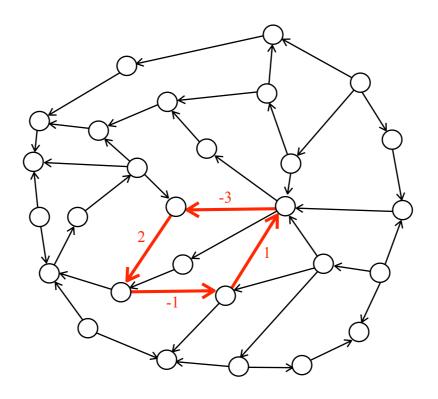
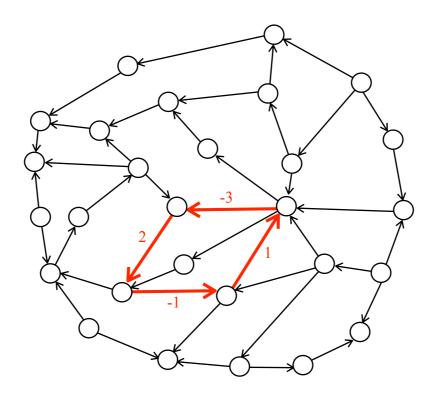
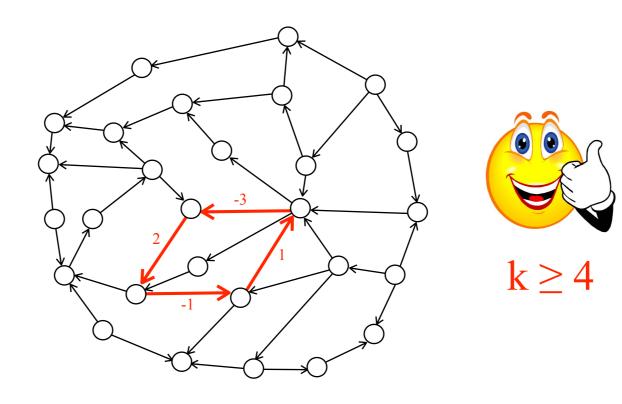
Paweł Gawrychowski, Shay Mozes, <u>Oren Weimann</u>



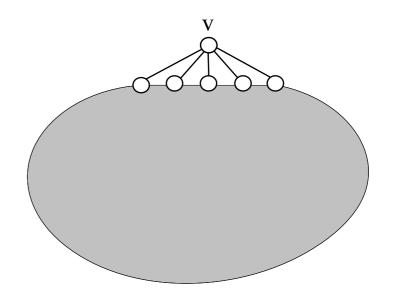




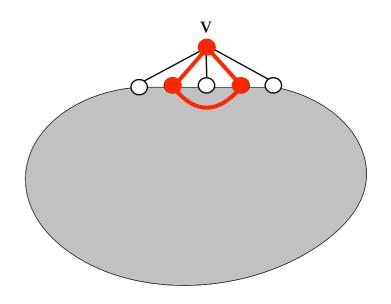
The problem	General graphs	Planar graphs
-------------	----------------	---------------

	The problem	General graphs	Planar graphs
k = 3	Negative Triangle	O(n ³) - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	O(n) - check O(1) neighbors, delete and recurse

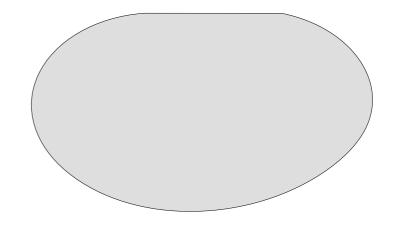
	The problem	General graphs	Planar graphs
k = 3	Negative Triangle	O(n ³) - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	O(n) - check O(1) neighbors, delete and recurse



	The problem	General graphs	Planar graphs
k = 3	Negative Triangle	O(n ³) - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	O(n) - check O(1) neighbors, delete and recurse



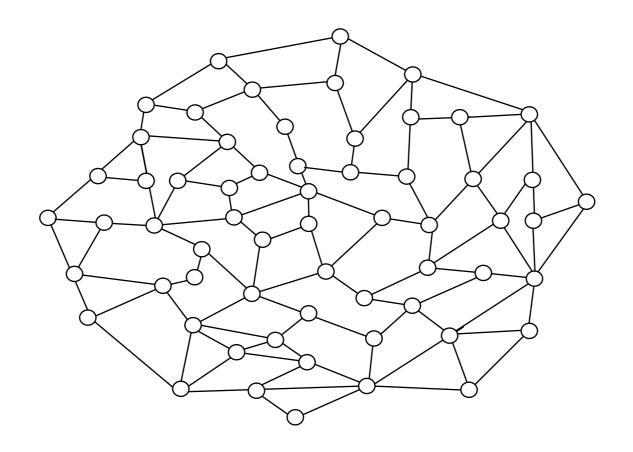
	The problem	General graphs	Planar graphs
k = 3	Negative Triangle	O(n ³) - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	O(n) - check O(1) neighbors, delete and recurse



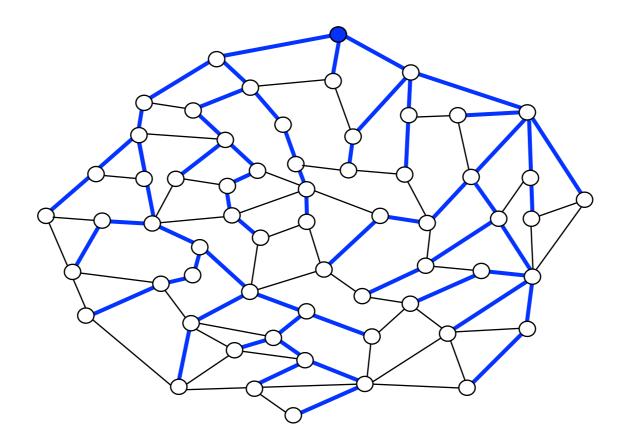
	The problem	General graphs	Planar graphs
k = 3	Negative Triangle	O(n ³) - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	O(n) - check O(1) neighbors, delete and recurse
k = n	Negative Cycle	O(n ³) - SSSP	Õ(n) - SSSP [FakcharoenpholRao'06]

	The problem	General graphs	Planar graphs
k = 3	Negative Triangle	O(n ³) - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	O(n) - check O(1) neighbors, delete and recurse
k = n	Negative Cycle	O(n ³) - SSSP	Õ(n) - SSSP [FakcharoenpholRao'06]
3 < k < n	Negative k-Cycle	Õ(n ³) - SSSP	Õ(n ^{1.5} k) [WilliamsonSubramani'15]

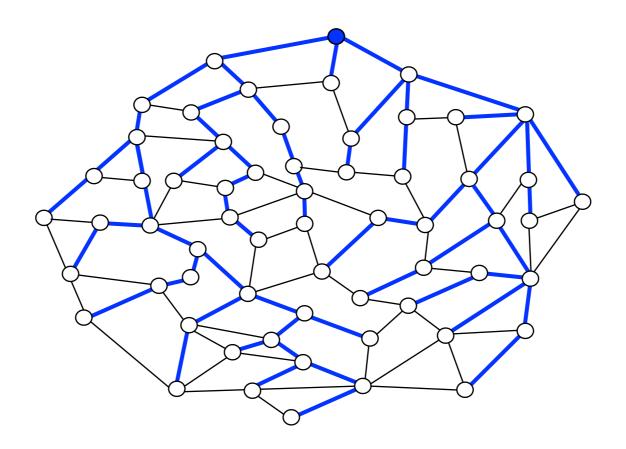
	The problem	General graphs	Planar graphs
k = 3	Negative Triangle	O(n ³) - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	O(n) - check O(1) neighbors, delete and recurse
k = n	Negative Cycle	O(n ³) - SSSP	Õ(n) - SSSP [FakcharoenpholRao'06]
3 < k < n	Negative k-Cycle	Õ(n ³) - SSSP	$\begin{array}{l} \tilde{O}(n^{1.5}k) \\ \mbox{[WilliamsonSubramani'15]} \\ \min{\{\tilde{O}(nk^2), O(n^2)\}} \end{array}$



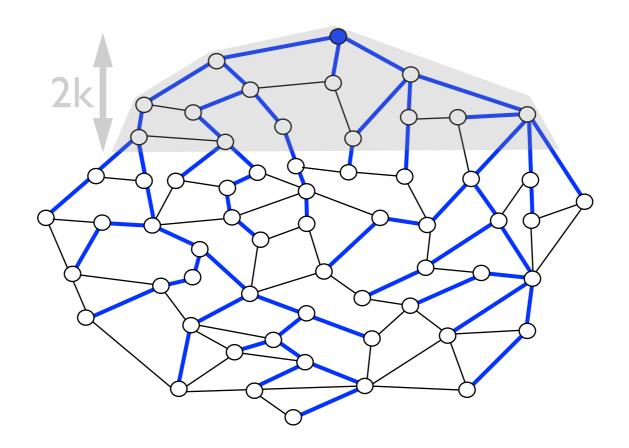
• arbitrarily root a BFS tree



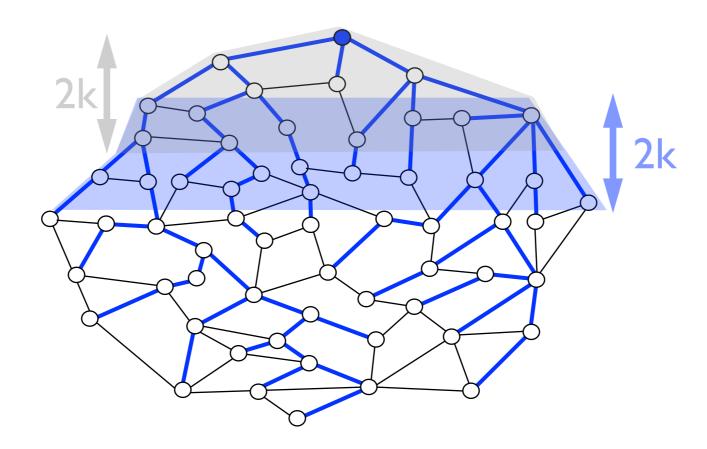
- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k



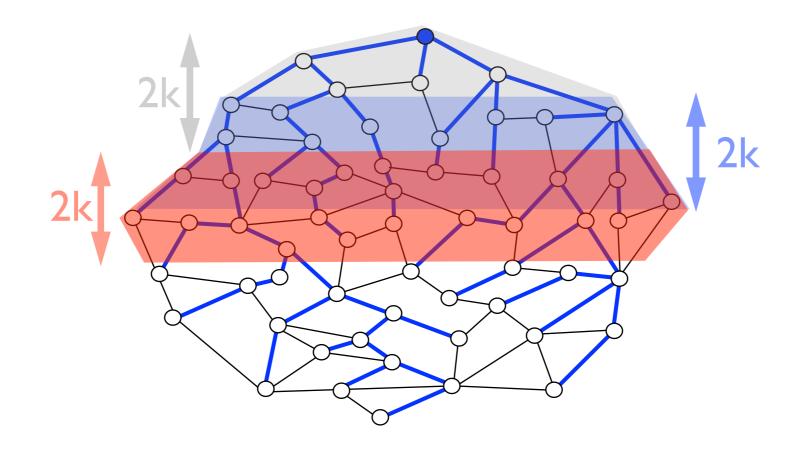
- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k



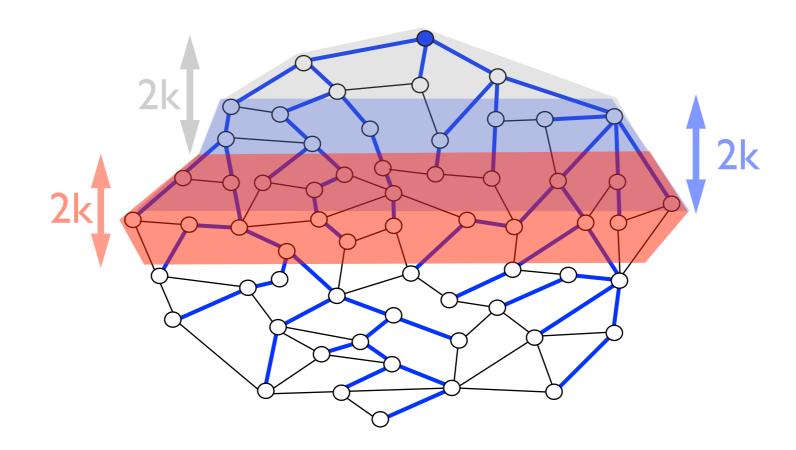
- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k



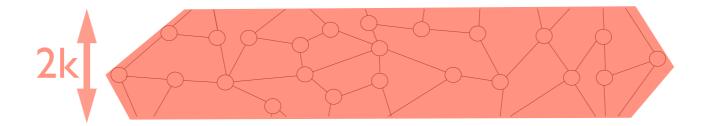
- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k



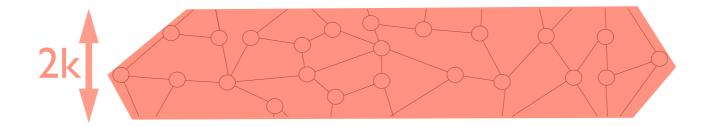
- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice



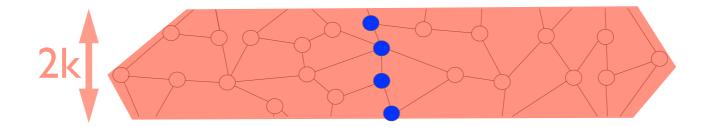
- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice



- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice (solve each independently)

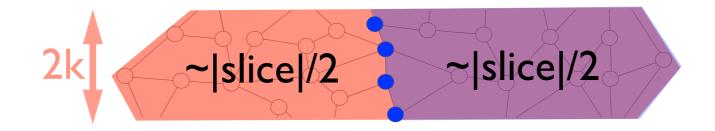


- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size O(k)

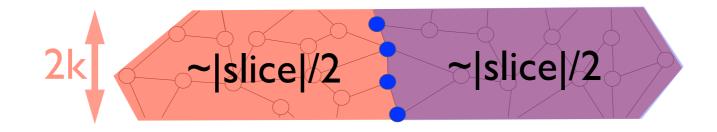


- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size O(k)

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size O(k)
- from every separator vertex: run k iterations of Bellman-Ford



- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size O(k)
- from every separator vertex: run k iterations of Bellman-Ford

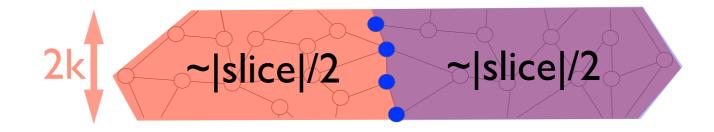


$O(|slice| \cdot k)$

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size O(k)
- from every separator vertex: run k iterations of Bellman-Ford

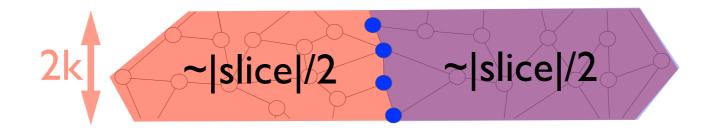
 $k \cdot O(|slice| \cdot k)$

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size O(k)
- from every separator vertex: run k iterations of Bellman-Ford
- recurse on both sides



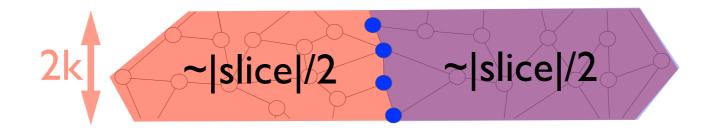
 $k \cdot O(|slice| \cdot k)$

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size O(k)
- from every separator vertex: run k iterations of Bellman-Ford
- recurse on both sides



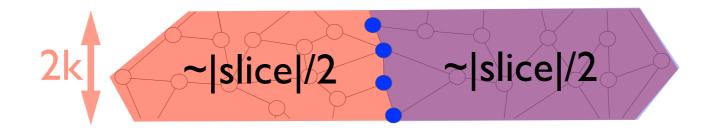
```
T(|slice|) = 2T(|slice|/2) + k \cdot O(|slice| \cdot k)
```

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size O(k)
- from every separator vertex: run k iterations of Bellman-Ford
- recurse on both sides



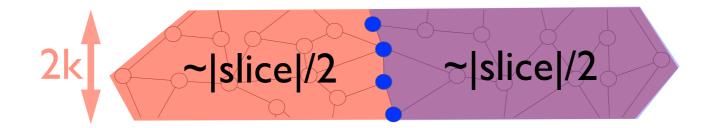
```
T(|slice|) = 2T(|slice|/2) + k \cdot O(|slice| \cdot k)
```

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size O(k)
- from every separator vertex: run k iterations of Bellman-Ford
- recurse on both sides



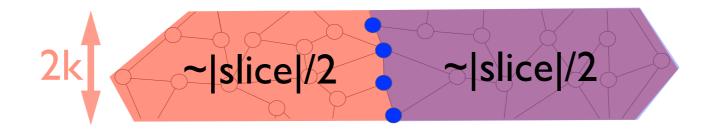
```
T(|slice|) = 2T(|slice|/2) + k \cdot O(|slice| \cdot k)
```

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size O(k)
- from every separator vertex: run k iterations of Bellman-Ford
- recurse on both sides



```
T(|slice|) = 2T(|slice|/2) + k \cdot O(|slice| \cdot k)= O(|slice| \cdot k^2 \cdot \log n)
```

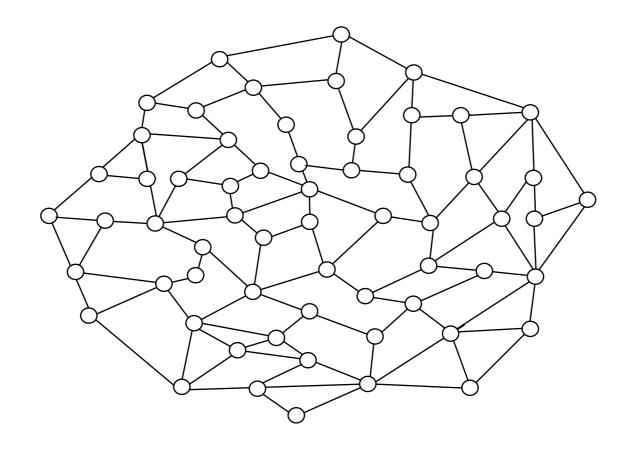
- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth 2k
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size O(k)
- from every separator vertex: run k iterations of Bellman-Ford
- recurse on both sides



$T(|slice|) = 2T(|slice|/2) + k \cdot O(|slice| \cdot k)$ = O(|slice| \cdot k^2 \cdot logn) so over all slices O(nk^2 logn)

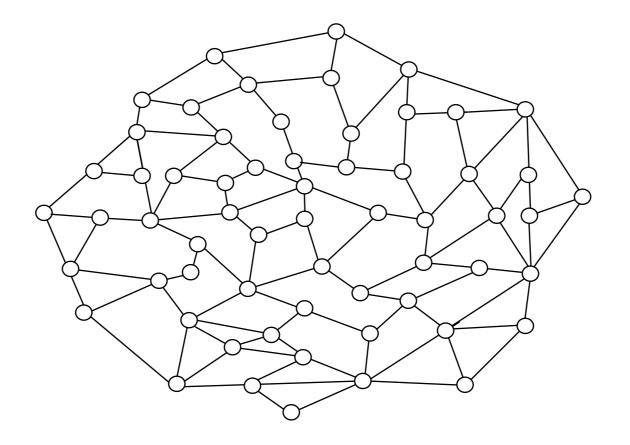
An O(n²) Randomized Algorithm

An O(n²) Randomized Algorithm

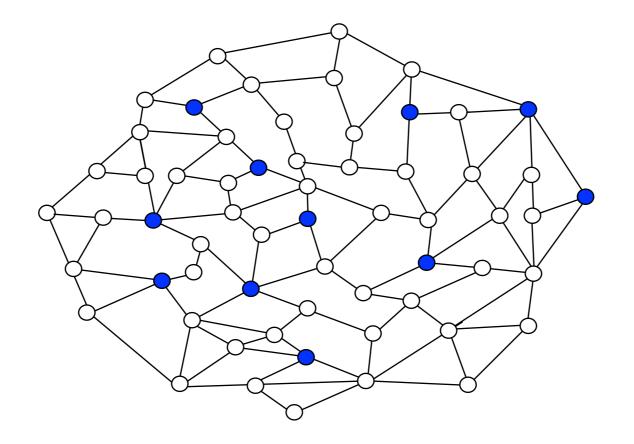


An O(n²) Randomized Algorithm

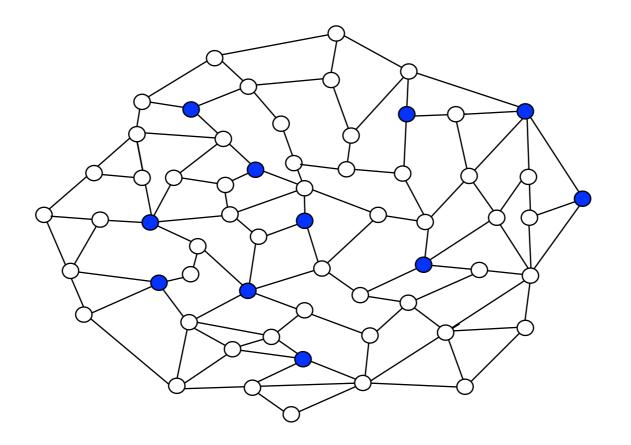
• randomly sample each vertex of G with probability 1/k



• randomly sample each vertex of G with probability 1/k

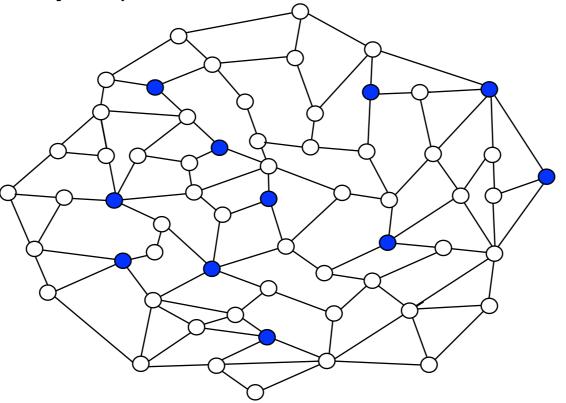


- randomly sample each vertex of G with probability 1/k
- run k iterations of Bellman-Ford from each sampled vertex



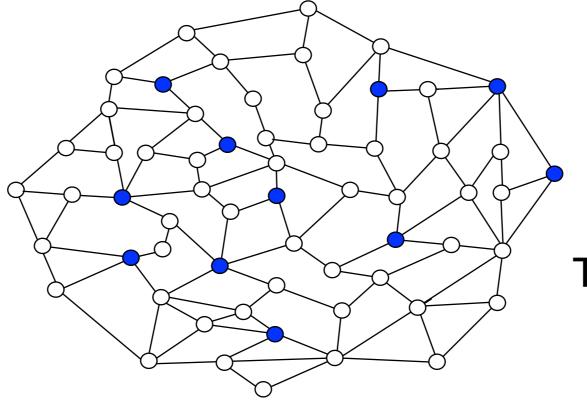
- randomly sample each vertex of G with probability 1/k
- run k iterations of Bellman-Ford from each sampled vertex

(with constant probability a sampled vertex belongs to the negative k-cycle)



- randomly sample each vertex of G with probability 1/k
- run k iterations of Bellman-Ford from each sampled vertex

(with constant probability a sampled vertex belongs to the negative k-cycle)



Time = $(n/k) \cdot O(n \cdot k)$

	The problem	General graphs	Planar graphs
k = 3	Negative Triangle	O(n ³) - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	O(n) - check O(1) neighbors, delete and recurse
k = n	Negative Cycle	O(n ³) - SSSP	Õ(n) - SSSP [Fakcharoenp/holRao'06]
3 < k < n	Negative k-Cycle	Õ(n ³) - SSSP	$\begin{array}{l} \tilde{O}(n^{1.5}k) \\ \mbox{[WilliamsonSubramani'15]} \\ \min{\{\tilde{O}(nk^2), O(n^2)\}} \end{array}$

	The problem	General graphs	Planar graphs
k = 3	Negative Triangle	O(n ³) - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	O(n) - check O(1) neighbors, delete and recurse
k = n	Negative Cycle	O(n ³) - SSSP	Õ(n) - SSSP [Fakcharoenp/holRao'06]
3 < k < n	Negative k-Cycle	Õ(n ³) - SSSP	$\begin{array}{l} \tilde{O}(n^{1.5}k) \\ \mbox{[WilliamsonSubramani'15]} \\ \min{\{\tilde{O}(nk^2), O(n^2)\}} \end{array}$

Assuming the min-plus convolution conjecture:

For $k \le n^{1/3}$ there is no algorithm polynomially faster than $O(nk^2)$ For $k \ge n^{1/3}$ there is no algorithm polynomially faster than $O(n^{1.5}k^{0.5})$

Assuming the min-plus convolution conjecture:

For $k \le n^{1/3}$ there is no algorithm polynomially faster than $O(nk^2)$ For $k > n^{1/3}$ there is no algorithm polynomially faster than $O(n^{1.5}k^{0.5})$

Assuming the min-plus convolution conjecture:

For $k \le n^{1/3}$ there is no algorithm polynomially faster than $O(nk^2)$ For $k > n^{1/3}$ there is no algorithm polynomially faster than $O(n^{1.5}k^{0.5})$

The first non-trivial tight bound for a problem in planar graphs

Given n-length sequences a,b,c whose entries are integers, does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\varepsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time

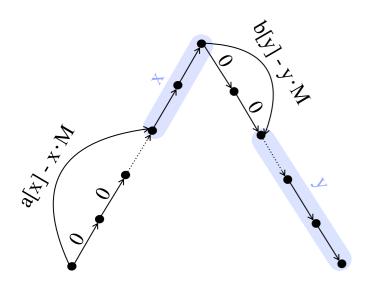
min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\varepsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time



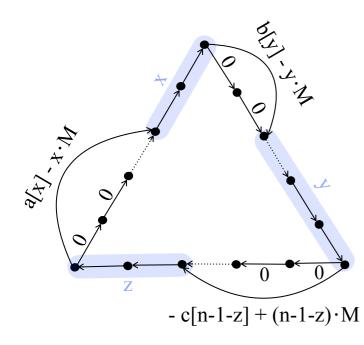
min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time



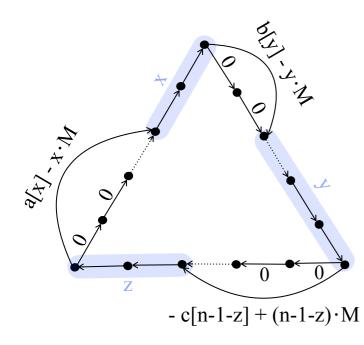
min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time



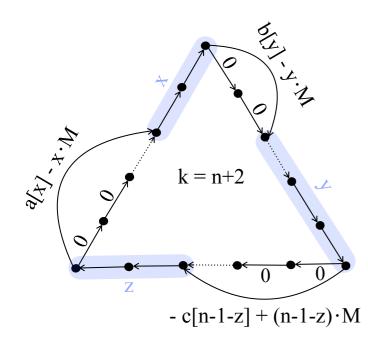
min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time



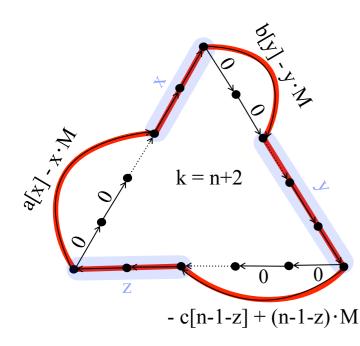
min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\varepsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time



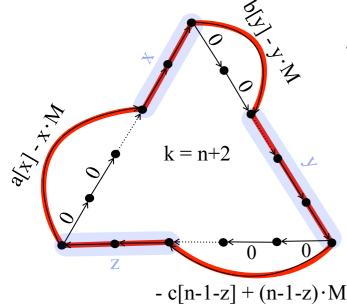
min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\varepsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time



At most n+2 edges:
$$x + y + z + 3 \le n + 2$$

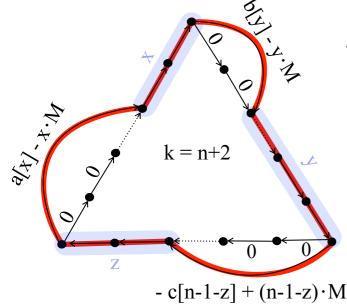
min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\varepsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time



At most n+2 edges:
$$x + y + z \le n - I$$

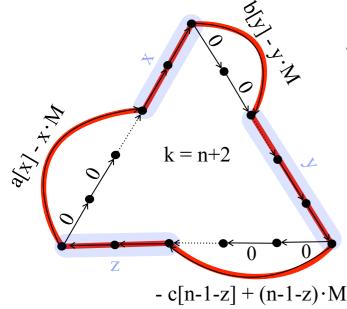
min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\varepsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time



At most n+2 edges:
$$x + y + z \le n - 1$$

Negative: $a[x] + b[y] - c[n-1-z] - x \cdot M - y \cdot M + (n-1-z) \cdot M < 0$

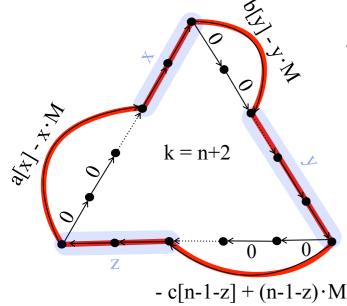
min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\varepsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time



min-plus convolution Conjecture

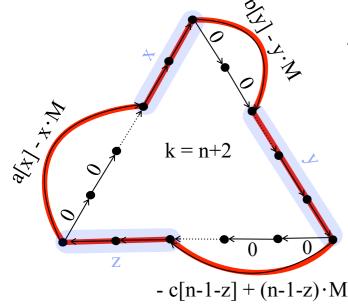
Cannot be solved in $O(n^{2-\varepsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Assuming the min-plus convolution conjecture: For $k = \Theta(n)$, Negative k-Cycle cannot be solved in $O(n^{2-\epsilon})$ time

Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):



At most n+2 edges: x + y + z = n - lNegative: $a[x] + b[y] - c[n-l-z] - x \cdot M - y \cdot M + (n-l-z) \cdot M < 0$ Iff: a[x]+b[y] < c[z] for some x,y, and z=x+y

Given n-length sequences a,b,c whose entries are integers, does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

Given n-length sequences a,b,c whose entries are integers, does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP)

Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

Given n-length sequences a,b,c whose entries are integers, does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP)

Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

min-plus multiplication-convolution

Given n x n matrices A,B,C whose entries are s-length sequences, does A[i][k][x]+B[k][j][y] \geq C[i][j][z] hold for every i,j,k,x,y, and z=x+y

Given n-length sequences a,b,c whose entries are integers, does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP)

Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

min-plus multiplication-convolution

Given n x n matrices A,B,C whose entries are s-length sequences, does A[i][k][x]+B[k][j][y] \ge C[i][j][z] hold for every i,j,k,x,y, and z=x+y

min-plus convolution

Given n-length sequences a,b,c whose entries are integers, does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP)

Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

min-plus multiplication-convolution

Given n x n matrices A,B,C whose entries are s-length sequences, does A[i][k][x]+B[k][j][y] \ge C[i][j][z] hold for every i,j,k,x,y, and z=x+y

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O(n^{3-\epsilon})$ time Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

min-plus multiplication-convolution Conjecture

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O(n^{3-\epsilon})$ time Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

min-plus multiplication-convolution Conjecture

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O(n^{3-\epsilon})$ time Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

min-plus multiplication-convolution Conjecture

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O(n^{3-\epsilon})$ time Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

min-plus multiplication-convolution Conjecture

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O(n^{3-\epsilon})$ time Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

min-plus multiplication-convolution Conjecture

n=1

min-plus convolution **Conjecture**

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O(n^{3-\epsilon})$ time Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

min-plus multiplication-convolution Conjecture

Cannot be solved in O(n³ s^{2-ε}) time Given n x n matrices A,B,C whose entries are s-length sequences, does A[i][k][x]+B[k][j][y] \geq C[i][j][z] hold for every i,j,k,x,y, and z=x+y

n=1

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O(n^{3-\epsilon})$ time Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

min-plus multiplication-convolution Conjecture

Cannot be solved in O(n³ s^{2- ϵ}) time Given n x n matrices A,B,C whose entries are s-length sequences, does A[i][k][x]+B[k][j][y] \geq C[i][j][z] hold for every i,j,k,x,y, and z=x+y

n=1

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O(n^{3-\epsilon})$ time Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

min-plus multiplication-convolution Conjecture

Cannot be solved in O(n³ s^{2- ϵ}) time Given n x n matrices A,B,C whose entries are s-length sequences, does A[i][k][x]+B[k][j][y] \geq C[i][j][z] hold for every i,j,k,x,y, and z=x+y

min-plus convolution Conjecture Cannot be solved in $O(n^{2-\epsilon})$ time Given n-length sequences a,b,c whose entries are integers, does a[x]+b[y] \ge c[z] hold for every x,y, and z=x+y	
	Bremner et al. 2014
min-plus multiplication (APSP) Conjecture Cannot be solved in $O(n^{3-\varepsilon})$ time Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k	n=1
min-plus multiplication-convolution Conjecture	
Cannot be solved in $O(n^3 s^{2-\epsilon})$ time Given n x n matrices A,B,C whose entries are s-length sequences, does A[i][k][x]+B[k][i][v] > C[i][i][z] hold for every i.i.k.x.v. and z=x+v.	

/

remner et al. 2014
n =
/
/

· /

min-plus convolution **Conjecture**

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O(n^{3-\epsilon})$ time Given n x n matrices A,B,C whose entries are integers, does A[i][k]+B[k][j] \geq C[i][j] hold for every i,j,k

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

Given n x n matrices A,B,C whose entries are s-length sequences, $s=n^{\alpha}$ does A[i][k][x]+B[k][j][y] \geq C[i][j][z] hold for every i,j,k,x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

min-plus convolution **Conjecture**

Cannot be solved in $O(n^{2-\varepsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

Given n x n matrices A,B,C whose entries are s-length sequences, $s=n^{\alpha}$ does A[i][k][x]+B[k][j][y] \geq C[i][j][z] hold for every i,j,k,x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

min-plus convolution **Conjecture**

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

Given n x n matrices A,B,C whose entries are s-length sequences, $s=n^{\alpha}$ does A[i][k][x]+B[k][j][y] \geq C[i][j][z] hold for every i,j,k,x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

min-plus convolution Conjecture

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

Given n x n matrices A,B,C whose entries are s-length sequences, $s=n^{\alpha}$ does A[i][k][x]+B[k][j][y] \geq C[i][j][z] hold for every i,j,k,x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

min-plus convolution **Conjecture**

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

Given n x n matrices A,B,C whose entries are s-length sequences, $s=n^a$ does A[i][k][x]+B[k][j][y] \geq C[i][j][z] hold for every i,j,k,x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

min-plus convolution **Conjecture**

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

Given n x n matrices A,B,C whose entries are s-length sequences, $s=n^a$ does A[i][k][x]+B[k][j][y] \geq C[i][j][z] hold for every i,j,k,x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

min-plus convolution **Conjecture**

Cannot be solved in $O(n^{2-\epsilon})$ time

Given n-length sequences a,b,c whose entries are integers,

does $a[x]+b[y] \ge c[z]$ hold for every x,y, and z=x+y

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

Given n x n matrices A,B,C whose entries are s-length sequences, $s=n^{\alpha}$ does A[i][k][x]+B[k][j][y] \geq C[i][j][z] hold for every i,j,k,x,y, and z=x+y

min-plus multiplication (APSP) Conjecture

Planar Negative k-Cycle

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

Planar Negative k-Cycle

Assuming the **min-plus convolution** conjecture:

For $k \le n^{1/3}$ there is no algorithm polynomially faster than $O(nk^2)$ For $k \ge n^{1/3}$ there is no algorithm polynomially faster than $O(n^{1.5}k^{0.5})$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

Planar Negative k-Cycle

Assuming the **min-plus multiplication-convolution** conjecture:

For $k \le n^{1/3}$ there is no algorithm polynomially faster than $O(nk^2)$ For $k \ge n^{1/3}$ there is no algorithm polynomially faster than $O(n^{1.5}k^{0.5})$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

Assuming the **min-plus multiplication-convolution** conjecture:

For $k \le n^{1/3}$ there is no algorithm polynomially faster than $O(nk^2)$ For $k \ge n^{1/3}$ there is no algorithm polynomially faster than $O(n^{1.5}k^{0.5})$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

Assuming the **min-plus multiplication-convolution** conjecture:

For $k \le n^{1/3}$ there is no algorithm polynomially faster than $O(nk^2)$ For $k \ge n^{1/3}$ there is no algorithm polynomially faster than $O(n^{1.5}k^{0.5})$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

Assuming the **min-plus multiplication-convolution** conjecture:

For $k \le n^{1/3}$ there is no algorithm polynomially faster than $O(nk^2)$ For $k \ge n^{1/3}$ there is no algorithm polynomially faster than $O(n^{1.5}k^{0.5})$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

> adjusting parameters

Assuming the **min-plus multiplication-convolution** conjecture:

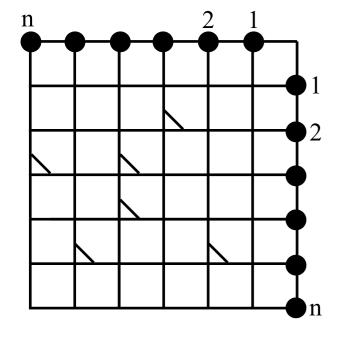
For $k \le n^{1/3}$ there is no algorithm polynomially faster than $O(nk^2)$ For $k \ge n^{1/3}$ there is no algorithm polynomially faster than $O(n^{1.5}k^{0.5})$

min-plus multiplication-convolution Conjecture

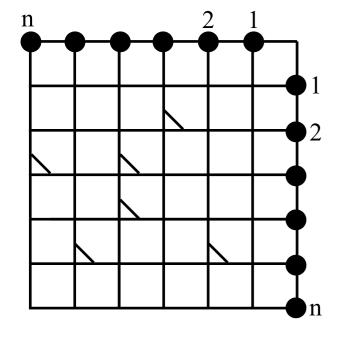
Cannot be solved in $O(n^3 s^{2-\epsilon})$ time

In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

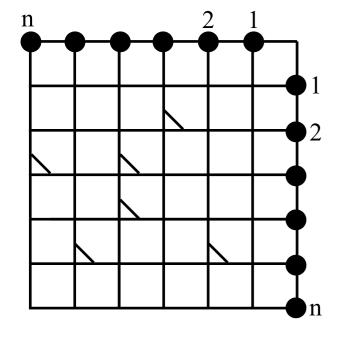
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

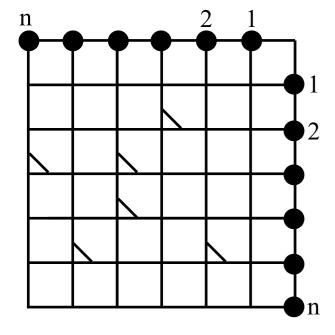


In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



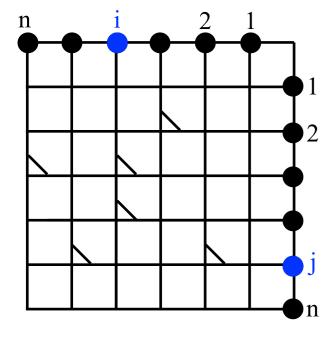
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

Lower bound for **distance labeling:** [GavoillePelegPrennesRaz 2001]



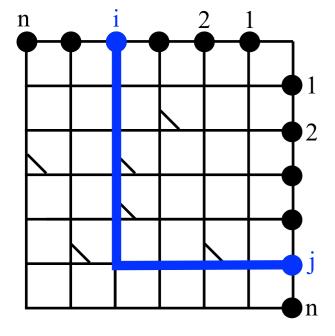
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

Lower bound for **distance labeling:** [GavoillePelegPrennesRaz 2001]



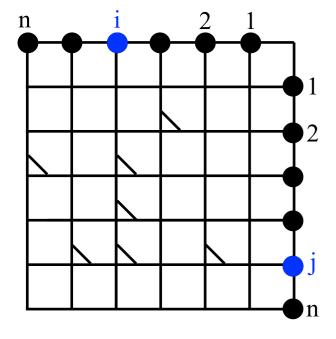
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

Lower bound for **distance labeling:** [GavoillePelegPrennesRaz 2001]



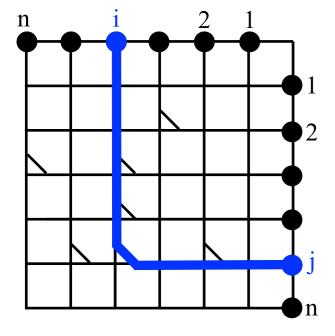
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

Lower bound for **distance labeling:** [GavoillePelegPrennesRaz 2001]



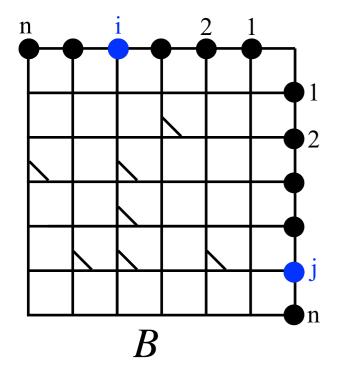
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

Lower bound for **distance labeling:** [GavoillePelegPrennesRaz 2001]

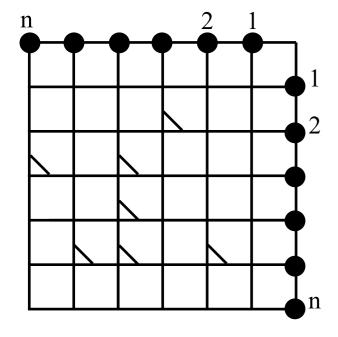


In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

- choose edge weights so that shortest paths go first down then right
- encode an *n*-by-*n* boolean matrix *B* using the shortcuts



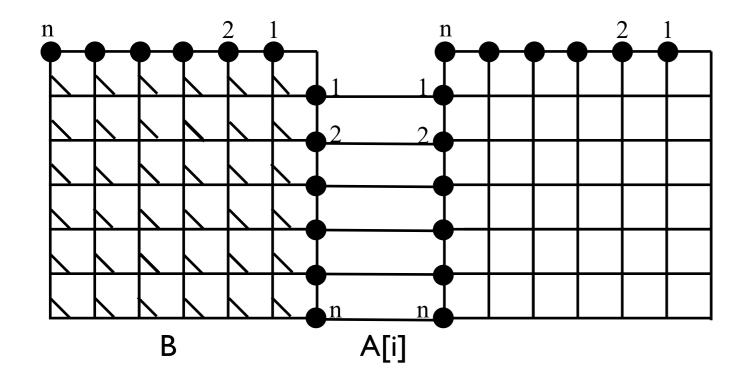
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

Lower bound for dynamic distance oracles: [AbboudDahlgaard 2016]

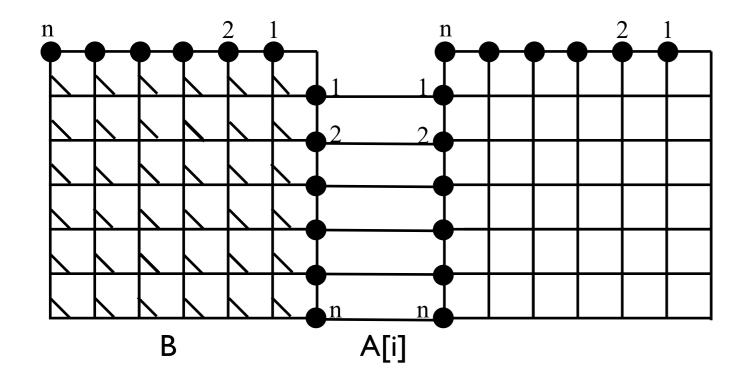
• encode an *n*-by-*n* matrix B and the i'th row of a matrix A using two grids



In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

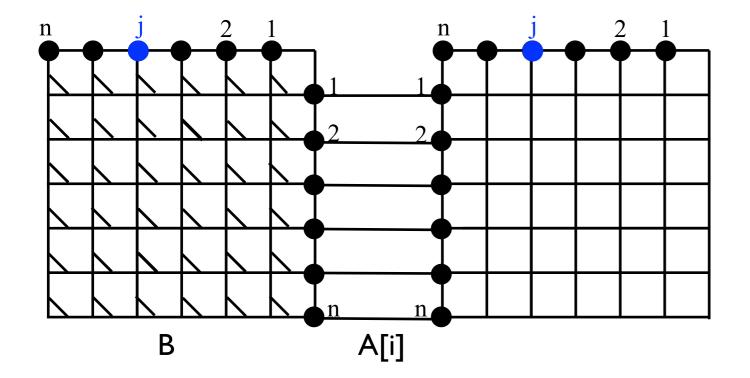
Lower bound for dynamic distance oracles: [AbboudDahlgaard 2016]

• encode an *n*-by-*n* matrix B and the i'th row of a matrix A using two grids



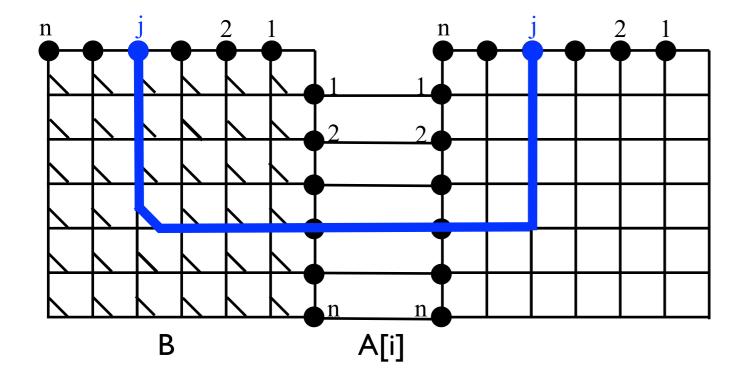
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

- encode an *n*-by-*n* matrix B and the i'th row of a matrix A using two grids
- choose edge weights so that the j-to-j distance = $\min_{k} \{A[i][k] + B[k][j]\}$



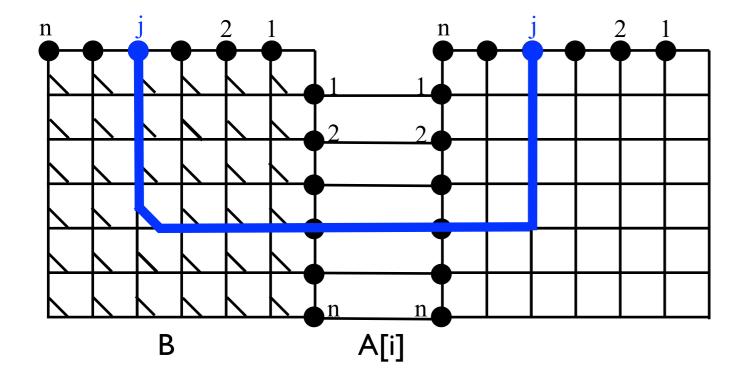
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

- encode an *n*-by-*n* matrix B and the i'th row of a matrix A using two grids
- choose edge weights so that the j-to-j distance = $\min_{k} \{A[i][k] + B[k][j]\}$



In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

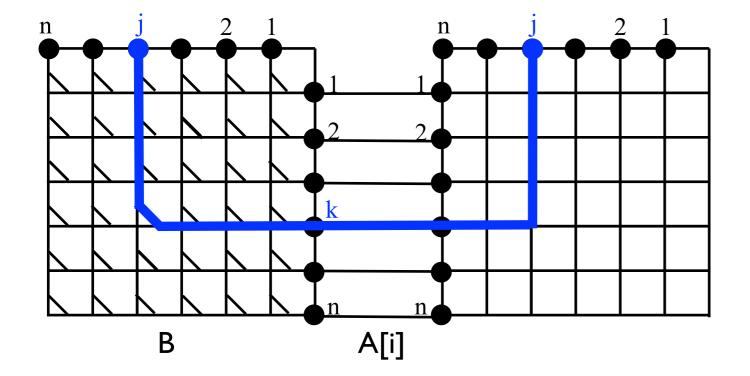
- encode an *n*-by-*n* matrix B and the i'th row of a matrix A using two grids
- choose edge weights so that the j-to-j distance = $\min_{k} \{A[i][k] + B[k][j]\}$



In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

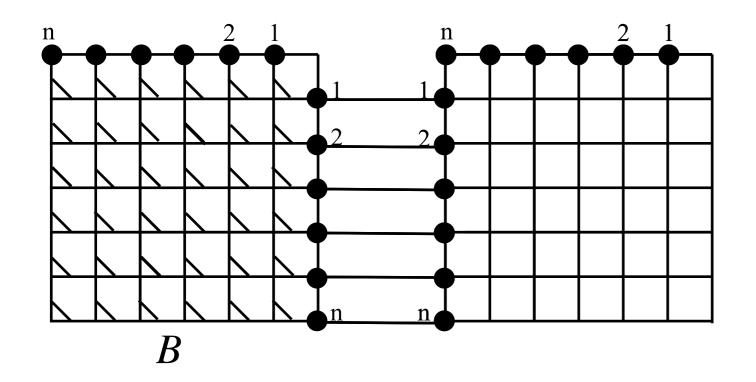
Lower bound for **dynamic distance oracles**: [AbboudDahlgaard 2016]

- encode an *n*-by-*n* matrix B and the i'th row of a matrix A using two grids
- choose edge weights so that the j-to-j distance = $\min_{k} \{A[i][k] + B[k][j]\}$



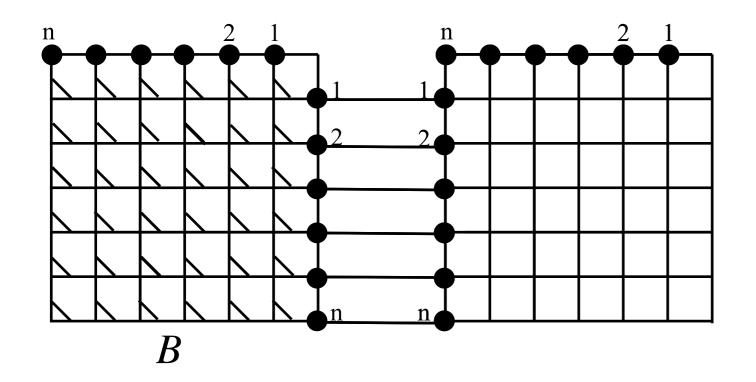
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

Our construction:



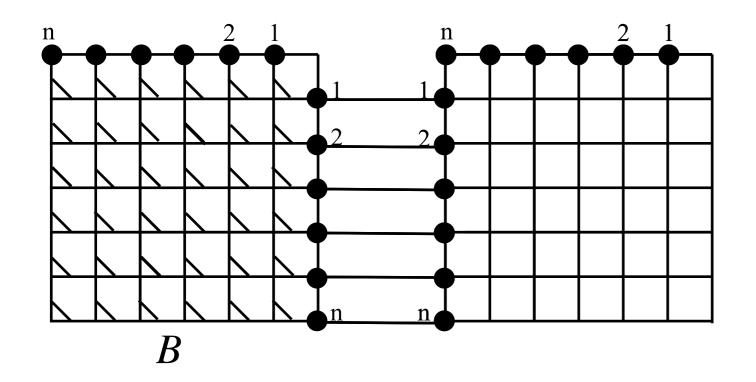
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

Our construction:

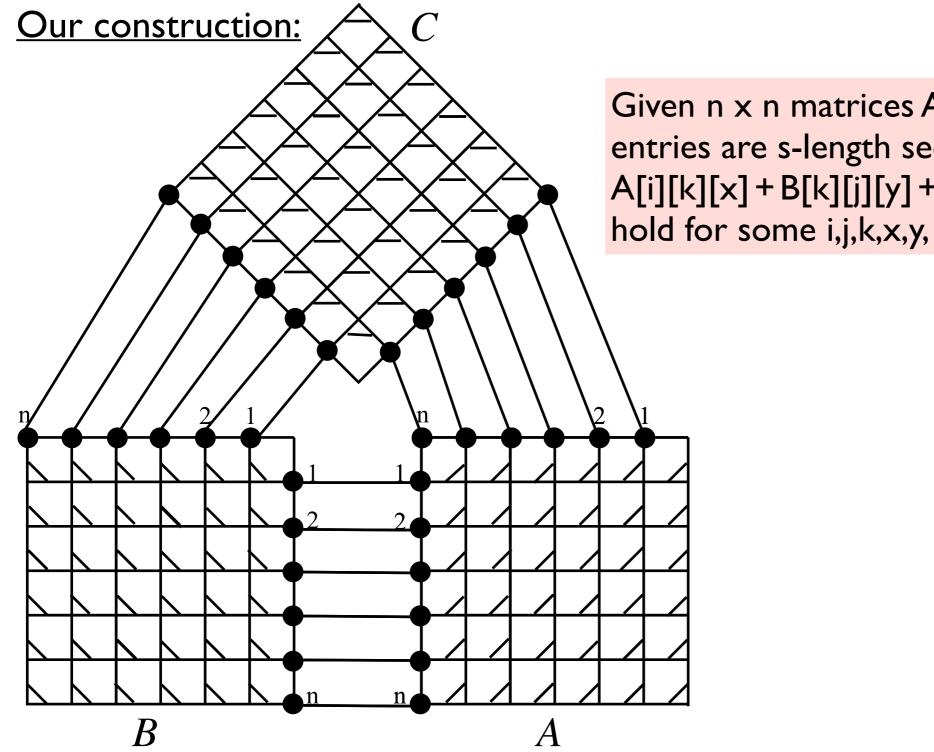


In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

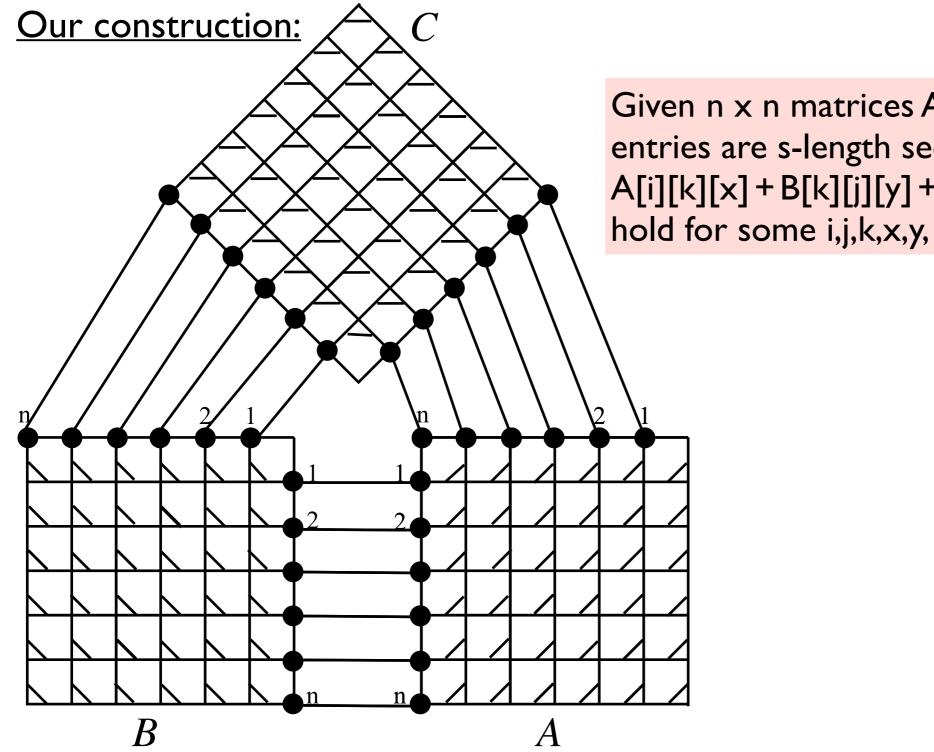
Our construction:



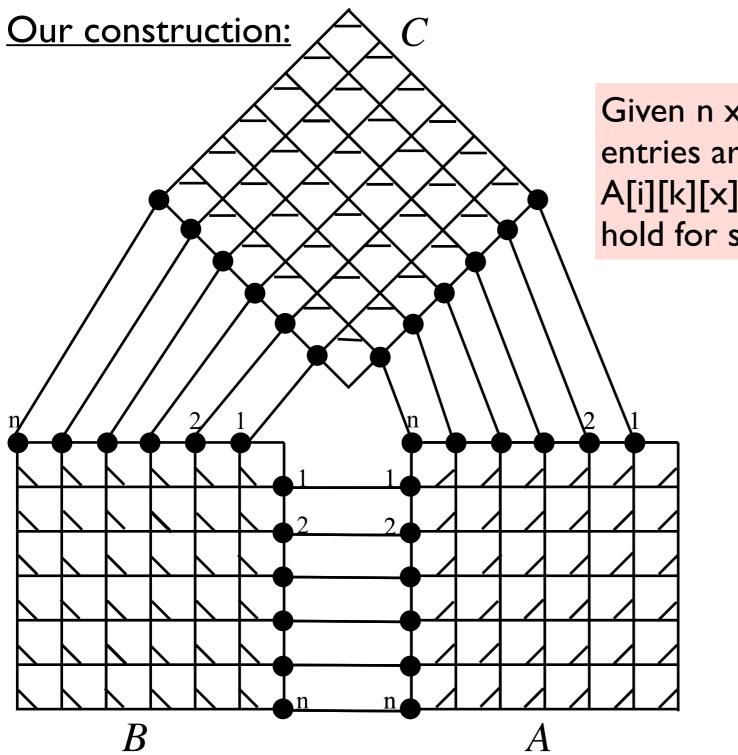
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



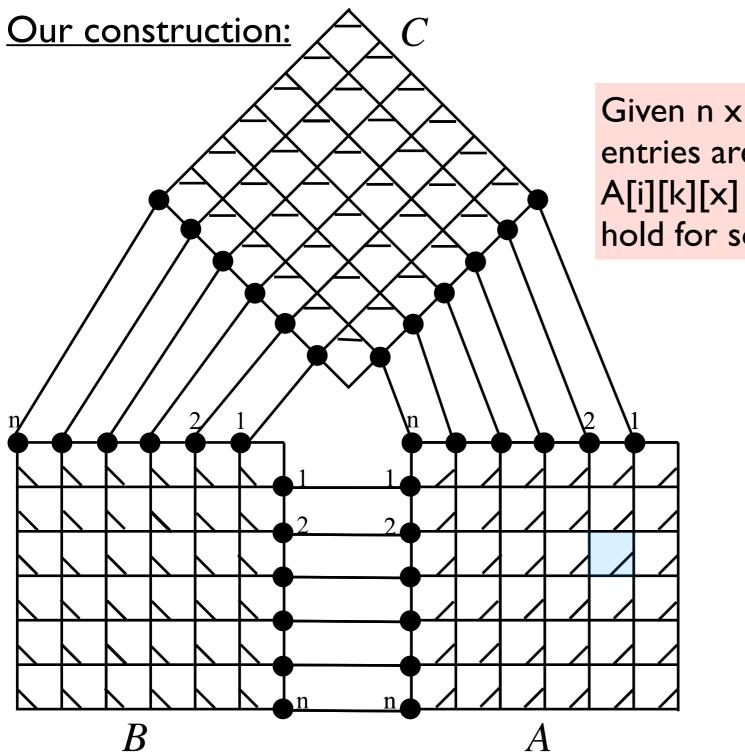
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



Given n x n matrices A,B,C whose entries are s-length sequences, does A[i][k][x] + B[k][j][y] + C[i][j][z] < 0 hold for some i,j,k,x,y, and z=x+y

Sequence Gadget

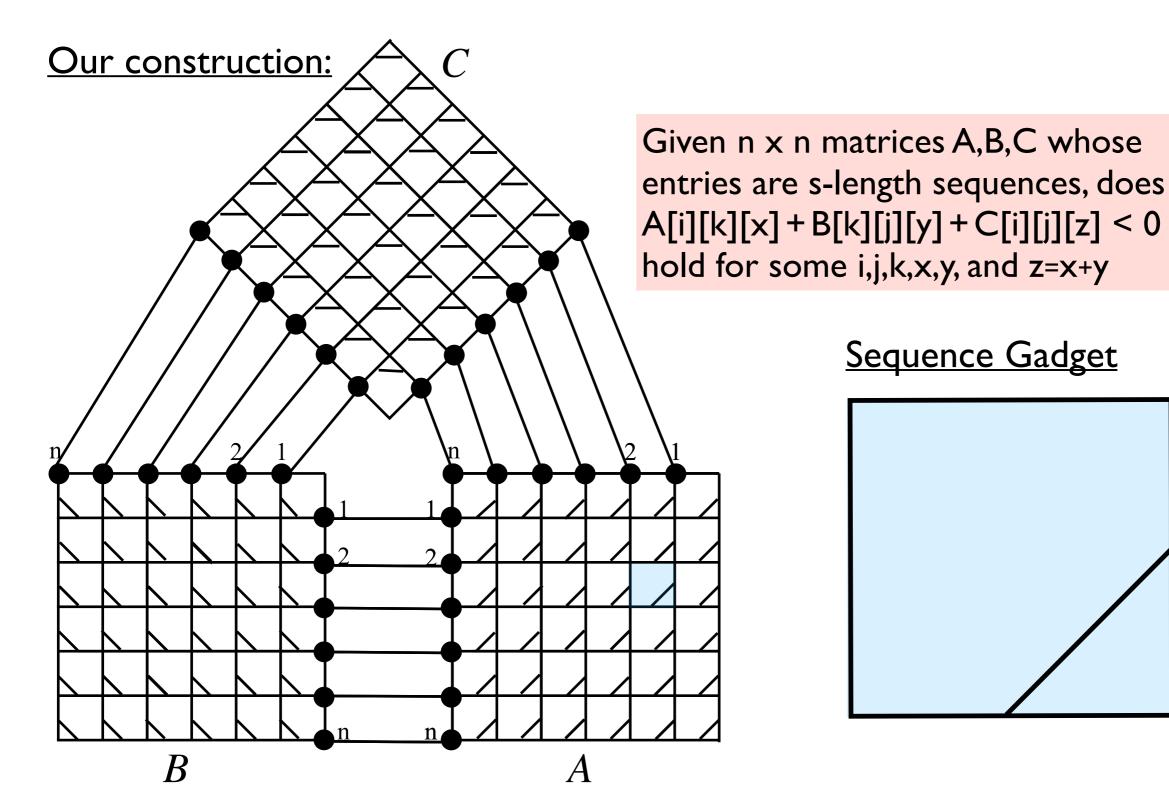
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



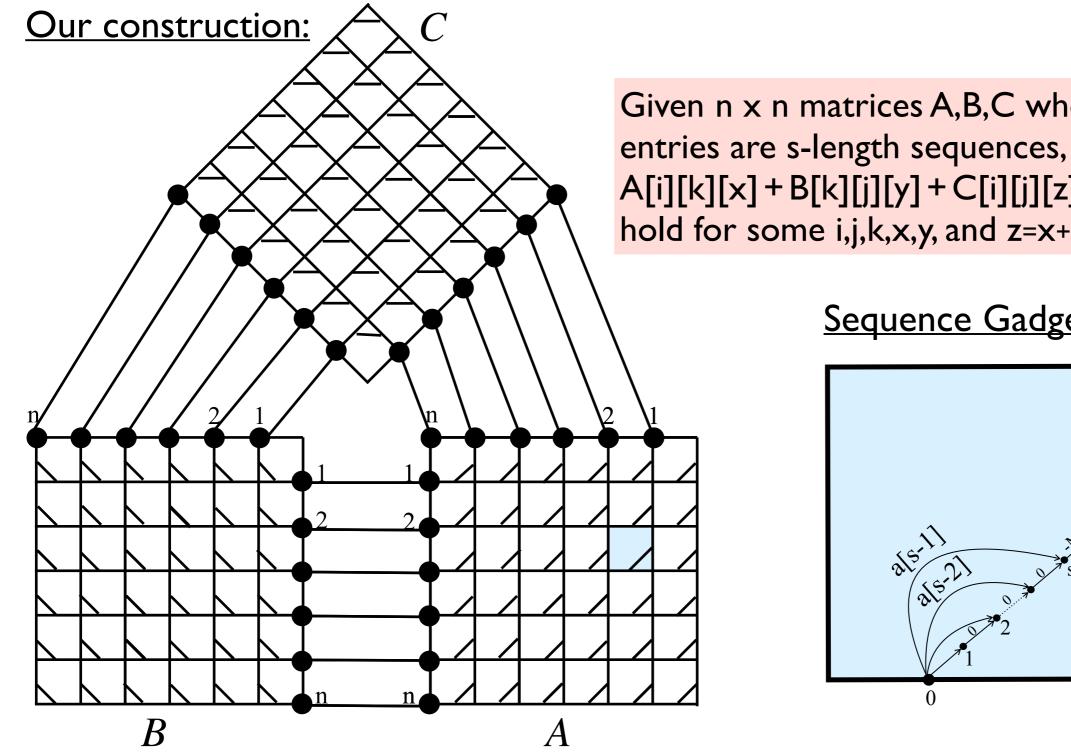
Given n x n matrices A,B,C whose entries are s-length sequences, does A[i][k][x] + B[k][j][y] + C[i][j][z] < 0 hold for some i,j,k,x,y, and z=x+y

Sequence Gadget

In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

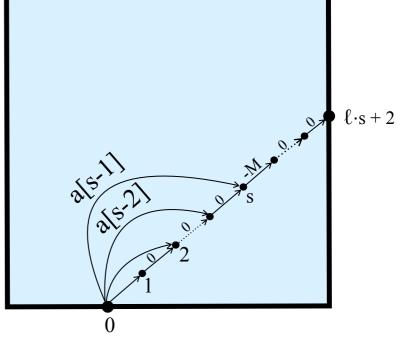


In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

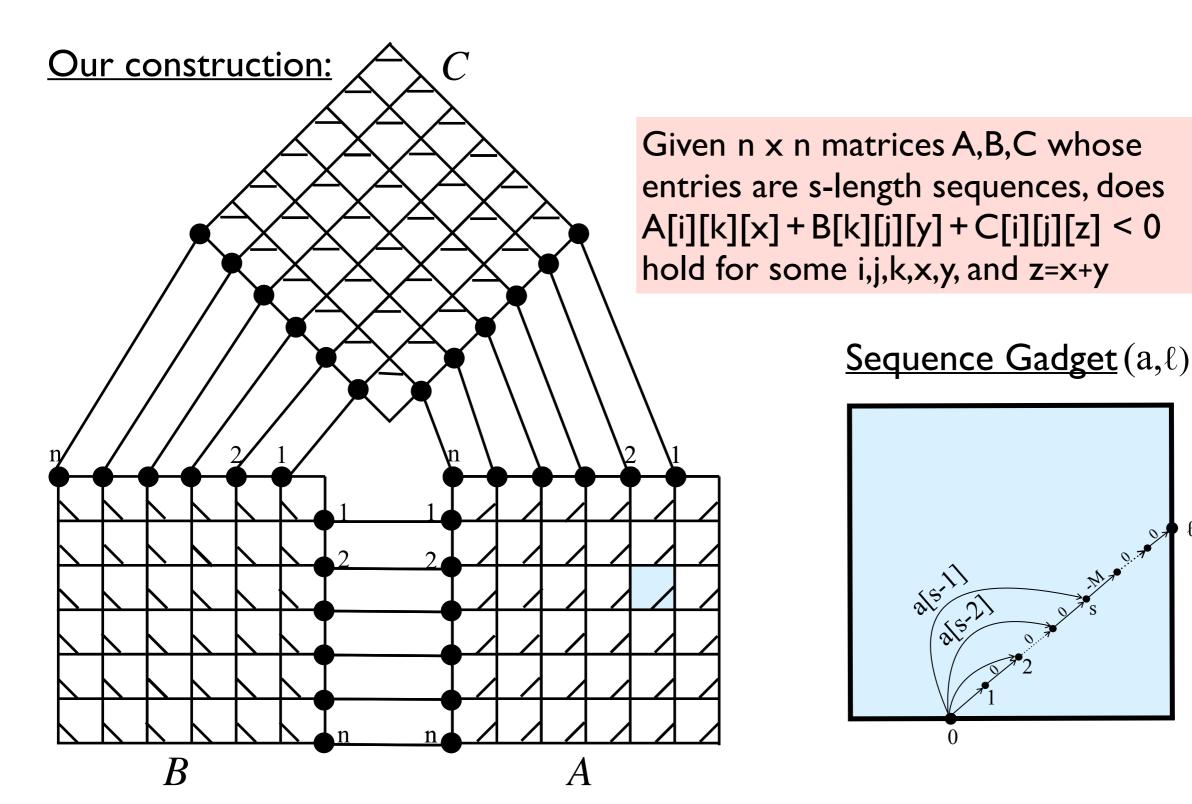


Given n x n matrices A,B,C whose entries are s-length sequences, does A[i][k][x] + B[k][j][y] + C[i][j][z] < 0hold for some i,j,k,x,y, and z=x+y

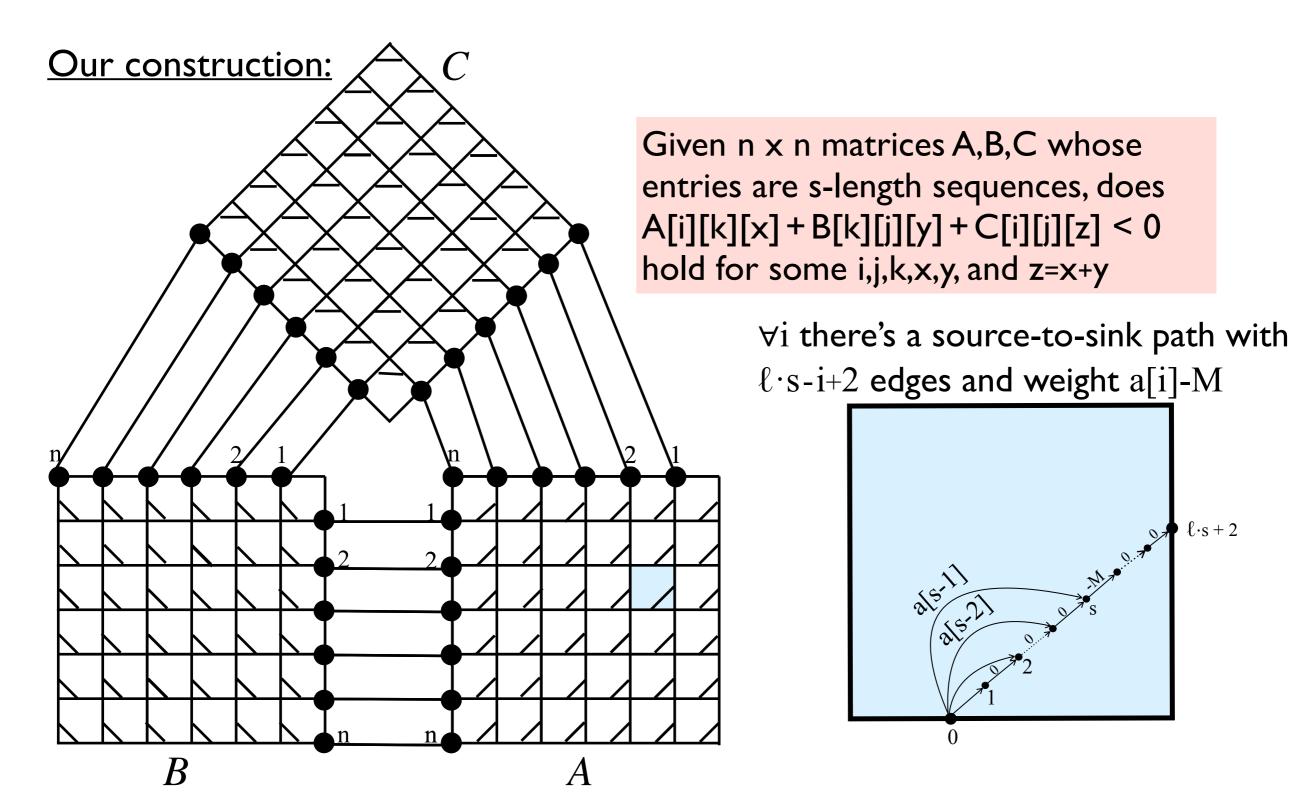
Sequence Gadget



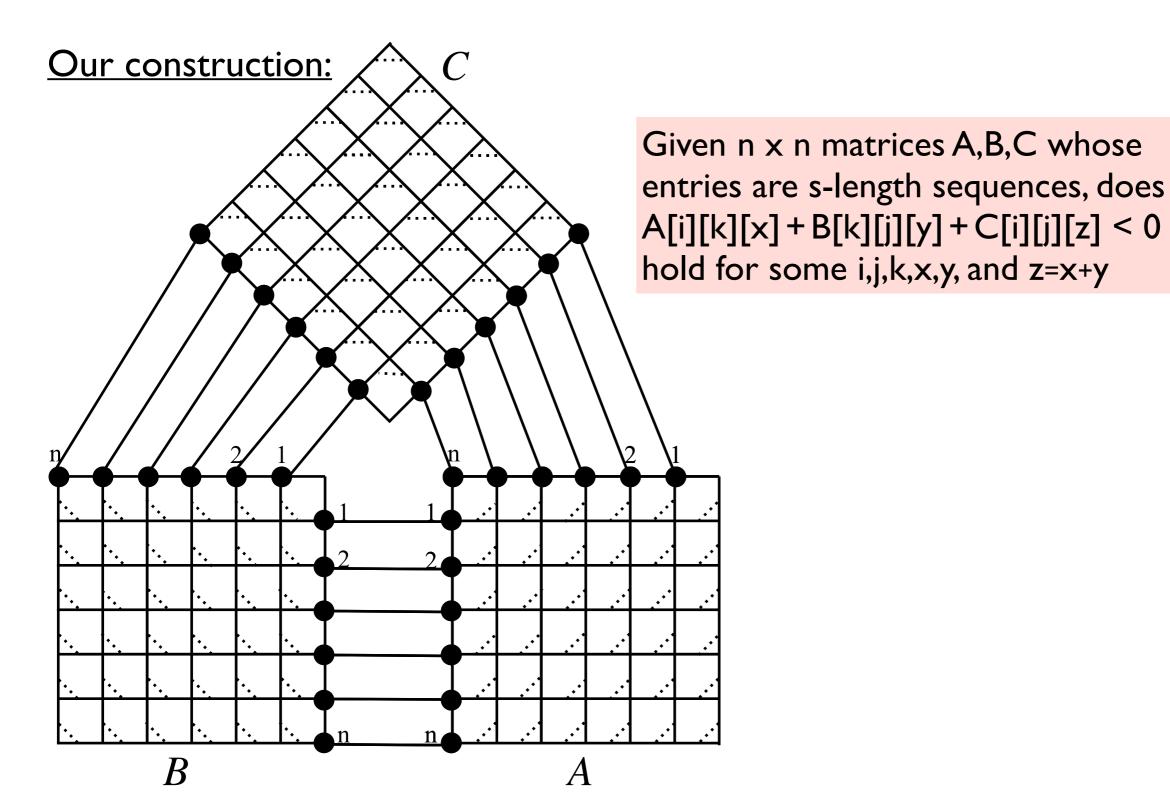
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



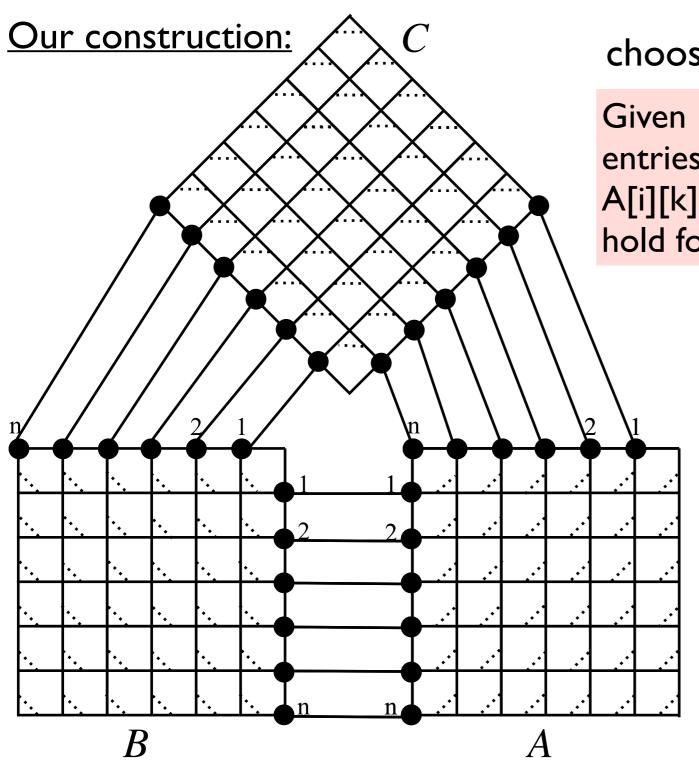
In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).

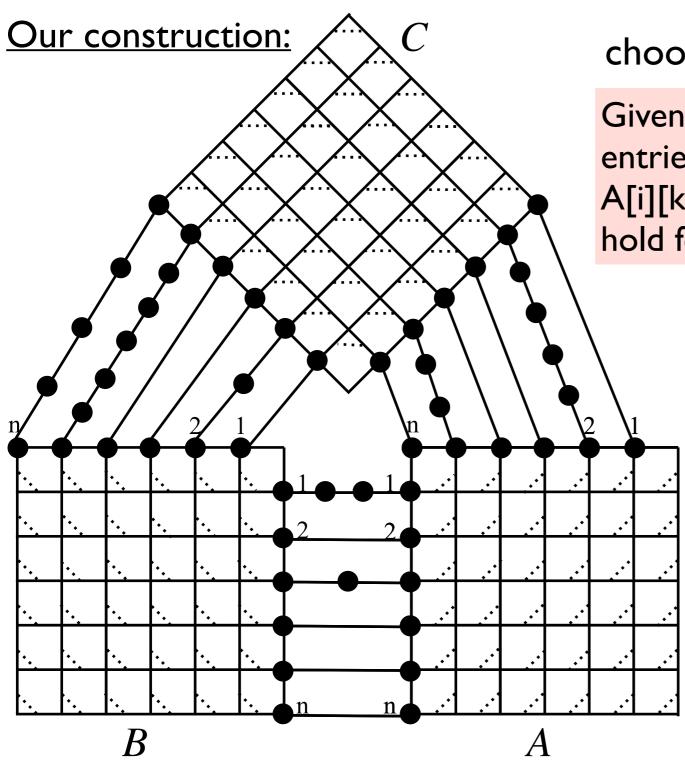


In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



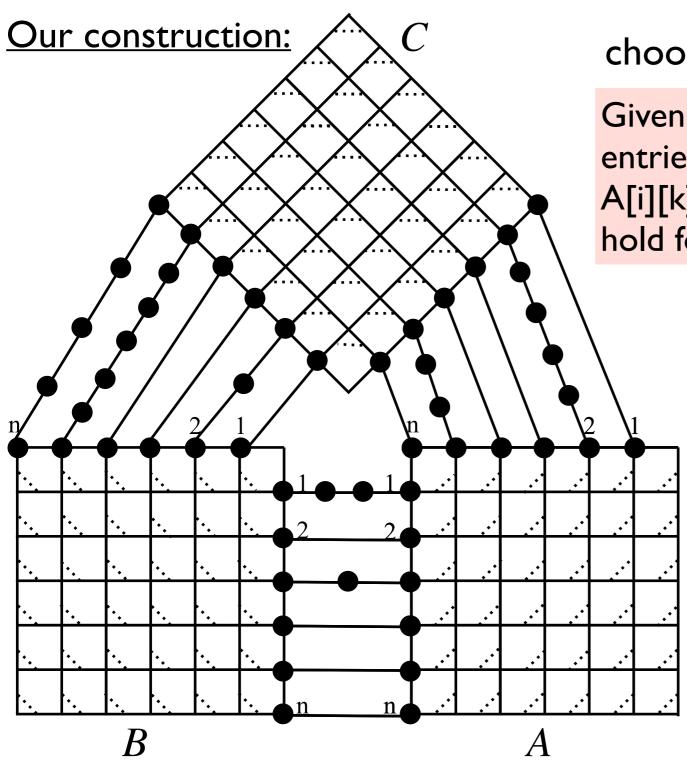
choose edge weights / subdivisions

In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



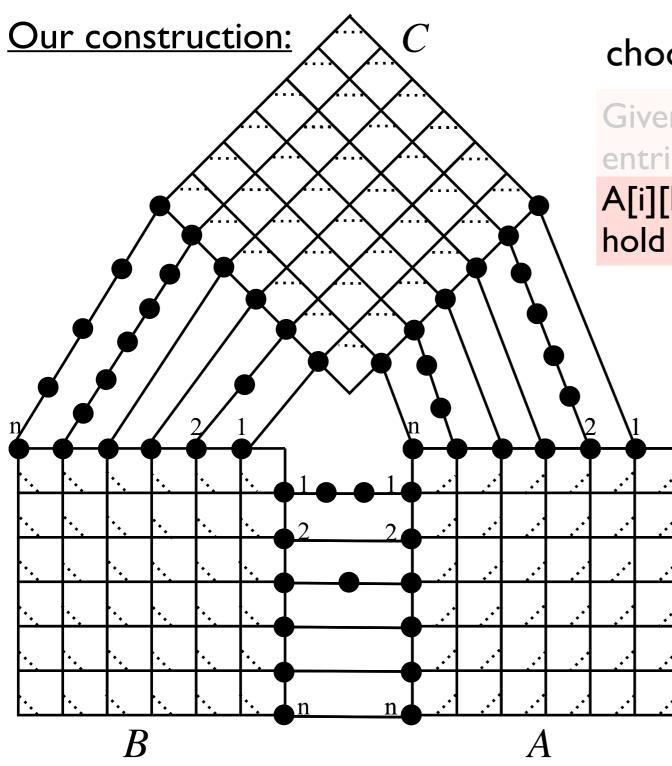
choose edge weights / subdivisions

In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



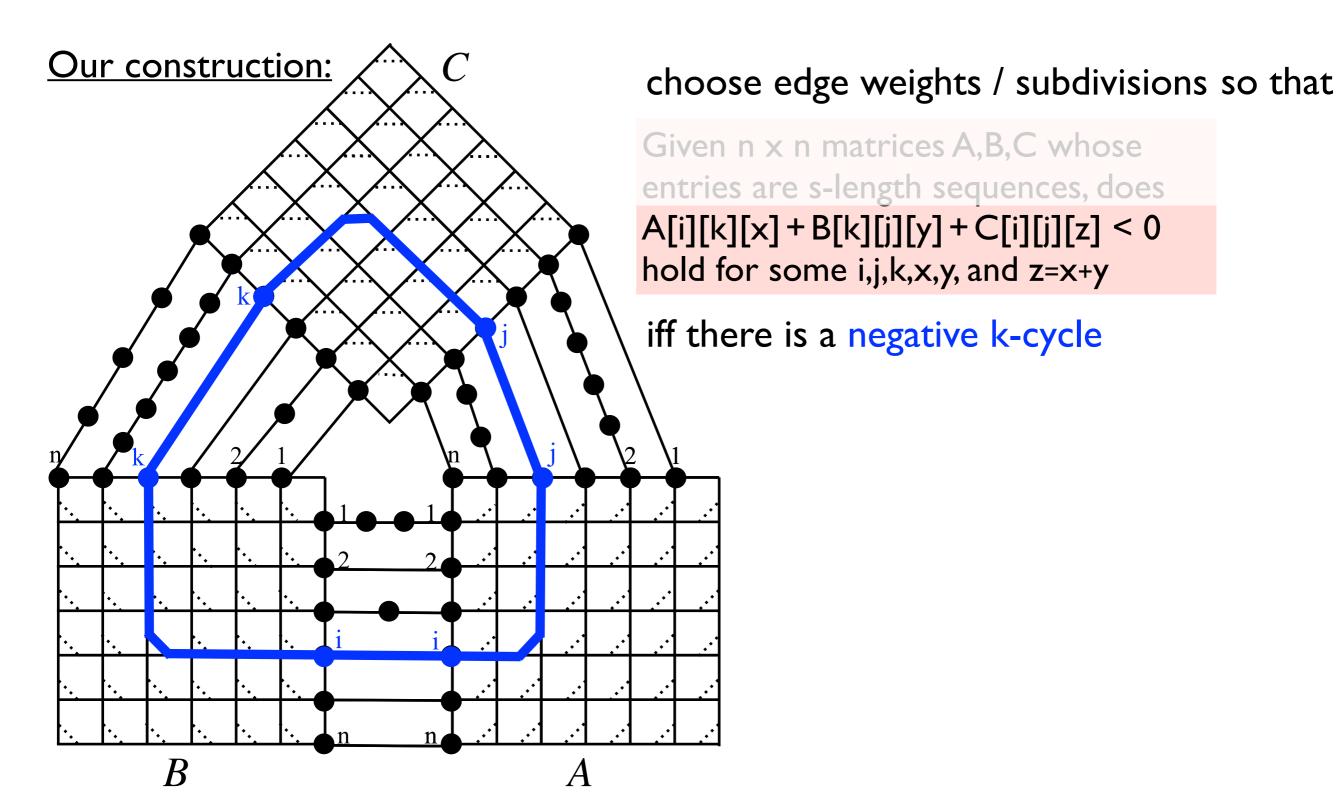
choose edge weights / subdivisions so that

In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



choose edge weights / subdivisions so that

In linear time we can reduce **min-plus multiplication-convolution** to **Planar Negative-k-Cycle** on $O(n^2 s)$ vertices and k = O(n + s).



• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

Open Problems

• Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\tilde{O}(W n^{1.5}) = \tilde{O}(n^{2.5})$

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

Open Problems

• Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\tilde{O}(W n^{1.5}) = \tilde{O}(n^{2.5})$

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

Open Problems

• Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\tilde{O}(W n^{1.5}) = \tilde{O}(n^{2.5})$

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\tilde{O}(W n^{1.5}) = \tilde{O}(n^{2.5})$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega(n^{1/2})$ update or query, upper bound $O(n^{2/3})$ update and query

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\tilde{O}(W n^{1.5}) = \tilde{O}(n^{2.5})$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega(n^{1/2})$ update or query, upper bound $O(n^{2/3})$ update and query

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\tilde{O}(W n^{1.5}) = \tilde{O}(n^{2.5})$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega(n^{1/2})$ update or query, upper bound $O(n^{2/3})$ update and query

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\tilde{O}(W n^{1.5}) = \tilde{O}(n^{2.5})$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega(n^{1/2})$ update or query, upper bound $O(n^{2/3})$ update and query
- No other non-trivial lower bounds known in planar graphs.

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\tilde{\Omega}(n^2)$, upper bound $\tilde{O}(W n^{1.5}) = \tilde{O}(n^{2.5})$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega(n^{1/2})$ update or query, upper bound $O(n^{2/3})$ update and query
- No other non-trivial lower bounds known in planar graphs. Diameter? $O(n^{5/3})$

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\tilde{\Omega}(n^2)$, upper bound $\tilde{O}(W n^{1.5}) = \tilde{O}(n^{2.5})$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega(n^{1/2})$ update or query, upper bound $O(n^{2/3})$ update and query
- No other non-trivial lower bounds known in planar graphs. Diameter? $O(n^{5/3})$
 - other uses of min-plus multiplication-convolution

• We give an upper bound of min{ $\tilde{O}(nk^2)$, $O(n^2)$ } and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega(nk^2)$ for $k \le n^{1/3}$ and $\Omega(n^{1.5}k^{0.5})$ for $k > n^{1/3}$.

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\tilde{\Omega}(n^2)$, upper bound $\tilde{O}(W n^{1.5}) = \tilde{O}(n^{2.5})$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega(n^{1/2})$ update or query, upper bound $O(n^{2/3})$ update and query
- No other non-trivial lower bounds known in planar graphs. Diameter? $O(n^{5/3})$
 - other uses of min-plus multiplication-convolution
 - minimum mean (average) cycle?

Thank You!