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e randomly sample each vertex of G with probability 1/k
® run k iterations of Bellman-Ford from each sampled vertex

(with constant probability a sampled vertex belongs
to the negative k-cycle)

Time = (n/k)-O(n-k)
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Theorem:
In linear time we can reduce min-plus multiplication-convolution
to Planar Negative-k-Cycle on O(n?s) vertices and k = O(n + s).

Our construction:

C choose edge weights / subdivisions so that

SR
SR
(RS
0‘0‘6

ALT[KI[x] + BIK][i[y] + CLil[jl[z] < O

hold for some i,j,k,x,y, and z=x+y

iff there is a negative k-cycle
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Conclusions

* We give an upper bound of min{O(nk?2), O(n2)} and a lower bound
(conditioned on the popular min-plus convolution conjecture)

of (Q(nk2) for k = n!’3 and Q)(n'5ko3) for k > n!3,
Open Problems

* Sparsest cut: [AbboudCohen-AddadKlein 2020]
lower bound Q(n2), upper bound O(W n'3) = O(n25)

* Dynamic distance oracles: [AbboudDahlgaard 2016, FakcharoenpholRao 2006]
lower bound Q(n!’2) update or query, upper bound O(n?3) update and query

* No other non-trivial lower bounds known in planar graphs. Diameter? O(n5/3)
> other uses of min-plus multiplication-convolution
> minimum mean (average) cycle!?



Thank You!



