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• every k-cycle is contained in some slice  
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• from every separator vertex: run k iterations of Bellman-Ford
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An O(n2) Randomized Algorithm

• randomly sample each vertex of G with probability 1/k
• run k iterations of Bellman-Ford from each sampled vertex

(with constant probability a sampled vertex belongs 
to the negative k-cycle)

Time = (n/k) • O(n • k)
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