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* Nearest colored ancestor
* Nearest colored descendant
* Nearest colored node

If number of colors is O(logn) there is an optimal
O(n)-space O(1)-query solution
[Bille, Landau, Raman, Rao, Sadakane, W. 2011]
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Static Trees

* Nearest colored ancestor {)(log log n)-query for any
O(n polylog n)-space solution
 Nearest colored descendant 5
(log log n)-query
* Nearest colored node O(n)-space solution

|.Assign preorder numbers

2. For every : store numbers in predecessor data structure
(given v find interval of all vertices in its subtree)

plus RMQ data structure (weight = dist. from root)

1
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« Nearest colored ancestor {)(log log n)-query for any
O(n polylog n)-space solution
* Nearest colored descendant 5
(log log n)-query
* Nearest colored node O(n)-space solution

|.Assign preorder and postorder numbers

2. For every : store numbers in predecessor data structure

plus nearest ancestor with the same
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Dynamic Trees

* Nearest co

 Nearest co
 Nearest co

Lower bound

ored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query
ored descendant
ored node

via three simple reductions:

dynamic nearest _ dynamic planar _, dynamic Suffix ~_ dynamic nearest
colored ancestor = dominance emptiness Minimum Queries colored descendant
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|.Assign preorder and postorder numbers

2. For every : store points (pre(u), dist(u,root)) in the 3-sided planar

emptiness structure of [Wilkinson 2014]
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: store points (pre(u), dist(u,root)) in the 3-sided planar

emptiness structure of [Wilkinson 2014]
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- Nearest colored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query
* Nearest colored descendant
* Nearest colored node

dynamic nearest s dynamic nearest
colored ancestor  gjow up the lower bound colored node

tree weights exponentially
so that nearest colored
node is always an ancestor
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« Nearest colored ancestor O(polylog n)-update requires
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Dynamic Trees

Nearest colored ancestor O(polylog n)-update requires
Q(logn/loglog n)-query
Nearest colored descendant
O(log n)-update
Nearest colored node NS D

O(n)-space
Most technical part of the paper:

Uses all of the above machinery plus a hybrid of Centroid
decomposition and Top Trees, augmented with nearest colored
centroid and with LCA...
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implies an O(n3-¢) for APSP

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(#colors - log n)-update
O(log n)-query

O(n)-space
Tree with n? vertices and #colors = n

Overall:
n? updates and n? queries

If we could do each in less than

#colors'-¢€ = n'-€ time then total is n3-¢
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O(n)-space

O(n)-space

* Nearest colored descendant

 Nearest colored node
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