On Approximating String Selection

Problems with

Christina Boucher, Gad M. Landau, Avivit Levy, David Pritchard, Oren Weimann

On Approximating String Selection

Problems with

$s_1 =$	b	a	n	a	n	a
$s_2 =$	50	a	n	a	n	a
$s_3 =$	a	р	р	1	е	S
$_{S4} =$	b	a	m	a	n	a
$s_n =$	b	a	m	a	m	a

On Approximating String Selection

Problems with

s ₁ =			n				
$s_2 =$	g	a	n	a	n	a	
s ₃ =	a	p	p	1	e	S	
$s_4 =$	b	a	m	a	n	a	eq
$s_n =$	b	a	m	a	m	a	

Given d, find a string s maximizing the number of strings whose distance from s is $\leq d$

s ₁ =	b	a	n	a	n	a
$s_2 =$	50	a	n	a	n	a
s ₃ =	a	р	р	1	е	S
$s_4 =$	b	a	m	a	n	a
$s_n =$	b	a	m	a	m	a

Given d, find a string s maximizing the number of strings whose distance from s is $\leq d$

S =	b	a	n	a	n	a
$s_n =$	b	a	m	a	m	a
_{S4} =	b	a	m	a	n	a
$s_3 =$	а	р	р	1	e	S
$s_2 =$	g	a	n	a	n	a
$s_1 =$	b	a	n	a	n	a

Given d, find a string s maximizing the number of strings whose distance from s is $\leq d = 1$

All the others are of distance > 1 from s

Given d, find a string s maximizing the number of strings whose distance from s is $\leq d$

s ₁ =	b	a	n	a	n	a
$s_2 =$	b	a	n	a	n	a
s ₃ =	a	р	р	1	е	S
_{S4} =	b	a	m	a	n	a
$s_n =$	b	a	m	a	m	a

Given d, find a string s maximizing the number of strings whose distance from s is $\leq d$

s ₁ =	b	a	n	a	n	a
$s_2 =$	b	a	n	a	n	a
s ₃ =	a	р	р	1	е	S
_{S4} =	b	a	n	a	n	a
$s_n =$	b	a	m	a	m	a

Problem I: CloseToMostStrings ≡ FarFromMostStrings

in binary alphabet

Problem I: CloseToMostStrings = FarFromMostStrings

no PTAS unless P = NP

in binary alphabet

[Lanctot et al. SODA'99]

Problem I: CloseToMostStrings = FarFromMostStrings

no PTAS unless P = NP

Not true in binary alphabet

[Lanctot et al. SODA'99]

Problem I: CloseToMostStrings = FarFromMostStrings

in binary alphabet

0

()

()

 $s_1 =$

 $s_2 =$

 $s_3 =$

 $s_4 =$

 $s_n =$

no PTAS unless P = NP[Lanctot et al. SODA'99]

no PTAS unless ZPP=NP [here]

CloseToMostStrings

s ₁ =	0	1	0	0	1	1
$s_2 =$	1	1	0	0	1	1
s ₃ =	0	0	1	1	1	0
_{S4} =	1	0	1	1	0	0
$s_n =$	0	0	0	1	1	0

Theorem 1: The problem has no PTAS unless ZPP = NP

CloseToMostStrings

$s_1 =$	0	1	0	0	1	1
$s_2 =$	1	1	0	0	1	1
s ₃ =	0	0	1	1	1	0
s ₄ =	1	0	1	1	0	0
$s_n =$	0	0	0	1	1	0

Theorem 1: The problem has no PTAS unless ZPP = NP

CloseToMostStrings

$s_1 =$	0	1	0	0	1	1
$s_2 =$	1	1	0	0	1	1
s ₃ =	0	0	1	1	1	0
s ₄ =	1	0	1	1	0	0
$s_n =$	0	0	0	1	1	0

$s_1 =$	0	1	0	0	1	1
$s_2 =$	1	1	0	0	1	1
s ₃ =	0	0	1	1	1	0
s4 =	1	0	1	1	0	0
$s_n =$	0	0	0	1	1	0

CloseToMostStrings

Max-2-SAT CloseToMostStrings $s_1 =$ () $x_1 \vee x_2$ $\overline{x_1} \vee x_2$ $s_2 =$ 0 $x_1 \vee \overline{x_3}$ at distance $\leq n$ iff $s_3 =$ 0 0 $\overline{x_1} \vee \overline{x_3}$ 0 satisfies the clause $s_4 =$ 0 $\overline{x_2} \vee x_3$ 0 $s_5 =$ 0 $s_6 =$ $X_3 \vee X_4$ 0 0 0 0 () 1 define a string \hat{x} via 0 0 0 0 at distance n from $\widehat{x}(2i-1)\widehat{x}(2i) = \begin{cases} 11 & \text{if } x_i \text{ is true,} \\ 00 & \text{if } x_i \text{ is false.} \end{cases}$ $\mathbf{0}$ 0 () () all random strings () () ()

Lemma 1: W.h.p any string s with distance \leq n from cm strings is of the form $\{00,11\}^n$

Max-2-SAT

CloseToMostStrings

define a string \hat{x} via

$$\widehat{x}(2i-1)\widehat{x}(2i) = \begin{cases} 11 & \text{if } x_i \text{ is true} \\ 00 & \text{if } x_i \text{ is false} \end{cases}$$

at distance n from all random strings

> Lemma 1: W.h.p any string s with distance \leq n from cm strings is of the form $\{00,11\}^n$ Proof: Uses the probabilistic method

 $s_1 =$ () $x_1 \vee x_2$ $\overline{x_1} \vee x_2$ $s_2 =$ () $x_1 \vee \overline{x_3}$ at distance $\leq n$ iff $s_3 =$ 0 0 $\overline{x_1} \vee \overline{x_3}$ 0 satisfies the clause $s_4 =$ 0 $\overline{x_2} \vee x_3$ $s_5 =$ 0 0 $s_6 =$ $X_3 \vee X_4$ 0 0 0 () 1 () define a string \hat{x} via 0 0 0 0 at distance n from $\widehat{x}(2i-1)\widehat{x}(2i) = \begin{cases} 11 & \text{if } x_i \text{ is true,} \\ 00 & \text{if } x_i \text{ is false.} \end{cases}$ 0 0 () () all random strings () ()

Given k, find a string s and a subset of k input strings S such that maximum $d(s, s_i \in S)$ is minimized

$s_1 =$	b	a	n	a	n	a
$s_2 =$	50	a	n	a	n	a
$s_3 =$	a	р	р	1	e	S
s4 =	b	a	n	a	n	a
$s_n =$	b	a	m	a	m	a

Given k, find a string s and a subset of k input strings S such that maximum $d(s, s_i \in S)$ is minimized = 1

k = 4

Given k, find a string s and a subset of k input strings S such that maximum $d(s, s_i \in S)$ is minimized = 1

	s ₁ =	b	a	n	a	n	a
	$s_2 =$	g	a	n	a	n	a
$\mathbf{k} = \mathbf{n}$	s ₃ =	a	р	р	1	e	S
The ClosestString problem	_{S4} =	b	a	n	a	n	a
	$s_n =$	b	a	m	a	m	a

Extensive Hardness, Approximation, and FPT research:

[Frances, Litman TCS'97], [Lanctot, Li, Ma, Wang, Zhang SODA'99], [Ma, CPM'00], [Li, Ma, Wang J. of computer and Sys. Sci. 2002], [Gramm, Niedermeier, Rossmanith Algorithmica'03], [Ma, Sun SICOMP'09], [Wang, Zhu FAW'09], [Chen, Ma, Wang COCOON'10], [Amir, Paryenty, Roditty SPIRE'11], [Lokshtanov, Marx, Saurabh SODA'11]

Given k, find a string s and a subset of k input strings S such that maximum $d(s, s_i \in S)$ is minimized

$s_1 =$	b	a	n	a	n	a
$s_2 =$	b	a	n	a	n	а
s ₃ =	a	p	p	1	е	S
s4 =	b	a	n	a	n	a
$s_n =$	b	a	m	a	m	a

Observation I: The known PTAS [Ma. CPM'00] for ClosesTokStrings cannot be improved to an EPTAS, unless W[I] = FPT.

Given k, find a string s and a subset of k input strings S such that maximum $d(s, s_i \in S)$ is minimized

	$s_1 =$	b	a	n	a	n	a
	$s_2 =$	g	a	n	a	n	a
	$s_3 =$	a	р	р	1	e	S
	_{S4} =	b	a	n	a	n	а
$(1+\epsilon)$ -approx in $O(n^{f(\epsilon)})$	$s_n =$	b	a	m	a	m	а

Observation I: The known PTAS [Ma. CPM'00] for ClosesTokStrings cannot be improved to an EPTAS, unless W[I] = FPT.

Given k, find a string s and a subset of k input strings S such that maximum $d(s, s_i \in S)$ is minimized

	$s_1 =$	b	a	n	a	n	а
	$s_2 =$	g	a	n	a	n	а
	s ₃ =	a	p	p	1	е	S
	_{S4} =	b	a	n	a	n	a
$(1+\varepsilon)$ -approx in $O(n^{f(\varepsilon)})$	$s_n =$	b	a	m	а	m	a

Observation I: The known PTAS [Ma. CPM'00] for ClosesTokStrings cannot be improved to an EPTAS unless W[I] = FPT.

 $(1+\varepsilon)$ -approx in O(f(ε) poly(n))

Given k, find a string s and a subset of k input strings S such that maximum $d(s, s_i \in S)$ is minimized

	$s_1 =$	b	a	n	a	n	a
	$s_2 =$	g	a	n	а	n	a
	$s_3 =$	а	p	p	1	e	S
	$s_4 =$	b	a	n	а	n	a
$(1+\varepsilon)$ -approx in $O(n^{f(\varepsilon)})$	$s_n =$	b	a	m	а	m	a
Observation I: The kind to cannot be improved to	nown	P	TA	S [[M	a. (CF

standard assumption in FPT

 $(1+\varepsilon)$ -approx in O(f(ε) poly(n))

Given k, find a string s and a subset of k input strings S such that maximum $d(s, s_i \in S)$ is minimized

$s_1 =$	b	a	n	a	n	a	
$s_2 =$	g	а	n	a	n	a	Proof: Decision version has no EDT
$s_3 =$	а	р	p	1	е	S	Decision version has no FPT [Boucher, Ma 2011]
$s_4 =$	b	а	n	а	n	а	
$s_n =$	b	a	m	a	m	a	An EPTAS implies FPT.

Observation I: The known PTAS [Ma. CPM'00] for ClosesTokStrings cannot be improved to an EPTAS, unless W[I] = FPT.

Given k, find largest subset of strings with \leq k *bad columns*

$s_1 =$	b	a	n	a	n	a
$s_2 =$	g	a	n	a	n	a
s ₃ =	a	p	p	1	e	S
$s_4 =$	b	a	n	a	n	a
$s_n =$	b	a	m	a	m	a

Given k, find largest subset of strings with \leq k *bad columns*

k = 2

$s_1 =$	b	a	n	a	n	a
$s_2 =$	b	a	n	a	n	a
s ₃ =	a	p	p	1	e	S
_{S4} =	b	a	n	a	n	a
$s_n =$	b	a	m	a	m	a

Given k, find largest subset of strings with \leq k *bad columns*

$s_1 =$	b	a	n	a	n	a
$s_2 =$	b	a	n	a	n	a
s ₃ =	a	p	p	1	e	S
s4 =	b	a	n	a	n	a
$s_n =$	b	a	m	a	m	a

Given k, find largest subset of strings with \leq k *bad columns*

Densest-k-Subgraph has no PTAS [Khot SICOMP'06] FewBadColumns

Given k, find largest subset of strings with \leq k *bad columns*

Densest-k-Subgraph has no PTAS [Khot SICOMP'06] FewBadColumns

Given k, find largest subset of strings with \leq k *bad columns*

Densest-k-Subgraph has no PTAS [Khot SICOMP'06] FewBadColumns

Open problems:

- Is there a deterministic reduction for CloseToMostStrings? (to get NP=P assumption and not ZPP=NP)

- Is there a constant-factor approximation for CloseToMostStrings? (even for binary alphabets)

- Is there a constant-factor approximation for MostStringsWithFewBadColumns? (even for binary alphabets)

- Is there an EPTAS for CloseTokStrings for binary alphabets?

- Is there an EPTAS for ClosesestString?

Thank You!