On Approximating String Selection Problems with

Christina Boucher, Gad M. Landau, Avivit Levy,
David Pritchard, Oren Weimann

On Approximating String Selection

Problems with

$\mathrm{S}_{1}=$	b	a	n	a	n	a
$\mathrm{S}_{2}=$	g	a	n	a	n	a
S3 $=$	a	p	p	1	e	S
$\mathrm{S}_{4}=$	b	a	m	a	n	a
$\mathrm{S}_{\mathrm{n}}=$	b	a	m	a	m	a

On Approximating String Selection

Problems with

$\mathrm{S}_{1}=$	b	a	n	a	n	a
$\mathrm{S}_{2}=$	g	a	n	a	n	a
$\mathrm{S}_{3}=$	a	p	p	1	e	S
$\mathrm{S}_{4}=$	b	a	m	a	n	a
$\mathrm{S}_{\mathrm{n}}=$	b	a	m	a	m	a

All the others are of small hamming distance

Problem I: CloseToMostStrings

Given d , find a string s maximizing the number of strings whose distance from s is $\leq \mathrm{d}$

Problem I: CloseToMostStrings

Given d , find a string s maximizing the number of strings whose distance from s is $\leq \mathrm{d}$

Problem I: CloseToMostStrings

Given d , find a string s maximizing the number of strings whose distance from s is $\leq \mathrm{d}=1$

$\mathrm{S}_{1}=$	b	a	n	a	n	a
$\mathrm{S}_{2}=$	g	a	n	a	n	a
$\mathrm{S}_{3}=$	a	p	p	1	e	S
$\mathrm{S}_{4}=$	b	a	m	a	n	a
$\mathrm{S}_{\mathrm{n}}=$	b	a	m	a	m	a
$\mathbf{S}=$	b	a	n	a	n	a

All the others are of distance > 1 from s

Problem I: CloseToMostStrings

Given d , find a string s maximizing the number of strings whose distance from s is $\leq \mathrm{d}$

Theorem 1: The problem has no PTAS unless $\mathrm{ZPP}=\mathrm{NP}$

Problem I: CloseToMostStrings

Given d , find a string s maximizing the number of strings whose distance from s is $\leq \mathrm{d}$

Theorem 1: The problem has no PTAS unless ZPP = NP Theorem [CPM'00]: The problem has no PTAS unless $P=N P$

Problem I: CloseToMostStrings \equiv FarFromMostStrings

in binary alphabet

Theorem 1: The problem has no PTAS unless ZPP $=$ NP Theorem [CPM'00]: The problem has no PTAS unless $P=N P$

Problem I: CloseToMostStrings

 \equiv FarFromMostStringsno PTAS unless $\mathrm{P}=\mathrm{NP}$
in binary alphabet
[Lanctot et al. SODA'99]

Theorem 1: The problem has no PTAS unless ZPP $=$ NP Theorem [CPM'00]: The problem has no PTAS unless $P=N P$

Problem I: CloseToMostStrings

 \equiv FarFromMostStringsno PTAS unless $\mathrm{P}=\mathrm{NP}$
[Lanctot et al. SODA'99]
Not true in binary alphabet

Theorem 1: The problem has no PTAS unless ZPP $=$ NP Theorem [CPM'00]: The problem has no PTAS unless $P=N P$

Problem I: CloseToMostStrings

 \equiv FarFromMostStringsno PTAS unless $\mathrm{P}=\mathrm{NP}$
[Lanctot et al. SODA'99]
no PTAS unless $\mathrm{ZPP}=\mathrm{NP}$ [here]

Theorem 1: The problem has no PTAS unless ZPP $=$ NP Theorem [CPM'00]: The problem has no PTAS unless $P=N P$

CloseToMostStrings

Theorem 1: The problem has no PTAS unless $\mathrm{ZPP}=\mathrm{NP}$

Theorem 1: The problem has no PTAS unless ZPP = NP

CloseToMostStrings

$\mathrm{S}_{1}=$	0	I	0	0	1	1
$\mathrm{S}_{2}=$	1	1	0	0	1	1
$\mathrm{S}_{3}=$	0	0	1	1	1	0
$\mathrm{S}_{4}=$	1	0	1	1	0	0
$\mathrm{S}_{\mathrm{n}}=$	0	0	0	1	1	0

Theorem 1: The problem has no PTAS unless ZPP = NP

CloseToMostStrings

$\mathrm{S}_{1}=$	0	I	0	0	1	1
$\mathrm{S}_{2}=$	1	1	0	0	1	1
$\mathrm{S}_{3}=$	0	0	1	1	1	0
$\mathrm{S}_{4}=$	1	0	1	1	0	0
$\mathrm{S}_{\mathrm{n}}=$	0	0	0	1	1	0

Theorem 1: The problem has no PTAS unless ZPP = NP

 Proof: Randomized reduction from Max-2-SATCloseToMostStrings

$\mathrm{S}_{1}=$	0	1	0	0	1	1
$\mathrm{S}_{2}=$	1	1	0	0	1	1
$\mathrm{S}_{3}=$	0	0	1	1	1	0
$\mathrm{S}_{4}=$	1	0	1	1	0	0
$\mathrm{S}_{\mathrm{n}}=$	0	0	0	1	1	0

Theorem 1: The problem has no PTAS unless ZPP = NP Proof: Randomized reduction from Max-2-SAT

Max-2-SAT
$x_{1} \vee x_{2}$
$\overline{x_{1}} \vee x_{2}$
$x_{1} \vee \overline{x_{3}}$
$\overline{x_{1}} \vee \overline{x_{3}}$
$\overline{x_{2}} \vee x_{3}$
$x_{3} \vee x_{4}$

CloseToMostStrings

Theorem 1: The problem has no PTAS unless ZPP = NP Proof: Randomized reduction from Max-2-SAT

Theorem 1: The problem has no PTAS unless ZPP = NP Proof: Randomized reduction from Max-2-SAT

Max-2-SAT
$x_{1} \vee x_{2}$
$\overline{x_{1}} \vee x_{2}$
$x_{1} \vee \overline{x_{3}}$
$\overline{x_{1}} \vee \overline{x_{3}}$
$\overline{x_{2}} \vee x_{3}$
$x_{3} \vee x_{4}$

uniformly random from $\{01,10\}^{\text {n }}$

CloseToMostStrings

$\mathrm{S}_{1}=$	1	1	1	1	0	1	0	1	
$\mathrm{s}_{2}=$	0	0	1	1	0	1	0	1	
S3	1	1	0	1	0	0	0	1	
$\mathrm{S}_{4}=$	0	0	0	1	1	1	0	1	
$\mathrm{S}_{5}=$	0	1	0	0	1	1	0	1	
$\mathrm{S}_{6}=$	0	1	0	1	1	1	1	1	
	0	1	1	0	0	1	0	1	
(0)	0	1	1	0	1	0	0	1	
	1	0	0	1	1	0	0	1	
	1	0	1	0	0	0	0	1	
	0	1	1	0	1	0	0	1	

Theorem 1: The problem has no PTAS unless ZPP = NP Proof: Randomized reduction from Max-2-SAT

$$
\begin{gathered}
\text { Max-2-SAT } \\
x_{1} \vee x_{2} \\
\overline{x_{1}} \vee x_{2} \\
x_{1} \vee \overline{x_{3}} \\
\overline{x_{1}} \vee \frac{\overline{x_{3}}}{\overline{x_{2}}} \vee x_{3} \\
x_{3} \vee x_{4}
\end{gathered}
$$

define a string \widehat{x} via

$$
\widehat{x}(2 i-1) \widehat{x}(2 i)= \begin{cases}11 & \text { if } x_{i} \text { is true } \\ 00 & \text { if } x_{i} \text { is false }\end{cases}
$$

CloseToMostStrings

$\mathrm{S}_{1}=$	1	1	1	1	0	1	0	1
$\mathrm{S}_{2}=$	0	0	1	1	0	1	0	1
$\mathrm{s}_{3}=$	1	1	0	1	0	0	0	1
$\mathrm{S}_{4}=$	0	0	0	1	1	1	0	1
S_{5}	0	1	0	0	1	1	0	1
$\mathrm{S}_{6}=$	0	1	0	1	1	1	1	1
	0	1	1	0	0	1	0	1
	0	1	1	0	1	0	0	1
	1	0	0	1	1	0	0	1
	1	0	1	0	0	0	0	1
	0	1	1	0	1	0	0	1

Theorem 1: The problem has no PTAS unless ZPP = NP

 Proof: Randomized reduction from Max-2-SAT$$
\begin{aligned}
& \text { Max-2-SAT } \\
& \\
& x_{1} \vee x_{2} \\
& \overline{x_{1}} \vee x_{2} \\
& x_{1} \vee \overline{x_{3}} \\
& \overline{x_{1}} \vee \overline{x_{3}} \\
& \overline{x_{2}} \vee x_{3} \\
& x_{3} \vee x_{4}
\end{aligned}
$$

define a string \widehat{x} via

$$
\widehat{x}(2 i-1) \widehat{x}(2 i)= \begin{cases}11 & \text { if } x_{i} \text { is true } \\ 00 & \text { if } x_{i} \text { is false }\end{cases}
$$

CloseToMostStrings

$\mathrm{S}_{1}=$	1	1	1	1	0	1	0		1
$\mathrm{s}_{2}=$	0	0	1	1	0	1	0		1
$\mathrm{s}_{3}=$	1	1	0	1	0	0	0		1
$\mathrm{S}_{4}=$	0	0	0	1	1	1	0		1
S5 $=$	0	1	0	0	1	1	0		1
$\mathrm{S}_{6}=$	0	1	0	1	1	1	1		1
	0	1	1	0	0	1	0		1
	0	1	1	0	1	0	0		1
	1	0	0	1	1	0	0		1
	1	0	1	0	0	0	0		1
	0	I	1	0	1	0	0		1

Theorem 1: The problem has no PTAS unless ZPP = NP

 Proof: Randomized reduction from Max-2-SATMax-2-SAT
$x_{1} \vee x_{2}$
$\overline{x_{1}} \vee x_{2}$
$x_{1} \vee \overline{x_{3}} \quad$ at distance $\leq \mathrm{n}$ iff
$\overline{x_{1}} \vee \overline{x_{3}}$ satisfies the clause
$\overline{x_{2}} \vee x_{3}$
$x_{3} \vee x_{4}$

define a string \widehat{x} via

$$
\widehat{x}(2 i-1) \widehat{x}(2 i)= \begin{cases}11 & \text { if } x_{i} \text { is true } \\ 00 & \text { if } x_{i} \text { is false }\end{cases}
$$

CloseToMostStrings

$\mathrm{S}_{1}=$	1	1	1	1	0	1	0	1
$\mathrm{s}_{2}=$	0	0	1	1	0	1	0	1
$\mathrm{S}_{3}=$	1	1	0	1	0	0	0	1
$\mathrm{S}_{4}=$	0	0	0	1	1	1	0	1
$\mathrm{S}_{5}=$	0	1	0	0	1	1	0	1
$\mathrm{S}_{6}=$	0	1	0	1	1	1	1	1
	0	1	1	0	0	1	0	1
	0	1	1	0	1	0	0	1
	1	0	0	1	1	0	0	1
	1	0	1	0	0	0	0	1
	0	1	1	0	1	0	0	1

Theorem 1: The problem has no PTAS unless ZPP = NP

Proof: Randomized reduction from Max-2-SAT
Lemma 1: W.h.p any string s with distance $\leq \mathrm{n}$ from cm strings is of the form $\{00,11\}^{\text {n }}$

Max-2-SAT $\quad \checkmark$

$$
\begin{array}{lll}
x_{1} & \vee x_{2} \\
\overline{x_{1}} & \vee & x_{2} \\
x_{1} & \vee & \overline{x_{3}} \\
\overline{x_{1}} & \vee & \overline{x_{3}} \\
\overline{x_{2}} & x_{3} \\
x_{3} & x_{4}
\end{array}
$$

$$
x_{1} \vee \overline{x_{3}} \quad \text { at distance } \leq \mathrm{n} \text { iff }
$$

$$
\overline{x_{1}} \vee \overline{x_{3}} \quad \text { satisfies the clause }
$$

define a string \widehat{x} via

$$
\widehat{x}(2 i-1) \widehat{x}(2 i)= \begin{cases}11 & \text { if } x_{i} \text { is true } \\ 00 & \text { if } x_{i} \text { is false }\end{cases}
$$

CloseToMostStrings

$\mathrm{s}_{1}=$	1	1	1	1	0	1	0		1
$\mathrm{s}_{2}=$	0	0	1	1	0	1	0		1
$\mathrm{s}_{3}=$	1	1	0	1	0	0	0		1
S4	0	0	0	1	1	1	0		1
$\mathrm{S}_{5}=$	0	1	0	0	1	1	0		1
$\mathrm{S}_{6}=$	0	1	0	1	1	1	1		1
	0	1	1	0	0	1	0		1
	0	1	1	0	1	0	0		1
	1	0	0	1	1	0	0		1
	1	0	1	0	0	0	0		1
	0	1	1	0	1	0	0		1

Theorem 1: The problem has no PTAS unless ZPP = NP

Proof: Randomized reduction from Max-2-SAT
Lemma 1: W.h.p any string s with distance $\leq \mathrm{n}$ from cm strings is of the form $\{00,11\}^{\text {n }}$
Proof: Uses the probabilistic method

$$
\begin{aligned}
& x_{1} \vee x_{2} \\
& \overline{x_{1}} \vee x_{2} \\
& x_{1} \vee \overline{x_{3}} \\
& \overline{x_{1}} \vee \overline{x_{3}} \\
& \overline{x_{2}} \vee x_{3} \\
& x_{3} \vee x_{4}
\end{aligned}
$$

$$
x_{1} \vee \overline{x_{3}} \quad \text { at distance } \leq \mathrm{n} \text { iff }
$$

define a string \widehat{x} via

$$
\widehat{x}(2 i-1) \widehat{x}(2 i)= \begin{cases}11 & \text { if } x_{i} \text { is true } \\ 00 & \text { if } x_{i} \text { is false }\end{cases}
$$

at distance n from all random strings

$\mathrm{s}_{1}=$	1	1	1	1	0	1	0	1
$\mathrm{s}_{2}=$	0	0	1	1	0	1	0	1
$\mathrm{s}_{3}=$	1	1	0	1	0	0	0	1
$\mathrm{S}_{4}=$	0	0	0	1	1	1	0	1
$\mathrm{S}_{5}=$	0	1	0	0	1	1	0	1
$\mathrm{S}_{6}=$	0	1	0	1	1	1	1	1
	0	1	1	0	0	1	0	1
	0	1	1	0	1	0	0	1
	1	0	0	1	1	0	0	1
	1	0	1	0	0	0	0	1
	0	1	1	0	1	0	0	1

Problem II: ClosestTokStrings

Given k , find a string s and a subset of k input strings S such that maximum $d\left(s, s_{i} \in S\right)$ is minimized

Problem II: ClosestTokStrings

Given k, find a string s and a subset of k input strings S such that maximum $\mathrm{d}\left(\mathrm{s}, \mathrm{s}_{\mathrm{i}} \in \mathrm{S}\right)$ is minimized $=1$

$$
\mathrm{k}=4
$$

$\mathrm{S}_{1}=$	b	a	n	a	n	a
$\mathrm{S}_{2}=$	g	a	n	a	n	a
S3 $=$	a	p	p	1	e	S
S4 $=$	b	a	m	a	m	a
$\mathrm{S}_{\mathrm{n}}=$	b	a	m	a	n	a
$\mathbf{S}=$	b	a	n	a	n	a

Problem II: ClosestTokStrings

Given k , find a string s and a subset of k input strings S such that maximum $\mathrm{d}\left(\mathrm{s}, \mathrm{s}_{\mathrm{i}} \in \mathrm{S}\right)$ is minimized $=1$

$$
\mathrm{k}=\mathrm{n}
$$

The ClosestString problem

Extensive Hardness, Approximation, and FPT research: [Frances, Litman TCS'97], [Lanctot, Li, Ma, Wang, Zhang SODA'99], [Ma, CPM'00], [Li, Ma, Wang J. of computer and Sys. Sci. 2002], [Gramm, Niedermeier, Rossmanith Algorithmica’03], [Ma, Sun SICOMP'09], [Wang, Zhu FAW'09], [Chen, Ma, Wang COCOON' I0], [Amir, Paryenty, Roditty SPIRE' II], [Lokshtanov, Marx, Saurabh SODA'II]

Problem II: ClosestTokStrings

Given k , find a string s and a subset of k input strings S such that maximum $\mathrm{d}\left(\mathrm{s}, \mathrm{s}_{\mathrm{i}} \in \mathrm{S}\right)$ is minimized

Observation I: The known PTAS [Ma. CPM'00] for ClosesTokStrings cannot be improved to an EPTAS, unless W[I] = FPT.

Problem II: ClosestTokStrings

Given k, find a string s and a subset of k input strings S such that maximum $\mathrm{d}\left(\mathrm{s}, \mathrm{s}_{\mathrm{i}} \in \mathrm{S}\right)$ is minimized
$(1+\varepsilon)$-approx in $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}(\varepsilon)}\right)$

$\mathrm{S}_{1}=$	b	a	n	a	n	a
$\mathrm{S}_{2}=$	g	a	n	a	n	a
S3 $=$	a	P	P	1	e	S
$\mathrm{S} 4=$	b	a	n	a	n	a
$\mathrm{S}_{\mathrm{n}}=$	b	a	m	a	m	a

Observation I: The known PTAS [Ma. CPM'00] for ClosesTokStrings cannot be improved to an EPTAS, unless W[I] = FPT.

Problem II: ClosestTokStrings

Given k , find a string s and a subset of k input strings S such that maximum $\mathrm{d}\left(\mathrm{s}, \mathrm{s}_{\mathrm{i}} \in \mathrm{S}\right)$ is minimized
$(1+\varepsilon)$-approx in $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}(\varepsilon)}\right)$

Observation I: The known PTAS [Ma. CPM’00] for ClosesTokStrings cannot be improved to an EPTAS unless $W[I]=$ FPT.
$(1+\varepsilon)$-approx in $\mathrm{O}(\mathrm{f}(\varepsilon)$ poly $(\mathrm{n}))$

Problem II: ClosestTokStrings

Given k , find a string s and a subset of k input strings S such that maximum $\mathrm{d}\left(\mathrm{s}, \mathrm{s}_{\mathrm{i}} \in \mathrm{S}\right)$ is minimized
$(1+\varepsilon)$-approx in $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}(\varepsilon)}\right)$

Observation I: The known PTAS) [Ma. CPM'00] for ClosesTokStrings cannot be improved to an EPTAS unless $\mathbb{N}[1]=F P T$.
$(1+\varepsilon)$-approx in $\mathrm{O}(\mathrm{f}(\varepsilon) \operatorname{poly}(\mathrm{n}))$
standard assumption in FPT

Problem II: ClosestTokStrings

Given k , find a string s and a subset of k input strings S such that maximum $\mathrm{d}\left(\mathrm{s}, \mathrm{s}_{\mathrm{i}} \in \mathrm{S}\right)$ is minimized

Proof:
Decision version has no FPT [Boucher, Ma 2011]

An EPTAS implies FPT.

Observation I: The known PTAS [Ma. CPM'00] for ClosesTokStrings cannot be improved to an EPTAS, unless W[I] = FPT.

Problem III: FewBadColumns

Given k , find largest subset of strings with $\leq \mathrm{k}$ bad columns

$\mathrm{S}_{1}=$	b	a	n	a	n	a
$\mathrm{S}_{2}=$	g	a	n	a	n	a
S3 $=$	a	p	p	1	e	S
$\mathrm{S}_{4}=$	b	a	n	a	n	a
$\mathrm{S}_{\mathrm{n}}=$	b	a	m	a	m	a

Problem III: FewBadColumns

Given k , find largest subset of strings with $\leq \mathrm{k}$ bad columns

$$
\mathrm{k}=2
$$

$\mathrm{S}_{1}=$	b	a	n	a	n	a
$\mathrm{S}_{2}=$	g	a	n	a	n	a
$\mathrm{S}_{3}=$	a	p	p	1	e	S
S4 $=$	b	a	n	a	n	a
$\mathrm{S}_{\mathrm{n}}=$	b	a	m	a	m	a

Problem III: FewBadColumns

Given k , find largest subset of strings with $\leq \mathrm{k}$ bad columns

Theorem 2: The problem has no PTAS unless $P=N P$

Problem III: FewBadColumns

Given k , find largest subset of strings with $\leq \mathrm{k}$ bad columns
Densest-k-Subgraph
FewBadColumns has no PTAS [Khot SICOMP'06]

Set: 11000
Se: 10100
Ses: 01100
Ses: 10010
Ses: 00101

Theorem 2: The problem has no PTAS unless $P=N P$

Problem III: FewBadColumns

Given k , find largest subset of strings with $\leq \mathrm{k}$ bad columns

Densest-k-Subgraph has no PTAS [Khot SICOMP'06]

FewBadColumns

Theorem 2: The problem has no PTAS unless $P=N P$

Problem III: FewBadColumns

Given k , find largest subset of strings with $\leq \mathrm{k}$ bad columns
Densest-k-Subgraph
FewBadColumns has no PTAS [Khot SICOMP'06]

Theorem 2: The problem has no PTAS unless $P=N P$

Open problems:

- Is there a deterministic reduction for CloseToMostStrings? (to get NP=P assumption and not ZPP=NP)
- Is there a constant-factor approximation for CloseToMostStrings? (even for binary alphabets)
- Is there a constant-factor approximation for MostStringsWithFewBadColumns? (even for binary alphabets)
- Is there an EPTAS for CloseTokStrings for binary alphabets?
- Is there an EPTAS for ClosesestString?

Thank You!

