The Nearest Colored Node in a Tree

Pawet Gawrychowski, Gad M. Landau, Shay Mozes, Oren Weimann

The Nearest Colored Node in a Tree

Pawet Gawrychowski, Gad M. Landau, Shay Mozes, Oren Weimann

The Nearest Colored Node in a Tree

Pawet Gawrychowski, Gad M. Landau, Shay Mozes, Oren Weimann

The Nearest Colored Node in a Tree

Pawet Gawrychowski, Gad M. Landau, Shay Mozes, Oren Weimann

Vertex-Colored Network

» Colors indicate functionality of a node.

DN

N

Vertex-Colored Network

» Colors indicate functionality of a node.

road
network

Vertex-Colored Network

» Colors indicate functionality of a node.

= -~ B
eS¢

& 3
computer \ / \ /

network FIP

WB!
i
=

b

\

Vertex-Colored Distance Oracle

Vertex-Colored Distance Oracle

Data Structure for queries:
“what’s the closest red node to node v”

DN

N

Vertex-Colored Distance Oracle

Data Structure for queries:
“what’s the closest red node to node v”

DN

N

Trees

Trees

Trees

Trees

Nearest colored node

Trees

Nearest colored descendant
Nearest colored node

Trees

* Nearest colored ancestor

* Nearest colored descendant
* Nearest colored node

Static Trees

Nearest colored ancestor
Nearest colored descendant
Nearest colored node

Static Trees

* Nearest colored ancestor
* Nearest colored descendant
* Nearest colored node

If number of colors is O(logn) there is an optimal
O(n)-space O(1)-query solution
[Bille, Landau, Raman, Rao, Sadakane, W. 2011]

Static Trees

Implicit in [Belazzougui, Navarro 2010]:
- Nearest colored ancestor Q(log log n)-query for any

O(n polylog n)-space solution
* Nearest colored descendant
* Nearest colored node

Static Trees

Implicit in [Belazzougui, Navarro 2010]:

* Nearest colored ancestor {)(log log n)-query for any
O(n polylog n)-space solution
* Nearest colored descendant 5
(log log n)-query
* Nearest colored node O(n)-space solution

Static Trees
« Nearest colored ancestor Q(log log n)-query forany

O(n polylog n)-space solution

° Nearest CcoO ored descendant F
og log n)-query

* Nearest colored node O(n)-space solution

Static Trees
« Nearest colored ancestor Q(log log n)-query forany

O(n polylog n)-space solution

° Nearest CcoO ored descendant W
og log n)-query

* Nearest colored node O(n)-space solution

Static Trees

* Nearest colored ancestor {)(log log n)-query for any
O(n polylog n)-space solution
* Nearest colored descendant B
(log log n)-query
* Nearest colored node O(n)-space solution

|.Assign preorder numbers

Static Trees

* Nearest colored ancestor {)(log log n)-query for any
O(n polylog n)-space solution
* Nearest colored descendant B
(log log n)-query
* Nearest colored node O(n)-space solution

|.Assign preorder numbers

2. For every : store numbers in predecessor data structure
(given v find interval of all vertices in its subtree)

Static Trees

* Nearest colored ancestor {)(log log n)-query for any
O(n polylog n)-space solution
 Nearest colored descendant 5
(log log n)-query
* Nearest colored node O(n)-space solution

|.Assign preorder numbers

2. For every : store numbers in predecessor data structure
(given v find interval of all vertices in its subtree)

plus RMQ data structure (weight = dist. from root)

1

Static Trees
 Nearest colored ancestor Q(log log n)-query for any

O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query

* Nearest colored node O(n)-space solution

Static Trees

« Nearest colored ancestor {)(log log n)-query for any
O(n polylog n)-space solution
* Nearest colored descendant 5
(log log n)-query
* Nearest colored node O(n)-space solution

|.Assign preorder and postorder numbers

Static Trees

« Nearest colored ancestor {)(log log n)-query for any
O(n polylog n)-space solution
* Nearest colored descendant 5
(log log n)-query
* Nearest colored node O(n)-space solution

|.Assign preorder and postorder numbers

1,30

Static Trees

« Nearest colored ancestor {)(log log n)-query for any
O(n polylog n)-space solution
* Nearest colored descendant 5
(log log n)-query
* Nearest colored node O(n)-space solution

|.Assign preorder and postorder numbers

2. For every : store numbers in predecessor data structure

1,30

Static Trees

« Nearest colored ancestor {)(log log n)-query for any
O(n polylog n)-space solution
* Nearest colored descendant 5
(log log n)-query
* Nearest colored node O(n)-space solution

|.Assign preorder and postorder numbers

2. For every : store numbers in predecessor data structure

plus nearest ancestor with the same

Static Trees
« Nearest colored ancestor Q(log log n)-query for any

O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query

* Nearest colored node O(n)-space solution

Static Trees
« Nearest colored ancestor Q(log log n)-query for any

O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query

* Nearest colored node O(n)-space solution

Static Trees

* Nearest colored ancestor {)(log log n)-query for any
O(n polylog n)-space solution
* Nearest colored descendant 5
(log log n)-query
* Nearest colored node O(n)-space solution

|. For every : consider all nodes of this

Static Trees

* Nearest colored ancestor AT
O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query
* Nearest colored node O(n)-space solution
|. For every : consider all nodes of this and their LCAs

/N
AXAN

Static Trees

* Nearest colored ancestor i
O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query
* Nearest colored node O(n)-space solution
|. For every : consider all nodes of this and their LCAs

and all (paths) between them

Static Trees

* Nearest colored ancestor i
O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query
* Nearest colored node O(n)-space solution
|. For every : consider all nodes of this and their LCAs
and all (paths) between them

plus nearest node with this

Static Trees

* Nearest colored ancestor i
O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query
* Nearest colored node O(n)-space solution
|. For every : consider all nodes of this and their LCAs
and all (paths) between them

plus nearest node with this

& N Linear size in #

Static Trees

* Nearest colored ancestor i
O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query
* Nearest colored node O(n)-space solution
|. For every : consider all nodes of this and their LCAs
and all (paths) between them

plus nearest node with this

2. Now use the nearest colored ancestor & descendant solutions

& N Linear size in #

Static Trees

* Nearest colored ancestor i
O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query
* Nearest colored node O(n)-space solution
|. For every : consider all nodes of this and their LCAs
and all (paths) between them

plus nearest node with this

2. Now use the nearest colored ancestor & descendant solutions

& N Linear size in #

Static Trees

* Nearest colored ancestor i
O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query
* Nearest colored node O(n)-space solution
|. For every : consider all nodes of this and their LCAs
and all (paths) between them

plus nearest node with this

2. Now use the nearest colored ancestor & descendant solutions

g Linear size in #

Static Trees

* Nearest colored ancestor i
O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query
* Nearest colored node O(n)-space solution
|. For every : consider all nodes of this and their LCAs
and all (paths) between them

plus nearest node with this

2. Now use the nearest colored ancestor & descendant solutions

& N Linear size in #

Static Trees

* Nearest colored ancestor i
O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query
* Nearest colored node O(n)-space solution
|. For every : consider all nodes of this and their LCAs
and all (paths) between them

plus nearest node with this

2. Now use the nearest colored ancestor & descendant solutions

&k ~? Linear size in #

Static Trees

* Nearest colored ancestor i
O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query
* Nearest colored node O(n)-space solution
|. For every : consider all nodes of this and their LCAs
and all (paths) between them

plus nearest node with this

2. Now use the nearest colored ancestor & descendant solutions

e ! Linear size in #

Static Trees

* Nearest colored ancestor i
O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query
* Nearest colored node O(n)-space solution
|. For every : consider all nodes of this and their LCAs
and all (paths) between them

plus nearest node with this

2. Now use the nearest colored ancestor & descendant solutions

& N Linear size in #

Static Trees

* Nearest colored ancestor i
O(n polylog n)-space solution
* Nearest colored descendant
(log log n)-query
* Nearest colored node O(n)-space solution
|. For every : consider all nodes of this and their LCAs
and all (paths) between them

plus nearest node with this

2. Now use the nearest colored ancestor & descendant solutions

? ke ™ Linear size in #

Dynamic Trees

Nearest co

Nearest co
Nearest co

ored ancestor

ored descendant
ored node

Dynamic Trees

Nearest co

Nearest co
Nearest co

ored ancestor

ored descendant
ored node

Dynamic Trees

Nearest co

Nearest co
Nearest co

ored ancestor

ored descendant
ored node

Dynamic Trees

[Alstrup, Husfeldt, Rauhe, 1998]:
* Nearest colored ancestor

* Nearest colored descendant
* Nearest colored node

Q(logn/loglog n)-query

Dynamic Trees

[Alstrup, Husfeldt, Rauhe, 1998]:

* Nearest colored ancestor

) NeareSt co Ored descendant [Alstrup, Husfeldt, Rauhe, 1998]:
* Nearest colored node :

Q(logn/loglog n)-query

O(logn/loglog n)-query
O(n)-space

Dynamic Trees

Nearest colored ancestor

Nearest colored descendant
* Nearest colored node

Dynamic Trees
« Nearest colored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query
* Nearest colored descendant

* Nearest colored node

Dynamic Trees
Nearest colored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query
Nearest colored descendant

Nearest colored node

Lower bound via three simple reductions:

Dynamic Trees

- Nearest colored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query
* Nearest colored descendant
* Nearest colored node

Lower bound via three simple reductions:

dynamic nearest
colored ancestor

Dynamic Trees

- Nearest colored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query
* Nearest colored descendant
* Nearest colored node

Lower bound via three simple reductions:

dynamic nearest dynamic planar
q . .
colored ancestor = dominance emptiness

y
ov

Dynamic Trees

- Nearest colored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query
* Nearest colored descendant
* Nearest colored node

Lower bound via three simple reductions:

dynamic nearest dynamic planar dynamic Suffix
_’ . . _’ . . .
colored ancestor =~ dominance emptiness Minimum Queries

y

ov

Dynamic Trees

* Nearest co

 Nearest co
 Nearest co

Lower bound

ored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query
ored descendant
ored node

via three simple reductions:

dynamic nearest _ dynamic planar _, dynamic Suffix ~_ dynamic nearest
colored ancestor = dominance emptiness Minimum Queries colored descendant

y

ov

Dynamic Trees
« Nearest colored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query

* Nearest colored descendant
W

* Nearest colored node O(logn/loglog n)-query
O(n)-space

Dynamic Trees

* Nearest colored ancestor

* Nearest colored descendant
* Nearest colored node

|.Assign preorder and postorder numbers

1,30

e
O(polylog n)-update requires

Q(logn/loglog n)-query

O(log?3n)-update
O(logn/loglog n)-query
O(n)-space

Dynamic Trees

* Nearest colored ancestor RS SR S E AT
Q(logn/loglog n)-query

* Nearest colored descendant

. O(log?3n)-update
O(n)-space

|.Assign preorder and postorder numbers

2. For every : store points (pre(u), dist(u,root)) in the 3-sided planar

emptiness structure of [Wilkinson 2014]

1,30

dist(u,root)

pre(u)

|.Assign preorder and postorder numbers

2. For every

Dynamic Trees

Nearest co

Nearest co
Nearest co

ored ancestor

ored descendant
ored node

O(polylog n)-update requires
Q(logn/loglog n)-query

O(log?3n)-update
O(logn/loglog n)-query
O(n)-space

: store points (pre(u), dist(u,root)) in the 3-sided planar

emptiness structure of [Wilkinson 2014]

1,30

dist(u,root)

I] pre(u)
pre(v) post(v)

Dynamic Trees

Nearest co

Nearest co
Nearest co

ored ancestor

ored descendant
ored node

Dynamic Trees
« Nearest colored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query
* Nearest colored descendant

* Nearest colored node

Dynamic Trees

- Nearest colored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query
* Nearest colored descendant
* Nearest colored node

dynamic nearest s dynamic nearest
colored ancestor colored node

Dynamic Trees

- Nearest colored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query
* Nearest colored descendant
* Nearest colored node

dynamic nearest s dynamic nearest
colored ancestor gjow up the lower bound colored node

tree weights exponentially
so that nearest colored
node is always an ancestor

Dynamic Trees
« Nearest colored ancestor O(polylog n)-update requires

Q(logn/loglog n)-query
* Nearest colored descendant
O(log n)-update

* Nearest colored node O(log n)-query
O(n)-space

Dynamic Trees

Nearest colored ancestor O(polylog n)-update requires
Q(logn/loglog n)-query
Nearest colored descendant
O(log n)-update
Nearest colored node NS D

O(n)-space
Most technical part of the paper:

Uses all of the above machinery plus a hybrid of Centroid
decomposition and Top Trees, augmented with nearest colored
centroid and with LCA...

Fully Dynamic Trees

Nearest colored ancestor

Nearest colored descendant
Nearest colored node

Fully Dynamic Trees

Nearest colored ancestor

Nearest colored descendant
Nearest colored node

Fully Dynamic Trees

Nearest colored ancestor

Nearest colored descendant
Nearest colored node

Fully Dynamic Trees

* Nearest colored ancestor

* Nearest colored descendant [Alstrup, Holm, de-Lichtenberg, Thorup 2005]

* Nearest colored node O(#colors - log n)-update
O(log n)-query
O(n)-space

Fully Dynamic Trees
Offedors) queryand upate

- Nearest colored ancestor mplies an O(n%€) for APSP

* Nearest colored descendant
* Nearest colored node

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query
O(n)-space

Fully Dynamic Trees
OfHoolors™) query and update

* Nearest colored ancestor mplies an O(n%%) for APSP

* Nearest colored descendant [Alstrup, Holm, de-Lichtenberg, Thorup 2005]

* Nearest colored node R oI G oo —

O(log n)-query
O(n)-space

Fully Dynamic Trees
Offoolrs™)auery and updste

- Nearest colored ancestor mplies an O(n%%) for APSP

* Nearest colored descendant
* Nearest colored node

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query

O(n)-space
APSP
a1Q O b+
a0 Ob2
as bs
O O

Fully Dynamic Trees
« Nearest colored ancestor _

implies an O(n3-€) for APSP
* Nearest colored descendant

* Nearest colored node

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query
O(n)-space

APSP

a1QO
a0

as

Fully Dynamic Trees

a1QO
a0

as

ano

Ob1
Ob2
@bs
O

Obn
Ob+
Ob2
@bs

Obn
Obq
Ob2
@b

Obn

Ob+
@b
Obn

Ob1
Ob2
@bs
O

Obn

Implies an n-"=) 1or

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(n)-space

Fully Dynamic Trees

Implies an n-"=) 1or

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(n)-space

Fully Dynamic Trees

Implies an n-"=) 1or

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

Ob1
b2
b3 -

Obn O(n)-space

a1QO
a0

as

O O O QO
]
g

ano

Fully Dynamic Trees

a0
a0

as

ano

Ob+

Ob+
b2

Obn

Ob1
bs

implies an O(n3-€) for APSP

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query
O(n)-space

Tree with n? vertices and #colors = n

Fully Dynamic Trees

a0
a0

as

ano

Ob+

Ob+
b2

Obn

Ob1
bs

implies an O(n3-€) for APSP

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query
O(n)-space

Tree with n? vertices and #colors = n

What's the closest blue to a3z ?

Fully Dynamic Trees

a0
a0

as

ano

Ob+

Ob+
b2

Obn

Ob1
bs

implies an O(n3-€) for APSP

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query
O(n)-space

Tree with n? vertices and #colors = n

What's the closest blue to a3z ?
What’s the closest red to a3z ?

Fully Dynamic Trees

a0
a0

as

ano

Ob+

Ob+
b2

Obn

Ob1
bs

implies an O(n3-€) for APSP

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query
O(n)-space

Tree with n? vertices and #colors = n

What's the closest blue to a3z ?
What’s the closest red to a3z ?

Fully Dynamic Trees

a1QO
a0
as@

ano

implies an O(n3-€) for APSP

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query
O(n)-space

Tree with n? vertices and #colors = n

What's the closest blue to a3z ?
What’s the closest red to a3z ?

Fully Dynamic Trees

a0

az

asQO

ano

Ob+

Ob+
b2

Obn

Ob1
bs

implies an O(n3-€) for APSP

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query
O(n)-space

Tree with n? vertices and #colors = n

Fully Dynamic Trees

a0

az

asQO

ano

Ob+

Ob+
b2

Obn

Ob1
bs

implies an O(n3-€) for APSP

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query
O(n)-space

Tree with n? vertices and #colors = n

What's the closest blue to a> ?

Fully Dynamic Trees

a0

az

asQO

ano

Ob+

Ob+
b2

Obn

Ob1
bs

implies an O(n3-€) for APSP

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query
O(n)-space

Tree with n? vertices and #colors = n

What's the closest blue to a> ?
What’s the closest red to a> ?

Fully Dynamic Trees

a0

az

asQO

ano

Ob+

Ob+
b2

Obn

Ob1
bs

implies an O(n3-€) for APSP

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query
O(n)-space

Tree with n? vertices and #colors = n

What's the closest blue to a2 ?
What’s the closest red to a> ?

Fully Dynamic Trees

a0

az

asQ

ano

Obq

Ob+
b2

Obn

Obq
bs

implies an O(n3-€) for APSP

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(log n)-query
O(n)-space
Tree with n2 vertices and #colors = n

Overall:
n? updates and n? queries

Fully Dynamic Trees

a1QO

az

asQ

ano

Ob+

Obq
b2

Obn

Ob+
bs

P
O(#colors'-¢) query and update

implies an O(n3-¢) for APSP

[Alstrup, Holm, de-Lichtenberg, Thorup 2005]

O(#colors - log n)-update
O(log n)-query

O(n)-space
Tree with n? vertices and #colors = n

Overall:
n? updates and n? queries

If we could do each in less than

#colors'-¢€ = n'-€ time then total is n3-¢

Open Problems

O(n)-space

O(n)-space

* Nearest colored descendant

 Nearest colored node

i -
©
O

