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We present a novel approach for computing all maximum consecutive subsums in a
sequence of positive integers in near-linear time. Solutions for this problem over binary
sequences can be used for reporting existence of Parikh vectors in a bit string. Recently,
several attempts have been made to build indexes for all Parikh vectors of a binary string
in subquadratic time. However, no algorithm is known to date which can beat by more
than a polylogarithmic factor the naive Θ(n2) procedure. We show how to construct a

(1 + ε)-approximate index for all Parikh vectors of a binary string in O (n log2 n
log(1+ε) ) time, for

any constant ε > 0. Such index is approximate, in the sense that it leaves a small chance
for false positives (no false negatives are possible). However, we can tune the parameters of
the algorithm so that we can strictly control such a chance of error while still guaranteeing
strong subquadratic running time.

 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let s = s1, . . . , sn be a sequence of non-negative integers. For each # = 1, . . . ,n, we denote with m# the maximum sum
over a consecutive subsequence of s of size #:

m# = max
i=1,...,n−#+1

i+#−1∑

j=i

s j .

The Maximum Consecutive Subsums Problem (MCSP) asks for computing m# for each # = 1, . . . ,n.
Since an obvious implementation of the above formula allows to compute m# for a single value of # in O (n) time, it

follows that there exists a trivial O (n2) procedure to accomplish the above task. The interesting question is then to find a
subquadratic procedure for MCSP. Notwithstanding the effort recently devoted to the problem—particularly in the case of
binary strings (see the applications below)—no algorithm is known which is significantly better than the natural Θ(n2).

In this paper we show that in near-linear time, we can closely approximate the values m# within an approximation factor
as close to 1 as desired. More precisely, we are interested in the following variant of MCSP:
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Approximate Maximum Consecutive Subsums Problem (AMCSP): Given a sequence s of non-negative integers and some
ε > 0, build an index on s that can quickly report a (1 + ε)-approximation m̃# of m# (for any # = 1, . . . ,n), i.e., such that
m̃# ! (1 + ε)m# .

We show two solutions for the AMCSP. The first one constructs an index of size O (nη) in O (n1+η) time (for any constant

η > 0), and guarantees O (1/η) query time. The second solution has a better construction time, namely O (n log2 n
log(1+ε) ) but in

order to guarantee O (1) query time, requires to store the complete list of values m̃# , namely the index built is of size
Θ(n). Alternatively, this latter solution can be used to build an index of only O (log1+ε n) size but the query time becomes
O (log2 log1+ε n). More precisely, we prove

Theorem 1. For any constants ε,η > 0, there exists an index for AMCSP that is of size O (kε,η · nη), and can be constructed in time
O (kε,η ·n1+η), where kε,η is a constant only depending on ε and η. The index can be used to report, for any #, a (1+ε)-approximation
m̃# for m# , in O (1/η) time.

Theorem 2. For any ε > 0, there exists an index for AMCSP that is of size O (n), and can be constructed in time O (nlog2 n/log(1 + ε)).
The index can be used to report, for any #, a (1 + ε)-approximation m̃# for m# , in O (1) time. The same construction can be used to
build an index of size O (log n/log(1 + ε)) with O (log log n/log(1 + ε)) query time.

MCSP arises in several scenarios of both theoretical and practical interest, in what follows we describe some of them.
We start with our main motivation for studying the AMCSP, the following Parikh vector matching problem.

An index for constant time Parikh vector membership queries
Given a string t over an alphabet Σ = {1,2, . . . ,σ }, for each c ∈ Σ , let xc be the number of occurrences of character c

in t . The vector (x1, . . . , xσ ) is called the Parikh vector of t .
In Parikh vector pattern matching, given a string t (the text) and a Parikh vector p = (x1, . . . , xσ ) (the pattern) we ask for

(all/one/existence) of occurrences of substrings s of t such that the Parikh vector of s equals p. Equivalently, we are asking
for all the jumbled occurrences of a string s (the pattern) in a string t (the text), i.e., any occurrence of some permutation
of s in t . Parikh vector matching arises in numerous applications where we search for pattern occurrences but we do not
care about the order of the characters inside an occurrence. Most typically, applications are found in computational biology
and regard the identification of compounds or complex molecules whose presence can be characterized by the presence of
certain substructures and their occurrence within a relatively short distance, whilst the exact location of such substructures
within the molecule is not significant [1,2,11,15].

More generally, the Parikh vector matching is an important type of approximate string matching [12,8] where we view
two strings as equivalent if one can be turned into the other by permuting its characters. Indeed, like classical pattern
matching, a Parikh vector matching can be found in O (n) time. However, while classical pattern matching requires involved
ideas like Knuth–Morris–Pratt [13] or Boyer–Moore [4], Parikh vector matching can be easily solved in O (n) time with a
simple sliding window based algorithm. The difficulty in Parikh vector matching is for the indexing problem (i.e., preprocess
a text in order to efficiently answer Parikh vector queries). For indexing in classical pattern matching, the text can be
preprocessed in O (n) time to produce a data structure of size O (n) (such as a suffix tree) that can answer queries efficiently.
In contrast, for Parikh vector matching we do not currently have any o(n2) size data structure for answering queries in time
linear in the pattern. This motivates the interest in indexes for membership queries which, given several queries over the
same string, allows to at least filter out the “no” instances, before, eventually applying the trivial O (n) procedure only to
the “yes” instances.

In binary alphabets, it turns out that there is a simple data structure for membership queries that requires only O (n)
space and answers queries in O (1) time. This data structure is exactly what MCSP computes. In particular, for a binary
string t , knowing for each # = 1, . . . ,n the minimum and maximum number of 1’s found in a substring of length # of t ,
we can answer membership queries in constant time. More precisely, the connection between MCSP and Parikh vector
membership query problem is as follows.

Lemma 1. (See [7].) Let s be a binary string and let µmin
# (resp. µmax

# ) denote the minimum (resp. maximum) number of ones in a
substring of s of length #. Then there exists a substring in s with Parikh vector p = (x0, x1) if and only if µmin

x0+x1
! x1 !µmax

x0+x1
.

It follows that, after constructing the tables of µmin’s and µmax’s (which is equivalent to solving two instances of the
MCSP) we can answer in constant time Parikh vector membership queries, i.e., questions asking: “Is there an occurrence of
the Parikh vector (x0, x1) in s?”.

Therefore, there has been recent interest in trying to solve the MCSP on binary sequences in subquadratic time. Currently,
only logarithmic factor improvements are known. Namely, the best known constructions are as follows: Burcsi et al. in [7,6]
showed a O (n2/ log n)-time algorithm which is based on the O (n2/ log n) algorithm of Bremner et al. [5,9] for computing
(min,+)-convolution; Moosa and Rahman in [14] obtained the same result by a different use of (min,+)-convolution,
moreover, they show that an O (n2/ log2 n) construction can be obtained assuming word-RAM operations.
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Protein identification
The indexes for Parikh vector membership queries in binary strings have also been used in the following problem: Given

a string s over an alphabet Σ together with a weight function w : Σ $→ N. Construct an index on s such that for any M ∈ N
we can quickly report whether there exists a substring t of s with total weight equal to M , i.e., such that w(t) = ∑|t|

i=1 w(ci),
where ci is the ith character of t .

Cieliebak et al. [10] considered this problem in the context of mass-spectrometry based protein identification. They
showed that for binary alphabets, the index of maximal consecutive subsums can be used to provide an O (log |s|) solution
to the above type of membership queries, independently of the weight function. However, the authors of [10] did not focus
on the complexity of constructing the indexes, and their solution is to trivially construct them in Θ(n2) time.

Finding large empty regions in data sets
Another interesting application of MCSP comes from a problem in the analysis of statistical data. Bergkvist and Dam-

aschke in [3] used it for speeding up heuristics for the following problem: Given a sequence of positive real numbers
x1, . . . , xn , called items, and integers s " 1 and p " 0, find s pairwise disjoint intervals with a total of s + p items and max-
imum total length. Here an interval is a set of consecutive items xi, xi+1, . . . , x j (i ! j) and its length is xi + xi+1 + · · · + x j .
This problem (aka Disjoint Intervals of Maximum Length) and its density variant where we are interested in intervals of
maximum density [9] rather than absolute length, are motivated by the problem of finding large empty regions (big holes)
in data sets. Several other motivating applications can be found in [3] and [9].

By employing a geometric argument, in [3] a heuristic procedure is presented for the MCSP which can solve the problem
in O (n3/2) time in the best case, but whose worst case remains Θ(n2).

Organization of the paper
In Section 2 we provide the proof of Theorem 1. We present the algorithm as a sequence of refinements, starting

with a simple way to compute a ( 1+
√

5
2 )-approximation in total O (n3/2) time and then describe how to improve both the

approximation and the time complexity by using a recursive argument. Finally we show how to obtain O (1) query time with
a sublinear index size. In Section 3 we provide the proof of Theorem 2. In Section 4 we apply our results to the problem
of Parikh vector membership queries. Section 5 concludes the paper with some observations on the results presented here
and open problems for future research.

2. An index of sublinear size, near-linear construction, and constant query

In this section we will prove Theorem 1. We first describe an algorithm for computing a ( 1+
√

5
2 )-approximation m̃#

of m# for all # = 1, . . . ,n in total time O (n3/2). We then show how to refine the approach to achieve the desired
(1 + ε)-approximation in the same O (n3/2) time. Then, by employing a recursive argument, we show how to achieve
the same approximation in time O (kε,η · n1+η), for any constant η > 0, where kε,η is a constant that only depends on ε
and η. Finally, we show that it is enough to store only O (kε,η ·nη) values in an index and we can still guarantee query time
O (1/η).

For ease of presentation, in the following we neglect rounding necessary to preserve the obvious integrality constraints.
The reader can assume that, when necessary, numbers are rounded to the closest integer. It will always be clear that these
inaccuracies do not affect the asymptotic results. On the other hand, this way, we gain in terms of much lighter expressions.
We will use the following simple facts.

Fact 1. For each 1 ! i < j ! n it holds that mi ! m j .

Fact 2. For each # ∈ [n] and positive integers i, j such that i + j = #, it holds that m# ! mi + m j .

Fact 1 directly follows from the non-negativity of the elements in the sequence. Fact 2 is a consequence of the following
easy observation: For a fixed #, let sr, . . . , sr+#−1 be a subsequence achieving sr + · · · + sr+#−1 = m# . By definition we have
that, for any i, j such that i + j = # it holds that sr + · · · + sr+i−1 ! mi and sr+i + · · · + sr+#−1 ! m j , from which we obtain
the desired inequality.

The following lemma, that follows easily from the above two facts, will be a key tool in the analysis of our algorithm.
Informally, the lemma asserts that, for any integer g > 1, if we look at the n/g values m1,mg,m2g,m3g, . . . ,mn then there
cannot be many consecutive pairs m jg and m( j+1)g that differ by a large factor. We will then be able to focus only on these
few pairs. For all other pairs m jg and m( j+1)g that do not differ by a large factor, we will be able to approximate m# for any
jg ! # ! ( j + 1)g by returning m( j+1)g .

Lemma 2. Let k " 1 be an integer and α̃ be the positive real solution of the equation α = 1 + 1/αk. Fix an integer g > 1 and let
1 ! j1 < j2 < · · · < jr ! n/g be indices such that m( ji+1)×g/m ji×g > α. Then r ! k.
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Proof. The proof is by contradiction. Assume that r > k. For each i = 1, . . . ,k we have that m( ji+1)×g/m ji×g > α. Since
j1 " 1 and jr " jk + 1, by Fact 1 we have that

m jr×g

mg
> αk. (1)

Let us now consider the ratio m( jr+1)×g/m jr×g . We have

m( jr+1)×g

m jr×g
! m jr×g + mg

m jr×g
= 1 + mg

m jr×g
< 1 + 1

αk
= α (2)

where the first inequality follows from Fact 2, the second inequality follows from (1), and the last equality by the definition
of α. Therefore, by assuming r > k, we have (2) which contradicts the hypothesis that m( jr+1)×g/m jr×g > α. Hence it must
hold that r ! k. !

2.1. Warm-up: A golden ratio approximation in O (n3/2)

Let α = 1+
√

5
2 . Fix an integer t " 2 and set g = n1/2. We will show how to compute m̃# for all # = 1, . . . ,n, in total time

O (n3/2), such that 1 ! m̃#/m# ! α.
Here we use the expression “compute m# exhaustively” (for some fixed #) to indicate the linear time computation attained

by scanning the sequence s from left to right and computing the sum of all consecutive subsequences of size # (i.e., a sliding
window approach). This exhaustive computation for a single # can be clearly achieved in Θ(n) time.

The basic idea is to compute exhaustively the value of m j×g for each j = 1, . . . ,n/g and then use these values for
approximating all the others. For each j = 1, . . . ,n/g , we set m̃ j×g = m j×g , i.e., our approximate index will contain the
exact value.

Let # be such that j × g < # < ( j + 1) × g for some j = 1, . . . ,n/g − 1. By Fact 1 we have that m j×g ! m# ! m( j+1)×g .
Therefore, if m( j+1)×g/m j×g ! α, by setting m̃# = m( j+1)×g we also have that m̃# is an α-approximation of the real value
m# . What happens if the ratio between m( j+1)×g and m j×g is large? In this case we say that there is a large gap between
m( j+1)×g and m j×g .

If m( j+1)×g/m j×g > α, our idea is to compute exhaustively m# for each # = j × g + 1, . . . , ( j + 1) × g − 1 (i.e., each
m# between m j×g and m( j+1)×g ). The critical point here is that the “large” gap can only happen once! In fact, this is a
consequence of Lemma 2 (with k = 1 and g = n1/2). Therefore, after encountering the first large gap between m j×g and
m( j+1)×g all the following gaps will be “small”, hence we can safely set m̃# = m(i+1)×g for each i > j and i × g < # !
(i + 1) × g . In fact, using again Fact 1 we have m̃#/m# ! m(i+1)×g/mi×g and since the ratio must be small (by the above
observation) we are guaranteed that m̃# = m(i+1)×g is indeed an α-approximation of the exact m# .

2.2. As close to 1 as desired

We now refine the algorithm described in the previous section in order to show how to obtain a (1 + ε)-approximation
for any ε > 0.

Let k be the minimum positive integer such that α̃ ! 1 + ε , where α̃ is the positive real solution of the equation
α = 1 + 1/αk . In an explicit way, k = (− ln(ε)

ln(1+ε) ). The value α̃ defines the approximation of our solutions. Let us also set

g = n1/2.
We partition the list of values m# (# = 1, . . . ,n) into n/g intervals, each of them with g consecutive values. Then, we

proceed as follows:

1. Compute exhaustively the exact value for each m# in the first interval, i.e., for m# such that # = 1, . . . , g .
2. Compute exhaustively the exact value for the extremes of all intervals (i.e., for m# such that # = 2g,3g, . . .).
3. Let g,2g, . . . be the extremes of the n/g intervals. We say that an extreme i × g is relevant if m(i+1)×g/mi×g > α̃. In

this case, the interval [i × g, (i + 1) × g] is a relevant interval. Compute exhaustively m# for every # such that # lies in a
relevant interval.

4. The remaining m# ’s are approximated by the value of the right extreme in the interval where they lie (i.e., for # ∈
{ jg + 1, . . . , ( j + 1)g − 1} such that m( j+1)g/m jg ! α we set m̃# = m( j+1)g).

We need to prove that the m̃# values satisfy the desired (1 + ε)-approximation. Let R = { j1 < j2 < · · · < jr} be the indices
of all the relevant extremes. Note that for each j ∈ R the algorithm verified m( j+1)×g/m j×g > α and hence computed
exhaustively m# in the interval # = jg, . . . , ( j + 1) × g .

It is easy to see that 1 ! m̃#/m# ! α for every #. In fact, if # is an extreme of an interval then m̃# = m# . If the left extreme
of the interval where # lies belongs to R then m̃# = m# . Finally, if the left extreme, say j × g , of the interval where # lies
does not belong to R then m̃# = m( j+1)×g ! α × m j×g ! α × m# .

This concludes the proof that for each # the m̃# values are indeed an α-approximation (and hence a (1 +
ε)-approximation) of m# .
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For the time bound, we observe that, by Lemma 2, we have r ! k. Hence, in the above procedure, the number of times
we use the exhaustive linear procedure is at most (k + 1) × n1/2 for the full intervals of size g (items 1. and 3.) and n1−1/2

for the extremes of the intervals (item 2.). Therefore the algorithm runs in time O (k · n3/2).

2.3. The last piece: A recursive argument

In the above procedure, for g = n1/2 we first compute mg,m2g,m3g, . . . ,mn in time O (n3/2). Then, we identify (up to)
k + 1 relevant intervals. The first interval is [1, g] and the other k intervals are all the ones of the form [ jg, ( j + 1)g] where
m( j+1)g/m jg > α. For each one of the k + 1 relevant intervals we compute exhaustively all m# values where # lies inside the
interval, hence in total requiring time O (k × n3/2).

In order to reduce the time complexity, instead of computing all the values exhaustively in the relevant intervals we
can recursively use in each interval the argument we use for the full “interval” [1,m]. In particular, this means subdividing
each relevant interval into sub-intervals and computing exhaustively the values m# ’s only at the sub-intervals’ extremes. By
Lemma 2, there might be—altogether among the sub-intervals of all relevant intervals—k + 1 relevant sub-intervals, where
we recurse again.

As an example, let us explain how to obtain a (1 + ε)-approximation in time O (n1+1/3). For this we choose g = n2/3

and compute exhaustively mg,m2g, . . . ,mn , so spending in total O (n1+1/3) time. Then, we identify k + 1 relevant intervals
just as before. Suppose that [ jg, ( j + 1)g] is one of the k + 1 relevant intervals, i.e., m( j+1)g/m jg > α. We partition this
interval into n1/3 sub-intervals each of size n1/3. Now, we first compute m# for every sub-interval extreme, which requires
n1/3 × n = O (n1+1/3) time. Then, we compute m# exhaustively for each # in the k + 1 relevant sub-intervals, i.e., the first
sub-interval and the ones for which the ratio of the values m# at the boundaries is greater than α. By Lemma 2 (with
g = n1/3), besides [1,n1/3] at most k sub-intervals can exist for which such condition is verified.

Overall, the number of values of # for which we compute m# exhaustively are:

• The n1/3 boundaries g,2g, . . . . This requires O (n1/3) exhaustive computations of some m# .
• The n1/3 boundaries of the sub-interval in the k + 1 relevant intervals. This requires O (kn1/3) exhaustive computations

of some m# .
• Altogether, in the k + 1 relevant interval, we may have up to k + 1 relevant sub-intervals. This holds again by Lemma 2

with g = n1/3. Each relevant sub-interval requires to compute n1/3 new values m# ’s. In total this gives additional
O (kn1/3) exhaustive computations of some m# .

Therefore, the time complexity becomes O (2kn1+1/3).
If we want to get O (n1+1/4) running time we can choose g = n3/4 and add one more level of recursion, i.e., partition the

sub-intervals into sub-sub-intervals. This way the running time becomes O (3kn1+1/4).
In general, given any fixed η > 0 we can set t = (1/η) and g = n1−1/t . By using t − 1 levels of recursion we then get

a (1 + ε)-approximation m̃# of m# for all # = 1, . . . ,n, in total O (tkn1+1/t) = O (kε,ηn1+η) time, where kε,η is a constant
depending only on ε and η.

The actual index is built as follows: First, we store the values m# exhaustively computed at the boundaries of the n1/t

intervals considered in the first level of recursion, in an array of size n1/t . For each one of the at most k+1 relevant intervals
we store the boundaries of the sub-intervals in a separate array of size n1/t . For each level of recursion, we have at most
k + 1 additional arrays of sub-intervals boundaries for which the values m# are also stored. Hence, in total we store up to
(k + 1)tn1/t values.

In order to show that we can retrieve the approximate value for the maximum consecutive sum of any given length #,
we exploit the way we split the values m1, . . . ,mn into regular size intervals before computing exhaustively their values
only at the boundaries of these intervals. The key point here is that the intervals considered at each level of recursion have
regular sizes, and, in fact, one specific size for each level of recursion. Therefore, when we look up for the approximate
value for m# , it is easy to compute the interval in which # lies, by a constant time computation.

More precisely, given # ∈ {1, . . . ,n}, in order to retrieve the approximate value m̃# , we proceed as follows: We first
compute the interval in which # lies at the first level of recursion. Notice that at the first level of recursion, the algo-
rithm stored the values mn1−1/t ,m2n1−1/t ,m3n1−1/t , . . . . Thus, by computing #1 = *#/n1−1/t+ we can retrieve in constant time
values m(#1+1)n1−1/t " m# and m#1n1−1/t ! m# . If m(#1+1)n1−1/t /m#1n1−1/t ! (1 + ε), then we return m#1+1, which is a correct
approximation of m# .

If m#1+1/m#1 > (1 + ε), then the algorithm recursed on the interval [#1n1−1/t , (#1 + 1)n1−1/t] we use the fact that at
the second level of recursion, while building the index, the algorithm built an array of size n1/t containing the values
m#1n1−1/t ,m#1n1−1/t+n1−2/t , m#1n1−1/t+2n1−2/t , . . . ,m(#1+1)n1−1/t .

Therefore—at retrieval time—with #2 = *(# − #1n1−1/t)/n1−2/t+, we look for values stored at positions #2 and #2 + 1 in
this array, which contain the values mn1−1/t#1 + n1−2/t#2 ! m# and mn1−1/t#1 + n1−2/t(#2 + 1) > m# , and check their ratio.
Again, if the ratio is smaller than (1 + ε), we can correctly report the larger value as a (1 + ε)-approximation for m# .
Otherwise, we proceed as before by looking in the array containing the values computed at the third level of recursion,
where the algorithm subdivided the interval [#1n1−1/t + #2n1−2/t,#1n1−1/t + (#2 + 1)n1−2/t].
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Notice that these operations are repeated at most t times—once for each level of recursion of the algorithm—before we
either find an interval whose extremes have ratio not larger than (1+ε) or we reach an array stored at the (t −1)th level of
recursion which contains the exact value for m# . Therefore, the number of look up operations is bounded by O (t) = O (1/η).
This complete the proof of Theorem 1.

3. An index of linear size and constant query or logarithmic size and logarithmic query

In this section we will prove Theorem 2. The result will be a consequence of the following proposition.

Proposition 1. For any constant ε , there exists an algorithm which in time O ( n log2 n
log(1+ε) ) computes values m̃1, . . . ,m̃n such that 1 !

m̃#/m# ! 1 + ε , for each # = 1, . . . ,n.

The algorithm works into two phases, which we will analyze separately and refer to as Algo1 and Algo2, respectively.
In the first phase, Algo1 performs some binary searches to find a sequence of representative indices 1 = t1 < t2 < · · · <

tk = n such that for every i ∈ {1, . . . ,n} there is an index t j in the sequence that satisfies 1 ! mi/mt j ! (1 + ε). In the
second phase, Algo2 uses the values computed by Algo1 to compute an approximated value m̃# for every # such that
1 ! m#/m̃# ! (1 + ε). Below is a simple pseudocode description of Algo1:

Algo1: Finding the representative indexes
Compute exhaustively m1 and mn
Store m1 and mn as 1 and n
t ← 1
While mn/mt > (1 + ε)

Do a binary search in {t + 1, . . . ,n} to find an index j such that
m j

mt
> (1 + ε) and

m j−1

mt
! (1 + ε)

Store values m j and m j−1; Store indices j and j − 1
t ← j

End do

Notice that whenever the binary search evaluates an index i as a possible candidate for being the desired j, it computes
exhaustively the value mi in O (n) time.

Let 1 = t1 < t2 < · · · < tk = n be the sequence of indices stored by Algo1. It is not difficult to see that for each 1 ! # ! n
there is t j such that 1 ! m#/mt j ! (1 + ε). In fact, if # belongs to the sequence then this clearly holds. Otherwise, let j
and j + 1 be such that t j < # < t j+1. It follows that 1 ! mt j+1/mt j ! (1 + ε) and from Fact 1 that mt j ! m# ! mt j+1 . Thus,
1 ! m#/mt j ! (1 + ε).

The following lemma bounds the number of external loops executed by Algo1.

Lemma 3. The number of external loops executed by Algo1 is at most log n
log(1+ε) + 1.

Proof. Let p be the number of loops executed by Algo1 and h1 < h2 < · · · < hp be the sequence containing the largest of
the two indexes stored at each loop. It follows from the algorithm’s construction that mh j /mh j−1 > (1 + ε) for j = 2, . . . , p.
Thus, mhp−1 > (1 + ε)p−1m1. We shall note that mhp /m1 ! n because mhp <

∑n
i=1 si and m1 = max{s1, . . . , sn}. Thus, we can

conclude that p ! ( log n
log(1+ε)) ) + 1 so that the number of external loops is at most log n

log(1+ε) + 1. !

Since the algorithm executes at most ( log n
log(1+ε) ) + 1 binary searches, each of them computing m# for at most log n values

of #, it follows that Algo1 runs in O ( n log2 n
log(1+ε) ) time.

If we want to have an index of O (n) size to answer approximate queries in O (1) time, we may run Algo2, presented
below.

Algo2: Building the index
Set m̃1 = m1; t ← 1
For i = 2 to n

If mi has already been stored in Phase 1
Set m̃i = mi ; t ← i

Else
Set m̃i = mt

End If
End For
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Alternatively, we could avoid running Algo2 by storing only the sequence of representative indexes computed by Algo1
in a search tree. In this case, we have an index of O ( log n

log(1+ε) ) size that can be queried in O (log( log n
log(1+ε) )) time.

4. Applying the index to Parikh vector pattern matching

We can now analyze the consequences of our result with respect to the connection between MCSP and the Parikh vector
membership query problem. An immediate corollary of Proposition 1 is the following:

Corollary 1. Let s be a binary string and for each i = 1, . . . ,n let µmin
# (resp. µmax

# ) denote the minimum (resp. maximum) number of

ones in a substring of s of length #. For any ε ∈ (0,1), we can compute in O (n log2 n
log(1+ε) ) approximate values µ̃min

# (resp. µ̃max
# ) such

that

µmin
# " µ̃min

# " (1 − ε)µmin
# and µmax

# ! µ̃max
# ! (1 + ε)µmax

# .

Let s be a binary string of length n. Fix a tolerance threshold ε > 0, and let µ̃min
# and µ̃max

# (# = 1, . . . ,n) be as in
Corollary 1. In terms of Parikh vector membership queries, we have the following necessary condition for the occurrence of
a Parikh vector in s.

Corollary 2. For any p = (x0, x1) such that there exists a substring of s whose Parikh vector equals p, we have that

µ̃min
x0+x1

! x1 ! µ̃max
x0+x1

.

We also have an “almost matching” sufficient condition, which also follows from Lemma 1 and Corollary 1.

Corollary 3. Fix a Parikh vector p = (x0, x1). If

µ̃min
x0+x1

1 − ε
! x1 !

µ̃max
x0+x1

1 + ε

then p occurs in s.

As a consequence, if we use the values µ̃min and µ̃max we can answer correctly to any membership query involving a
Parikh vector which occurs in s. Moreover, we can also answer correctly any membership query involving a Parikh vector
satisfying the condition in Corollary 3. In contrast, it might be that the approximate index makes us report false positives,
when the membership query is about a Parikh vectors p = (x0, x1) such that

µ̃min
x0+x1

! x1 !
µ̃min

x0+x1

1 − ε
or

µ̃max
x0+x1

1 + ε
! x1 ! µ̃max

x0+x1
.

5. Some final observations and open problems

We presented two novel approaches to approximate all maximum consecutive subsums of a sequence. Our solutions can
be directly used for obtaining indices for binary strings, which allow to give in constant time approximate answers to Parikh
vector membership queries. For the exact case, the existence of a o(n2−δ) time solution, for some δ > 0, remains a major
open problem.

The computation of our indexes is easy and seems fast to implement, and, in contrast to the previous exact solutions
presented in the literature [7,6,14], does not require any tabulation or convolution computation.

It would be interesting to investigate whether it is possible to obtain Las Vegas algorithms for the Parikh vector problem
based on our approximation perspective. Another direction for future investigation regards the extension of our approach to
cover the case of Parikh vector membership queries in strings over non-binary alphabets.
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