Planar Negative k-Cycle

Paweł Gawrychowski, Shay Mozes,
Oren Weimann

Planar Negative k-Cycle

Given a directed edge-weighted graph G, Does G contain a negative-weight cycle with at most k edges?

Planar Negative k-Cycle

Given a directed edge-weighted graph G,
Does G contain a negative-weight cycle with at most k edges?

$\mathrm{k} \geq 4$

Planar Negative k-Cycle

Given a directed edge-weighted graph G,
Does G contain a negative-weight cycle with at most k edges?

Planar Negative k-Cycle

> Given a directed edge-weighted graph G ,
> Does G contain a negative-weight cycle with at most k edges?

\section*{| The problem | General graphs | Planar graphs |
| :--- | :--- | :--- |}

Planar Negative k-Cycle

Given a directed edge-weighted graph G,
Does G contain a negative-weight cycle with at most k edges?

	The problem	General graphs	Planar graphs
$\mathrm{k}=3$	Negative Triangle	$\mathrm{O}\left(\mathrm{n}^{3}\right)$ - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	$\mathrm{O}(\mathrm{n})-$ check $\mathrm{O}(1)$ neighbors, delete and recurse

Planar Negative k-Cycle

Given a directed edge-weighted graph G,
Does G contain a negative-weight cycle with at most k edges?

	The problem	General graphs	Planar graphs
$\mathrm{k}=3$	Negative Triangle	$\mathrm{O}\left(\mathrm{n}^{3}\right)$ - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	$\mathrm{O}(\mathrm{n})-$ check $\mathrm{O}(1)$ neighbors, delete and recurse

Planar Negative k-Cycle

Given a directed edge-weighted graph G,
Does G contain a negative-weight cycle with at most k edges?

	The problem	General graphs	Planar graphs
$\mathrm{k}=3$	Negative Triangle	$\mathrm{O}\left(\mathrm{n}^{3}\right)$ - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	$\mathrm{O}(\mathrm{n})-$ check $\mathrm{O}(1)$ neighbors, delete and recurse

Planar Negative k-Cycle

Given a directed edge-weighted graph G,
Does G contain a negative-weight cycle with at most k edges?

	The problem	General graphs	Planar graphs
$\mathrm{k}=3$	Negative Triangle	$\mathrm{O}\left(\mathrm{n}^{3}\right)$ - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	$\mathrm{O}(\mathrm{n})-$ check $\mathrm{O}(1)$ neighbors, delete and recurse

Planar Negative k-Cycle

Given a directed edge-weighted graph G,
Does G contain a negative-weight cycle with at most k edges?

	The problem	General graphs	Planar graphs
$\mathrm{k}=3$	Negative Triangle	$\mathrm{O}\left(\mathrm{n}^{3}\right)$ - APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	$\mathrm{O}(\mathrm{n})-$ check $\mathrm{O}(1)$ neighbors, delete and recurse
$\mathrm{k}=\mathrm{n}$	Negative Cycle	$\mathrm{O}\left(\mathrm{n}^{3}\right)-$ SSSP	$\tilde{\mathrm{O}}(\mathrm{n})-$ SSSP [FakcharoenpholRao

Planar Negative k-Cycle

Given a directed edge-weighted graph G,
Does G contain a negative-weight cycle with at most k edges?

	The problem	General graphs	Planar graphs
$\mathrm{k}=3$	Negative Triangle	$\mathrm{O}\left(\mathrm{n}^{3}\right)-$ APSP, min-plus multiplication [VassilevskaWilliamsWilliams'10]	$\mathrm{O}(\mathrm{n})-$ check $\mathrm{O}(1)$ neighbors, delete and recurse
$\mathrm{k}=\mathrm{n}$	Negative Cycle	$\mathrm{O}\left(\mathrm{n}^{3}\right)-\mathrm{SSSP}$	$\tilde{\mathrm{O}}(\mathrm{n})-\mathrm{SSSP}$ [FakcharoenpholRao'06]
$3<\mathrm{k}<\mathrm{n}$	Negative $\mathrm{k}-\mathrm{Cycle}$	$\tilde{\mathrm{O}}\left(\mathrm{n}^{3}\right)-\mathrm{SSSP}$	$\tilde{\mathrm{O}}\left(\mathrm{n}^{1.5 k}\right)$ [WilliamsonSubramani'15]

Planar Negative k-Cycle

Given a directed edge-weighted graph G,
Does G contain a negative-weight cycle with at most k edges?

	The problem	General graphs	Planar graphs
$\mathrm{k}=3$	Negative Triangle	$\mathrm{O}\left(\mathrm{n}^{3}\right)-\mathrm{APSP}$ min-plus multiplication [VassilevskaWilliamsWilliams' 10]	$O(n)-$ check $O(1)$ neighbors, delete and recurse
$\mathrm{k}=\mathrm{n}$	Negative Cycle	$\mathrm{O}\left(\mathrm{n}^{3}\right)$ - SSSP	$\bar{O}(\mathrm{n})-\mathrm{SSSP}$ [FakcharoenpholRao'06]
$3<\mathrm{k}<\mathrm{n}$	Negative k-Cycle	O$\left(\mathrm{n}^{3}\right)$ - SSSP	$\begin{gathered} \tilde{\mathrm{O}\left(\mathrm{n}^{1.5} \mathrm{k}\right)} \\ {[\text { WilliamsonSubramani' } 15]} \\ \min \left\{\widetilde{\mathrm{O}}\left(\mathrm{nk}^{2}\right), \mathrm{O}\left(\mathrm{n}^{2}\right)\right\} \end{gathered}$

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

An $\tilde{O}\left(n^{2}\right)$ Algorithm

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k-cycle is contained in some slice

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k-cycle is contained in some slice

An Õ(nk $\left.{ }^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k-cycle is contained in some slice (solve each independently)

An Õ(nk $\left.{ }^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k -cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size $O(k)$

An Õ(nk $\left.{ }^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k -cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size $O(k)$

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size $O(k)$
- from every separator vertex: run k iterations of Bellman-Ford

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size $O(k)$
- from every separator vertex: run k iterations of Bellman-Ford

$$
2 k \mid \quad \sim \text { slice } / 2: \quad \sim \text { slice } / 2
$$

O(|slice|•k)

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size $O(k)$
- from every separator vertex: run k iterations of Bellman-Ford

$$
\mathrm{k} \cdot \mathrm{O}(\mid \text { slice } \mid \cdot \mathrm{k})
$$

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size $O(k)$
- from every separator vertex: run k iterations of Bellman-Ford
- recurse on both sides

$$
\mathrm{k} \cdot \mathrm{O}(\mid \text { slice } \mid \cdot \mathrm{k})
$$

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size $O(k)$
- from every separator vertex: run k iterations of Bellman-Ford
- recurse on both sides

$$
2 k \mid \sim \sim \text { slice }|2: \sim| \text { slice } \mid 2
$$

$\mathrm{T}(\mid$ slice $\mid)=2 \mathrm{~T}(\mid$ slice $\mid / 2)+\mathrm{k} \cdot \mathrm{O}(\mid$ slice $\mid \cdot \mathrm{k})$

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size $O(k)$
- from every separator vertex: run k iterations of Bellman-Ford
- recurse on both sides

$$
2 k \mid \sim \sim \text { slice }|2: \sim| \text { slice } \mid 2
$$

$\mathrm{T}(\mid$ slice $\mid)=2 \mathrm{~T}(\mid$ slice $\mid / 2)+\mathrm{k} \cdot \mathrm{O}(\mid$ slice $\mid \cdot \mathrm{k})$

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size $O(k)$
- from every separator vertex: run k iterations of Bellman-Ford
- recurse on both sides

$$
2 k \mid \sim \sim \text { slice }|2: \sim| \text { slice } \mid 2
$$

$\mathrm{T}(\mid$ slice $\mid)=2 \mathrm{~T}(\mid$ slice $\mid / 2)+\mathrm{k} \cdot \mathrm{O}(\mid$ slice $\mid \cdot \mathrm{k})$

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size $O(k)$
- from every separator vertex: run k iterations of Bellman-Ford
- recurse on both sides

$$
2 k \mid \sim \sim \text { slice } / 2: \sim \mid \text { slice } \mid 2
$$

$$
\begin{aligned}
\mathrm{T}(\mid \text { slice } \mid) & =2 \mathrm{~T}(\mid \text { slice } \mid / 2)+\mathrm{k} \cdot \mathrm{O}(\mid \text { slice } \mid \cdot \mathrm{k}) \\
& =\mathrm{O}\left(\mid \text { slice } \mid \cdot \mathrm{k}^{2} \cdot \operatorname{logn}\right)
\end{aligned}
$$

An Õ $\left(\mathrm{nk}^{2}\right)$ Algorithm

- arbitrarily root a BFS tree
- partition the graph into overlapping BFS slices of depth $2 k$
- every k-cycle is contained in some slice (solve each independently)
- every slice has a balanced separator of size $O(k)$
- from every separator vertex: run k iterations of Bellman-Ford
- recurse on both sides

$$
2 k \mid \quad \sim \text { slice } \mid / 2: \quad \sim \text { slice } / 2
$$

$\mathrm{T}(\mid$ slice $\mid)=2 \mathrm{~T}(\mid$ slice $\mid / 2)+\mathrm{k} \cdot \mathrm{O}(\mid$ slice $\mid \cdot \mathrm{k})$

$$
=\mathrm{O}\left(\mid \text { slice } \mid \cdot \mathrm{k}^{2} \cdot \operatorname{logn}\right) \text { so over all slices } \mathrm{O}\left(\mathrm{nk}^{2} \operatorname{logn}\right)
$$

An O(n²) Randomized Algorithm

An O(n²) Randomized Algorithm

An O(n^{2}) Randomized Algorithm

- randomly sample each vertex of G with probability $1 / k$

An O(n^{2}) Randomized Algorithm

- randomly sample each vertex of G with probability $1 / k$

An O(n^{2}) Randomized Algorithm

- randomly sample each vertex of G with probability $1 / k$
- run k iterations of Bellman-Ford from each sampled vertex

An O(n^{2}) Randomized Algorithm

- randomly sample each vertex of G with probability $1 / k$
- run k iterations of Bellman-Ford from each sampled vertex
(with constant probability a sampled vertex belongs to the negative k -cycle)

An O(n^{2}) Randomized Algorithm

- randomly sample each vertex of G with probability $1 / k$
- run k iterations of Bellman-Ford from each sampled vertex
(with constant probability a sampled vertex belongs to the negative k-cycle)

Time $=(n / k) \cdot O(n \cdot k)$

	The problem	General graphs	Planar graphs
$\mathrm{k}=3$	Negative Triangle	$\mathrm{O}\left(\mathrm{n}^{3}\right)-\mathrm{APSP},$ min-plus multiplication [VassilevskaWilliamsWilliams'10]	$\overline{O(n)}-$ check $\mathrm{O}(1)$ neighbors, delete and recurse
$\mathrm{k}=\mathrm{n}$	Negative Cycle	$\mathrm{O}\left(\mathrm{n}^{3}\right)$ - SSSP	$\begin{gathered} \text { Õ(n) - SSSP } \\ {[\text { FakcharoenpholRao'06] }} \end{gathered}$
$3<\mathrm{k}<\mathrm{n}$	Negative k-Cycle	Õ(n^{3}) - SSSP	$\begin{gathered} \tilde{\mathrm{O}\left(\mathrm{n}^{1.5 \mathrm{k})}\right.} \\ {[\text { WilliamsonSubramani' } 15]} \\ \min \left\{\widetilde{\mathrm{O}}\left(\mathrm{nk}^{2}\right), \mathrm{O}\left(\mathrm{n}^{2}\right)\right\} \end{gathered}$

	The problem	General graphs	Planar graphs
$\mathrm{k}=3$	Negative Triangle	$\mathrm{O}\left(\mathrm{n}^{3}\right)-\mathrm{APSP},$ min-plus multiplication [VassilevskaWilliamsWilliams'10]	$\overline{O(n)}-$ check $\mathrm{O}(1)$ neighbors, delete and recurse
$\mathrm{k}=\mathrm{n}$	Negative Cycle	$\mathrm{O}\left(\mathrm{n}^{3}\right)$ - SSSP	$\begin{gathered} \text { Õ(n) - SSSP } \\ {[\text { FakcharoenpholRao'06] }} \end{gathered}$
$3<\mathrm{k}<\mathrm{n}$	Negative k-Cycle	Õ(n^{3}) - SSSP	$\begin{gathered} \tilde{\mathrm{O}\left(\mathrm{n}^{1.5 \mathrm{k})}\right.} \\ {[\text { WilliamsonSubramani' } 15]} \\ \min \left\{\widetilde{\mathrm{O}}\left(\mathrm{nk}^{2}\right), \mathrm{O}\left(\mathrm{n}^{2}\right)\right\} \end{gathered}$

Our Main Result

Our Main Result

Assuming the min-plus convolution conjecture:
For $k \leq n^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{nk}^{2}\right)$ For $\mathrm{k}>\mathrm{n}^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$

Our Main Result

Assuming the min-plus convolution conjecture:
For $k \leq n^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{nk}^{2}\right)$ For $\mathrm{k}>\mathrm{n}^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$

Our Main Result

Assuming the min-plus convolution conjecture:
For $k \leq n^{1 / 3}$ there is no algorithm polynomially faster than $O\left(n k^{2}\right)$ For $\mathrm{k}>\mathrm{n}^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$

The first non-trivial tight bound for a problem in planar graphs

Conjectures

min-plus convolution

Given n-length sequences a, b, c whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

At most $n+2$ edges: $x+y+z \leq n-1$
Negative: $a[x]+b[y]-c[n-I-z]-x \cdot M-y \cdot M+(n-I-z) \cdot M<0$

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

At most $n+2$ edges: $x+y+z=n-1$
Negative: $a[x]+b[y]-c[n-I-z]-x \cdot M-y \cdot M+(n-I-z) \cdot M<0$

Conjectures

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

Assuming the min-plus convolution conjecture:
For $k=\Theta(n)$, Negative k-Cycle cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Simple proof (inspired by [AbboudCohen-AddadKlein 2020]):

At most $n+2$ edges: $x+y+z=n-1$
Negative: $a[x]+b[y]-c[n-I-z]-x \cdot M-y \cdot M+(n-I-z) \cdot M<0$
Iff: $a[x]+b[y]<c[z]$ for some x, y, and $z=x+y$

Conjectures

min-plus convolution

Given n-length sequences a, b, c whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

Conjectures

min-plus convolution

Given n-length sequences a, b, c whose entries are integers, does $a[x]+b[y] \geq c[z]$ hold for every x, y, and $z=x+y$

min-plus multiplication (APSP)

Given $n \times n$ matrices A, B, C whose entries are integers, does $A[i][k]+B[k][j] \geq C[i][i]$ hold for every i, j, k

Conjectures

min-plus convolution

Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP)

Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, $\operatorname{does} A[i][k]+B[k][j] \geq C[i][j]$ hold for every i, j, k

min-plus multiplication-convolution

Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are s -length sequences, does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

Conjectures

min-plus convolution

Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP)

Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, $\operatorname{does} A[i][k]+B[k][j] \geq C[i][j]$ hold for every i, j, k

min-plus multiplication-convolution

Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are s -length sequences, $\operatorname{does} \mathrm{A}[\mathrm{i}][\mathrm{k}][\mathrm{x}]+\mathrm{B}[\mathrm{k}][\mathrm{j}][\mathrm{y}] \geq \mathrm{C}[\mathrm{i}][\mathrm{j}][\mathrm{z}]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{x}, \mathrm{y}$, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

Conjectures

min-plus convolution

Given n-length sequences a, b, c whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP)

Given $n \times n$ matrices A, B, C whose entries are integers, does $A[i][k]+B[k][j] \geq C[i][j]$ hold for every i, j, k

min-plus multiplication-convolution

Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are s -length sequences, does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

Conjectures

min-plus convolution Conjecture

Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, $\operatorname{does} A[i][k]+B[k][j] \geq C[i][j]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ time
Given $n \times n$ matrices A, B, C whose entries are s-length sequences, does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

Conjectures

min-plus convolution Conjecture

Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, $\operatorname{does} A[i][k]+B[k][j] \geq C[i][j]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ time
Given $n \times n$ matrices A, B, C whose entries are s-length sequences, does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

Conjectures

min-plus convolution Conjecture

Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, $\operatorname{does} A[i][k]+B[k][j] \geq C[i][j]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ time
Given $n \times n$ matrices A, B, C whose entries are s-length sequences, does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

Conjectures

min-plus convolution Conjecture

Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, $\operatorname{does} A[i][k]+B[k][j] \geq C[i][j]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ time
Given $n \times n$ matrices A, B, C whose entries are s-length sequences, does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

Conjectures

min-plus convolution Conjecture

Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, $\operatorname{does} A[i][k]+B[k][j] \geq C[i][j]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ time Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are s-length sequences, does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$
Conjectures

min-plus convolution Conjecture

Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, $\operatorname{does} A[i][k]+B[k][j] \geq C[i][j]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{3} \mathrm{~s}^{2-\varepsilon}\right)$ time Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are s-length sequences, does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$
Conjectures

min-plus convolution Conjecture

Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, $\operatorname{does} A[i][k]+B[k][j] \geq C[i][j]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ time Given $n \times n$ matrices A, B, C whose entries are s-length sequences, does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$
Conjectures

min-plus convolution Conjecture

Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, $\operatorname{does} A[i][k]+B[k][j] \geq C[i][j]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ time Given $n \times n$ matrices A, B, C whose entries are s-length sequences, does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$
Conjectures

min-plus convolution Conjecture

Cannot be solved in O($\left.\mathrm{n}^{2-\varepsilon}\right)$ time
Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP) Conjecture
Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{3-\varepsilon}\right)$ time
Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers,
does $\mathrm{A}[\mathrm{i}][\mathrm{k}]+\mathrm{B}[\mathrm{k}][\mathrm{j}] \geq \mathrm{C}[\mathrm{i}][\mathrm{j}]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

Conjectures

min-plus convolution Conjecture

Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
Given $n \times n$ matrices A, B, C whose entries are integers, does $A[i][k]+B[k][j] \geq C[i][j]$ hold for every i, j, k

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ time Given $n \times n$ matrices A, B, C whose entries are s-length sequences, does $A[i][k][x]+B[k][j][y] \geq C[i][i][z]$ hold for every i, j, k, x, y, and $z=x+y$
An Intermediate Conjecture

min-plus convolution Conjecture
 Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
 Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, $\operatorname{does} A[i][k]+B[k][j] \geq C[i][j]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ time
Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are s -length sequences, $\mathbf{s}=\mathbf{n}^{\mathbf{a}}$ does $\mathrm{A}[\mathrm{i}][\mathrm{k}][\mathrm{x}]+\mathrm{B}[\mathrm{k}][\mathrm{j}][\mathrm{y}] \geq \mathrm{C}[\mathrm{i}][\mathrm{j}][\mathrm{z}]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{x}, \mathrm{y}$, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

An Intermediate Conjecture

min-plus convolution Conjecture
 Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
 Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ timeGiven $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are s -length sequences, $\mathbf{s}=\mathbf{n}^{\mathbf{a}}$ does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

[^0]
An Intermediate Conjecture

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ timeGiven $n \times n$ matrices A, B, C whose entries are s-length sequences, $s=\mathbf{n}^{a}$ does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

[^1]
An Intermediate Conjecture

min-plus convolution Conjecture

Cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time
Given n-length sequences a, b, c whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ timeGiven $n \times n$ matrices A, B, C whose entries are s-length sequences, $s=\mathbf{n}^{a}$ does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

[^2]
An Intermediate Conjecture

min-plus convolution Conjecture
 Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
 Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ time
Given $n \times n$ matrices A, B, C whose entries are s-length sequences, $s=\mathbf{n}^{a}$ does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

[^3]
An Intermediate Conjecture

min-plus convolution Conjecture
 Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
 Given n-length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ timeGiven $n \times n$ matrices A, B, C whose entries are s-length sequences, $\mathbf{s}=\mathbf{n}^{\mathbf{a}}$ does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

[^4]
An Intermediate Conjecture

min-plus convolution Conjecture
 Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
 Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ timeGiven $n \times n$ matrices A, B, C whose entries are s-length sequences, $s=\mathbf{n}^{\text {a }}$ does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

min-plus multiplication (APSP) Conjecture

 Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ timeGiven $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, does $\mathrm{A}[\mathrm{i}][\mathrm{k}]+\mathrm{B}[\mathrm{k}][\mathrm{j}] \geq \mathrm{C}[\mathrm{i}][\mathrm{j}]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

An Intermediate Conjecture

min-plus convolution Conjecture
 Cannot be solved in $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time
 Given n -length sequences $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose entries are integers, does $\mathrm{a}[\mathrm{x}]+\mathrm{b}[\mathrm{y}] \geq \mathrm{c}[\mathrm{z}]$ hold for every x, y, and $\mathrm{z}=\mathrm{x}+\mathrm{y}$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ time
Given $n \times n$ matrices A, B, C whose entries are s-length sequences, $s=\mathbf{n}^{a}$ does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

min-plus multiplication (APSP) Conjecture

Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, does $\mathrm{A}[\mathrm{i}][\mathrm{k}]+\mathrm{B}[\mathrm{k}][\mathrm{j}] \geq \mathrm{C}[\mathrm{i}][\mathrm{j}]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

Planar Negative k-Cycle

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ timeGiven $n \times n$ matrices A, B, C whose entries are s-length sequences, $\mathbf{s}=\mathbf{n}^{\mathbf{a}}$ does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

Planar Negative k-Cycle

Assuming the min-plus convolution conjecture:
For $k \leq n^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{nk}^{2}\right)$ For $\mathrm{k}>\mathrm{n}^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ timeGiven $n \times n$ matrices A, B, C whose entries are s-length sequences, $\mathbf{s}=\mathbf{n}^{\mathbf{a}}$ does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

Planar Negative k-Cycle

Assuming the min-plus multiplication-convolution conjecture:
For $k \leq n^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{nk}^{2}\right)$ For $\mathrm{k}>\mathrm{n}^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ timeGiven $n \times n$ matrices A, B, C whose entries are s-length sequences, $\mathbf{s}=\mathbf{n}^{\mathbf{a}}$ does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

Theorem:

In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Assuming the min-plus multiplication-convolution conjecture:
For $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{nk}^{2}\right)$ For $\mathrm{k}>\mathrm{n}^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ timeGiven $n \times n$ matrices A, B, C whose entries are s-length sequences, $\mathbf{s}=\mathbf{n}^{\mathbf{a}}$ does $A[i][k][x]+B[k][j][y] \geq C[i][i][z]$ hold for every i, j, k, x, y, and $z=x+y$

Theorem:

In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Assuming the min-plus multiplication-convolution conjecture:
For $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{nk}^{2}\right)$ For $\mathrm{k}>\mathrm{n}^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ timeGiven $n \times n$ matrices A, B, C whose entries are s-length sequences, $\mathbf{s}=\mathbf{n}^{\mathbf{a}}$ does $A[i][k][x]+B[k][j][y] \geq C[i][i][z]$ hold for every i, j, k, x, y, and $z=x+y$

Theorem:

In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Assuming the min-plus multiplication-convolution conjecture:
For $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{nk}^{2}\right)$ For $\mathrm{k}>\mathrm{n}^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$

min-plus multiplication-convolution Conjecture

 Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ timeGiven $n \times n$ matrices A, B, C whose entries are s-length sequences, $\mathbf{s}=\mathbf{n}^{\mathbf{a}}$ does $A[i][k][x]+B[k][j][y] \geq C[i][i][z]$ hold for every i, j, k, x, y, and $z=x+y$

Theorem:

In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Assuming the min-plus multiplication-convolution conjecture:
For $k \leq n^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{nk}^{2}\right)$ For $\mathrm{k}>\mathrm{n}^{1 / 3}$ there is no algorithm polynomially faster than $\mathrm{O}\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$

min-plus multiplication-convolution Conjecture

Cannot be solved in $O\left(n^{3} s^{2-\varepsilon}\right)$ time
Given $n \times n$ matrices A, B, C whose entries are s-length sequences, $\mathbf{s}=\mathbf{n}^{\mathbf{a}}$ does $A[i][k][x]+B[k][j][y] \geq C[i][j][z]$ hold for every i, j, k, x, y, and $z=x+y$

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for distance labeling: [GavoillePelegPrennesRaz 200 I]

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for distance labeling: [GavoillePelegPrennesRaz 200 I]

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for distance labeling: [GavoillePelegPrennesRaz 200 I]

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for distance labeling: [GavoillePelegPrennesRaz 200 I]

- choose edge weights so that shortest paths go first down then right

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for distance labeling: [GavoillePelegPrennesRaz 200 I]

- choose edge weights so that shortest paths go first down then right

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for distance labeling: [GavoillePelegPrennesRaz 200 I]

- choose edge weights so that shortest paths go first down then right

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for distance labeling: [GavoillePelegPrennesRaz 200 I]

- choose edge weights so that shortest paths go first down then right

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for distance labeling: [GavoillePelegPrennesRaz 200I]

- choose edge weights so that shortest paths go first down then right

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for distance labeling: [GavoillePelegPrennesRaz 200 I]

- choose edge weights so that shortest paths go first down then right
- encode an n-by-n boolean matrix B using the shortcuts

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for dynamic distance oracles: [AbboudDahlgaard 20I6]

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for dynamic distance oracles: [AbboudDahlgaard 2016]

- encode an n-by-n matrix B and the i'th row of a matrix A using two grids

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for dynamic distance oracles: [AbboudDahlgaard 2016]

- encode an n-by-n matrix B and the i'th row of a matrix A using two grids

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for dynamic distance oracles: [AbboudDahlgaard 2016]

- encode an n-by-n matrix B and the i'th row of a matrix A using two grids
- choose edge weights so that the j-to-j distance $=\min _{k}\{A[i][\mathrm{k}]+\mathrm{B}[\mathrm{k}][\mathrm{j}]\}$

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for dynamic distance oracles: [AbboudDahlgaard 2016]

- encode an n-by-n matrix B and the i 'th row of a matrix A using two grids
- choose edge weights so that the j-to-j distance $=\min _{k}\{A[i][\mathrm{k}]+\mathrm{B}[\mathrm{k}][\mathrm{j}]\}$

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for dynamic distance oracles: [AbboudDahlgaard 2016]

- encode an n-by-n matrix B and the i 'th row of a matrix A using two grids
- choose edge weights so that the j-to-j distance $=\min _{k}\{A[i][\mathrm{k}]+\mathrm{B}[\mathrm{k}][\mathrm{j}]\}$

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Lower bound for dynamic distance oracles: [AbboudDahlgaard 2016]

- encode an n-by-n matrix B and the i 'th row of a matrix A using two grids
- choose edge weights so that the j-to-j distance $=\min _{k}\{A[i][\mathrm{k}]+\mathrm{B}[\mathrm{k}][\mathrm{j}]\}$

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Our construction:

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Our construction:

Given $n \times n$ matrices A, B, C whose entries are s-length sequences, does $A[i][k][x]+B[k][j][y]+C[i][j][z]<0$ hold for some i, j, k, x, y, and $z=x+y$

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Our construction:

Given $n \times n$ matrices A, B, C whose entries are s-length sequences, does $A[i][k][x]+B[k][j][y]+C[i][j][z]<0$ hold for some i, j, k, x, y, and $z=x+y$

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Sequence Gadget

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Sequence Gadget

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

$\forall i$ there's a source-to-sink path with $\ell \cdot \mathrm{s}-\mathrm{i}+2$ edges and weight $\mathrm{a}[\mathrm{i}]-\mathrm{M}$

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Theorem:
In linear time we can reduce min-plus multiplication-convolution to Planar Negative-k-Cycle on $O\left(n^{2} s\right)$ vertices and $k=O(n+s)$.

Conclusions

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n k^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(n^{2}\right)$ for $k \leq n^{1 / 3}$ and $\Omega\left(n^{1.5} k^{0.5}\right)$ for $k>n^{1 / 3}$.

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n k^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(n^{2}\right)$ for $k \leq n^{1 / 3}$ and $\Omega\left(n^{1.5} k^{0.5}\right)$ for $k>n^{1 / 3}$.

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n k^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(n^{2}\right)$ for $k \leq n^{1 / 3}$ and $\Omega\left(n^{1.5} k^{0.5}\right)$ for $k>n^{1 / 3}$.

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n k^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(\mathrm{nk}^{2}\right)$ for $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ and $\Omega\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$ for $\mathrm{k}>\mathrm{n}^{1 / 3}$.

Open Problems

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(\mathrm{nk}^{2}\right)$ for $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ and $\Omega\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$ for $\mathrm{k}>\mathrm{n}^{1 / 3}$.

Open Problems

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\Omega\left(n^{2}\right)$, upper bound $\tilde{O}\left(W n^{1.5}\right)=\tilde{O}\left(n^{2.5}\right)$

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(\mathrm{nk}^{2}\right)$ for $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ and $\Omega\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$ for $\mathrm{k}>\mathrm{n}^{1 / 3}$.

Open Problems

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\Omega\left(n^{2}\right)$, upper bound $\tilde{O}\left(W n^{1.5}\right)=\tilde{O}\left(n^{2.5}\right)$

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(\mathrm{nk}^{2}\right)$ for $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ and $\Omega\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$ for $\mathrm{k}>\mathrm{n}^{1 / 3}$.

Open Problems

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\Omega\left(n^{2}\right)$, upper bound $\tilde{O}\left(W n^{1.5}\right)=\tilde{O}\left(n^{2.5}\right)$

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(\mathrm{nk}^{2}\right)$ for $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ and $\Omega\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$ for $\mathrm{k}>\mathrm{n}^{1 / 3}$.

Open Problems

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\Omega\left(n^{2}\right)$, upper bound $\tilde{O}\left(W n^{1.5}\right)=\tilde{O}\left(n^{2.5}\right)$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$ update or query, upper bound $\mathrm{O}\left(\mathrm{n}^{2 / 3}\right)$ update and query

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(\mathrm{nk}^{2}\right)$ for $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ and $\Omega\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$ for $\mathrm{k}>\mathrm{n}^{1 / 3}$.

Open Problems

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\Omega\left(n^{2}\right)$, upper bound $\tilde{O}\left(W n^{1.5}\right)=\tilde{O}\left(n^{2.5}\right)$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$ update or query, upper bound $\mathrm{O}\left(\mathrm{n}^{2 / 3}\right)$ update and query

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(\mathrm{nk}^{2}\right)$ for $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ and $\Omega\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$ for $\mathrm{k}>\mathrm{n}^{1 / 3}$.

Open Problems

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\Omega\left(n^{2}\right)$, upper bound $\tilde{O}\left(W n^{1.5}\right)=\tilde{O}\left(n^{2.5}\right)$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$ update or query, upper bound $\mathrm{O}\left(\mathrm{n}^{2 / 3}\right)$ update and query

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(\mathrm{nk}^{2}\right)$ for $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ and $\Omega\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$ for $\mathrm{k}>\mathrm{n}^{1 / 3}$.

Open Problems

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\Omega\left(n^{2}\right)$, upper bound $\tilde{O}\left(W n^{1.5}\right)=\tilde{O}\left(n^{2.5}\right)$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$ update or query, upper bound $\mathrm{O}\left(\mathrm{n}^{2 / 3}\right)$ update and query
- No other non-trivial lower bounds known in planar graphs.

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(\mathrm{nk}^{2}\right)$ for $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ and $\Omega\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$ for $\mathrm{k}>\mathrm{n}^{1 / 3}$.

Open Problems

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\Omega\left(n^{2}\right)$, upper bound $\tilde{O}\left(W n^{1.5}\right)=\tilde{O}\left(n^{2.5}\right)$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$ update or query, upper bound $\mathrm{O}\left(\mathrm{n}^{2 / 3}\right)$ update and query
- No other non-trivial lower bounds known in planar graphs. Diameter? O(n/3)

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(\mathrm{nk}^{2}\right)$ for $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ and $\Omega\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$ for $\mathrm{k}>\mathrm{n}^{1 / 3}$.

Open Problems

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\Omega\left(n^{2}\right)$, upper bound $\tilde{O}\left(W n^{1.5}\right)=\tilde{O}\left(n^{2.5}\right)$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$ update or query, upper bound $\mathrm{O}\left(\mathrm{n}^{2 / 3}\right)$ update and query
- No other non-trivial lower bounds known in planar graphs. Diameter? O(n/3)
- other uses of min-plus multiplication-convolution

Conclusions

- We give an upper bound of $\min \left\{\tilde{O}\left(n^{2}\right), O\left(n^{2}\right)\right\}$ and a lower bound (conditioned on the popular min-plus convolution conjecture) of $\Omega\left(\mathrm{nk}^{2}\right)$ for $\mathrm{k} \leq \mathrm{n}^{1 / 3}$ and $\Omega\left(\mathrm{n}^{1.5} \mathrm{k}^{0.5}\right)$ for $\mathrm{k}>\mathrm{n}^{1 / 3}$.

Open Problems

- Sparsest cut: [AbboudCohen-AddadKlein 2020] lower bound $\Omega\left(n^{2}\right)$, upper bound $\tilde{O}\left(W n^{1.5}\right)=\tilde{O}\left(n^{2.5}\right)$
- Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006] lower bound $\Omega\left(\mathrm{n}^{1 / 2}\right)$ update or query, upper bound $\mathrm{O}\left(\mathrm{n}^{2 / 3}\right)$ update and query
- No other non-trivial lower bounds known in planar graphs. Diameter? O(n/3)
- other uses of min-plus multiplication-convolution
- minimum mean (average) cycle?

Thank You!

[^0]: min-plus multiplication (APSP) Conjecture
 Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
 Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, does $\mathrm{A}[\mathrm{i}][\mathrm{k}]+\mathrm{B}[\mathrm{k}][\mathrm{j}] \geq \mathrm{C}[\mathrm{i}][\mathrm{j}]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

[^1]: min-plus multiplication (APSP) Conjecture
 Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
 Given $n \times n$ matrices A, B, C whose entries are integers, does $A[i][k]+B[k][j] \geq C[i][j]$ hold for every i, j, k

[^2]: min-plus multiplication (APSP) Conjecture
 Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
 Given $n \times n$ matrices A, B, C whose entries are integers, does $A[i][k]+B[k][j] \geq C[i][i]$ hold for every i, j, k

[^3]: min-plus multiplication (APSP) Conjecture
 Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
 Given $n \times n$ matrices A, B, C whose entries are integers, does $A[i][k]+B[k][j] \geq C[i][j]$ hold for every i, j, k

[^4]: min-plus multiplication (APSP) Conjecture
 Cannot be solved in $O\left(n^{3-\varepsilon}\right)$ time
 Given $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ whose entries are integers, $\operatorname{does} \mathrm{A}[\mathrm{i}][\mathrm{k}]+\mathrm{B}[\mathrm{k}][\mathrm{j}] \geq \mathrm{C}[\mathrm{i}][\mathrm{j}]$ hold for every $\mathrm{i}, \mathrm{j}, \mathrm{k}$

