n nodes)

Planar Shortest Path Separator

- Can have $\Omega(n)$ boundary nodes
- At most $2 n / 3$ nodes in each part
- $G_{\text {in }}$ and $G_{\text {out }}$ both include the boundary (may have n nodes)

Planar Shortest Path Separator

- Can have $\Omega(n)$ boundary nodes
- At most $2 n / 3$ nodes in each part
- $G_{\text {in }}$ and $G_{\text {out }}$ both include the boundary (may have n nodes)

Planar Shortest Path Separator

- Can have $\Omega(n)$ boundary nodes
- At most $2 n / 3$ nodes in each part
- $G_{\text {in }}$ and $G_{\text {out }}$ both include the boundary (may have n nodes)

Recursive Algorithm

Recursive Algorithm

I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

Recursive Algorithm

I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$ 2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$

Recursive Algorithm

I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$ 2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{o u t} \backslash\{P, Q\}$

Recursive Algorithm

- Mark all nodes
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$ 2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{o u t} \backslash\{P, Q\}$

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$ 2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{o u t} \backslash\{P, Q\}$

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }}$

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{\text {in }} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }}$

Choose 16/ع portals

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{\text {in }}$ 3. Find furthest pair in $G_{\text {out }}$

Choose 16/ع portals

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }}$

Choose 16/ع portals

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{\text {in }} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }}$

Choose 16/ع portals

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{\text {in }} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }}$

Choose 16/ع portals

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n}$
3. Find furthest pair in $G_{\text {out }}$

Choose 16/ع portals

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

Choose 16/ع portals
Lemma: a shortest u-to- \boldsymbol{v} path does not cross below the $8 x$ prefix

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$ 2. Find furthest pair in $G_{\text {in }} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }}$

$G_{\text {in }}$		$G_{o u t}$
\bigcirc		\bigcirc
\bigcirc	portals	\bigcirc
\bigcirc	-	\bigcirc
\boldsymbol{u}	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc
\bigcirc	0	\bigcirc
\bigcirc		OV
\bigcirc		\bigcirc
\bigcirc		\bigcirc

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$ 2. Find furthest pair in $G_{\text {in }} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }}$

$$
\begin{array}{ccc}
G_{\text {in }} & & G_{\text {out }} \\
\circ & & 0 \\
0 & \text { portals } & 0 \\
0 & 0 & 0 \\
\boldsymbol{u} 0=-\mathbf{-} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \ddots \\
0 & & 0 \boldsymbol{v} \\
0 & & 0 \\
0 & & 0
\end{array}
$$

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$
3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

Lemma: we can round the edge lengths to be in $\{1,2, \ldots, 1 / \varepsilon\}$

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$
3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

Lemma: we can round the edge lengths to be in $\{1,2, \ldots, 1 / \varepsilon\}$ proof: Use $x \leq$ diameter $\leq 2 x$

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$
3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

$G_{\text {in }}$	$G_{\text {out }}$
\circ	0
0	portals
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0

Lemma: we can round the edge lengths to be in $\{1,2, \ldots, 1 / \varepsilon\}$
proof: Use $x \leq$ diameter $\leq 2 x$
Lemma: after rounding we can find the exact diameter of the tripartite graph in time $\mathrm{O}\left(2^{\circ(1 / \varepsilon)} \cdot \mathrm{n}\right)$

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{\text {in }} \backslash\{P, Q\}$
3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

$G_{\text {in }}$	$G_{\text {out }}$
0	0
0	portals
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0

Lemma: we can round the edge lengths to be in $\{1,2, \ldots, 1 / \varepsilon\}$
proof: Use $x \leq$ diameter $\leq 2 x$
Lemma: after rounding we can find the exact diameter of the tripartite graph in time $\mathrm{O}\left(2^{\mathrm{O}(1 / \varepsilon)} \cdot \mathrm{n}\right)$
proof: $2^{\circ(\mid / \varepsilon)}$ config. of what u can "see"

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{\text {in }} \backslash\{P, Q\}$
3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

Lemma: we can round the edge lengths to be in $\{1,2, \ldots, 1 / \varepsilon\}$
proof: Use $x \leq$ diameter $\leq 2 x$
Lemma: after rounding we can find the exact diameter of the tripartite graph in time $\mathrm{O}\left(2^{\mathrm{O}(1 / \varepsilon)} \cdot \mathrm{n}\right)$
proof: $2^{\circ(\mid / \varepsilon)}$ config. of what u can "see"

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$
3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

First unmark all nodes of $\{P, Q\}$

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$

1. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$
2. Find furthest pair in $G_{\text {in }} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
l. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{\text {in }} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{\text {in }} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

Choose $\mathrm{O}((\log n) / \varepsilon)$ dense portals 0

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{\text {in }} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{o u t} \backslash\{P, Q\}$

Choose $\mathrm{O}((\log n) / \varepsilon)$ dense portals 0

Compute all 0-to-o shortest paths in $G_{\text {out }}$

Recursive Algorithm

- Mark all nodes

- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$

1. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$
2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$ 3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

Choose $\mathrm{O}((\log n) / \varepsilon)$ dense portals 0

Compute all 0-to-o shortest paths in $G_{\text {out }}$

Contract degree-2 nodes
 Unmark and append to $G_{\text {in }}$

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$
3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$
3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

This graph is still too big

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$
3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

This graph is still too big

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$
3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

This graph is still too big

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$
3. Find furthest pair in $G_{\text {out }} \backslash\{P, Q\}$

This graph is still too big

Recursive Algorithm

- Mark all nodes
- In $O(n)$ time find x s.t $x \leq$ diameter $\leq 2 x$
I. Find furthest pair $u \in G_{\text {in }}$ and $v \in G_{\text {out }}$

2. Find furthest pair in $G_{i n} \backslash\{P, Q\}$
3. Find furthest pair in $G_{o u t} \backslash\{P, Q\}$

Open Problem

- We obtained $\tilde{O}(f(\varepsilon) \cdot n)$ time where $f(\varepsilon)=2^{O(1 / \varepsilon)}$

Open Problem

- We obtained $\tilde{O}(f(\varepsilon) \cdot n)$ time where $f(\varepsilon)=2^{O(1 / \varepsilon)}$
- $f(\varepsilon)=\operatorname{poly}(1 / \varepsilon)$ say $f(\varepsilon)=(1 / \varepsilon)^{c}$ would immediately imply an exact algorithm for diameter in $O\left(n^{2-\varepsilon}\right)$ when diameter is bounded by $\mathrm{n}^{1 / \mathrm{c}}$

Open Problem

- We obtained $\tilde{O}(f(\varepsilon) \cdot n)$ time where $f(\varepsilon)=2^{O(1 / \varepsilon)}$
- $f(\varepsilon)=\operatorname{poly}(1 / \varepsilon)$ say $f(\varepsilon)=(1 / \varepsilon)^{c}$ would immediately imply an exact algorithm for diameter in $O\left(n^{2-\varepsilon}\right)$ when diameter is bounded by $\mathrm{n}^{1 / \mathrm{c}}$

Open Problem

- We obtained $\tilde{O}(f(\varepsilon) \cdot n)$ time where $f(\varepsilon)=2^{O(1 / \varepsilon)}$
- $f(\varepsilon)=\operatorname{poly}(1 / \varepsilon)$ say $f(\varepsilon)=(1 / \varepsilon)^{\text {c }}$ would immediately imply an exact algorithm for diameter in $O\left(n^{2-\varepsilon}\right)$ when diameter is bounded by $\mathrm{n}^{1 / \mathrm{c}}$

General $\mathrm{n} \times 1 / \varepsilon \times \mathrm{n}$ tripartite graph requires
 $O\left(n \cdot \log ^{1 / \varepsilon} n\right)$ [Cabello, Knauer 2009], we get $O\left(n \cdot 2^{1 / \varepsilon}\right)$

Open Problem

- We obtained $\tilde{O}(f(\varepsilon) \cdot n)$ time where $f(\varepsilon)=2^{O(1 / \varepsilon)}$
- $f(\varepsilon)=\operatorname{poly}(1 / \varepsilon)$ say $f(\varepsilon)=(1 / \varepsilon)^{\mathrm{c}}$ would immediately imply an exact algorithm for diameter in $O\left(n^{2-\varepsilon}\right)$ when diameter is bounded by $\mathrm{n}^{1 / \mathrm{c}}$

General $\mathrm{n} \times 1 / \varepsilon \times \mathrm{n}$ tripartite graph requires

$O\left(n \cdot \log ^{1 / \varepsilon} n\right)$ [Cabello, Knauer 2009], we get $O\left(n \cdot 2^{1 / \varepsilon}\right)$

Open Problem

- We obtained $\tilde{O}(f(\varepsilon) \cdot n)$ time where $f(\varepsilon)=2^{O(1 / \varepsilon)}$
- $f(\varepsilon)=\operatorname{poly}(1 / \varepsilon)$ say $f(\varepsilon)=(1 / \varepsilon)^{\mathrm{c}}$ would immediately imply an exact algorithm for diameter in $O\left(n^{2-\varepsilon}\right)$ when diameter is bounded by $\mathrm{n}^{1 / \mathrm{c}}$

General $\mathrm{n} \times 1 / \varepsilon \times \mathrm{n}$ tripartite graph requires

$O\left(n \cdot \log ^{1 / \varepsilon} n\right)$ [Cabello, Knauer 2009], we get $O\left(n \cdot 2^{1 / \varepsilon}\right)$
bounded lengths
(I) We can settle for an approximation
(2) Lengths correspond to planar distances (Monge)
(3) Range max can be easier than sum

Thank You!

