A Note on a Recent Algorithm for Minimum Cut

Paweł Gawrychowski ${ }^{1}$ Shay Mozes ${ }^{2}$ Oren Weimann ${ }^{3}$

${ }^{1}$ University of Wrocław, Poland
${ }^{2}$ The Interdisciplinary Center Herzliya, Israel
${ }^{3}$ University of Haifa, Israel

Slides by Paweł Gawrychowski

(Global) Minimum Cut

Input: undirected edge-weighted graph $G=(V, E)$
 Output: nonempty $S \subset V$ minimizing the total weight of edges between S and $V \backslash S$

(Global) Minimum Cut

Input: undirected edge-weighted graph $G=(V, E)$
Output: nonempty $S \subset V$ minimizing the total weight of edges between S and $V \backslash S$

Solvable in polynomial time with $n-1$ maximum flow computations.

(Global) Minimum Cut

Input: undirected edge-weighted graph $G=(V, E)$
Output: nonempty $S \subset V$ minimizing the total weight of edges between S and $V \backslash S$

Solvable in polynomial time with $n-1$ maximum flow computations.

(Global) Minimum Cut

Input: undirected edge-weighted graph $G=(V, E)$
Output: nonempty $S \subset V$ minimizing the total weight of edges between S and $V \backslash S$

Solvable in polynomial time with $n-1$ maximum flow computations.

(Global) Minimum Cut

Input: undirected edge-weighted graph $G=(V, E)$
Output: nonempty $S \subset V$ minimizing the total weight of edges between S and $V \backslash S$

Solvable in polynomial time with $n-1$ maximum flow computations.

The fastest maximum flow algorithm works in $\mathcal{O}(n m)$ time, so applying it $n-1$ times results in $\mathcal{O}\left(n^{2} m\right)$ complexity. Is there a faster algorithm?

A different method based on recursion and contracting a randomly chosen edge finds the global minimum cut in $\mathcal{O}\left(n^{2} \log ^{3} n\right)$ time whp.

The fastest maximum flow algorithm works in $\mathcal{O}(n m)$ time, so applying it $n-1$ times results in $\mathcal{O}\left(n^{2} m\right)$ complexity. Is there a faster algorithm?

Nagamochi and Ibaraki 1992

In $\mathcal{O}(m+n \log n)$ time we can either find the global minimum cut or isolate an edge that doesn't cross it. This edge can then be contracted and the procedure repeated, resulting in $\mathcal{O}\left(m n+n^{2} \log n\right)$ complexity.

The fastest maximum flow algorithm works in $\mathcal{O}(n m)$ time, so applying it $n-1$ times results in $\mathcal{O}\left(n^{2} m\right)$ complexity. Is there a faster algorithm?

Nagamochi and Ibaraki 1992

In $\mathcal{O}(m+n \log n)$ time we can either find the global minimum cut or isolate an edge that doesn't cross it. This edge can then be contracted and the procedure repeated, resulting in $\mathcal{O}\left(m n+n^{2} \log n\right)$ complexity.

Karger and Stein 1996

A different method based on recursion and contracting a randomly chosen edge finds the global minimum cut in $\mathcal{O}\left(n^{2} \log ^{3} n\right)$ time whp.

The fastest maximum flow algorithm works in $\mathcal{O}(n m)$ time, so applying it $n-1$ times results in $\mathcal{O}\left(n^{2} m\right)$ complexity. Is there a faster algorithm?

Nagamochi and Ibaraki 1992

In $\mathcal{O}(m+n \log n)$ time we can either find the global minimum cut or isolate an edge that doesn't cross it. This edge can then be contracted and the procedure repeated, resulting in $\mathcal{O}\left(m n+n^{2} \log n\right)$ complexity.

Karger and Stein 1996

A different method based on recursion and contracting a randomly chosen edge finds the global minimum cut in $\mathcal{O}\left(n^{2} \log ^{3} n\right)$ time whp.

Is there a more efficient algorithm for sparse graphs?

Karger's Framework

In 1996, Karger announced a faster $\mathcal{O}\left(m \log ^{3} n\right)$ time algorithm finding the minimum cut whp. by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

Minimum k-respecting cut
Given a spanning tree T, find the minimum cut crossed by exactly k of
its edges.

Karger's Framework

In 1996, Karger announced a faster $\mathcal{O}\left(m \log ^{3} n\right)$ time algorithm finding the minimum cut whp. by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

Minimum k-respecting cut

Given a spanning tree T, find the minimum cut crossed by exactly k of its edges.

Karger's Framework

In 1996, Karger announced a faster $\mathcal{O}\left(m \log ^{3} n\right)$ time algorithm finding the minimum cut whp. by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

Minimum k-respecting cut

Given a spanning tree T, find the minimum cut crossed by exactly k of its edges.

Karger's Framework

In 1996, Karger announced a faster $\mathcal{O}\left(m \log ^{3} n\right)$ time algorithm finding the minimum cut whp. by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

Minimum k-respecting cut

Given a spanning tree T, find the minimum cut crossed by exactly k of its edges.

Karger's Framework

In 1996, Karger announced a faster $\mathcal{O}\left(m \log ^{3} n\right)$ time algorithm finding the minimum cut whp. by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

Minimum k-respecting cut

Given a spanning tree T, find the minimum cut crossed by exactly k of its edges.

Karger's framework

The high-level structure of Karger's algorithm is as follows:
(1) Find a collection \mathcal{T} of $\mathcal{O}(\log n)$ trees such that whp the minimum cut 1- or 2 -respects some $T \in \mathcal{T}$.
(2) For every $T \in \mathcal{T}$, find the minimum 1 -respecting cut.
(3) For every $T \in \mathcal{T}$, find the minimum 2 -respecting cut.

Finding

Uses the so-called (weighted) tree packing, building on a theorem by Nash-Williams, and can be implemented in $\mathcal{O}\left(m+n \log ^{3} n\right)$ time whp.

Karger's framework

The high-level structure of Karger's algorithm is as follows:
(1) Find a collection \mathcal{T} of $\mathcal{O}(\log n)$ trees such that whp the minimum cut 1- or 2-respects some $T \in \mathcal{T}$.
(2) For every $T \in \mathcal{T}$, find the minimum 1-respecting cut.
(3) For every $T \in \mathcal{T}$, find the minimum 2 -respecting cut.

Finding T
Uses the so-called (weighted) tree packing, building on a theorem by Nash-Williams, and can be implemented in $\mathcal{O}\left(m+n \log ^{3} n\right)$ time whp.

Karger's framework

The high-level structure of Karger's algorithm is as follows:
(1) Find a collection \mathcal{T} of $\mathcal{O}(\log n)$ trees such that whp the minimum cut 1- or 2-respects some $T \in \mathcal{T}$.
(2) For every $T \in \mathcal{T}$, find the minimum 1-respecting cut.
(3) For every $T \in \mathcal{T}$, find the minimum 2 -respecting cut.

Finding \mathcal{T}
Uses the so-called (weighted) tree packing, building on a theorem by Nash-Williams, and can be implemented in $\mathcal{O}\left(m+n \log ^{3} n\right)$ time whp.

Karger's framework

The high-level structure of Karger's algorithm is as follows:
(1) Find a collection \mathcal{T} of $\mathcal{O}(\log n)$ trees such that whp the minimum cut 1- or 2-respects some $T \in \mathcal{T}$.
(2) For every $T \in \mathcal{T}$, find the minimum 1-respecting cut.
(3) For every $T \in \mathcal{T}$, find the minimum 2-respecting cut.

Finding \mathcal{T}
Uses the so-called (weighted) tree packing, building on a theorem by Nash-Williams, and can be implemented in $\mathcal{O}\left(m+n \log ^{3} n\right)$ time whp.

Karger's framework

The high-level structure of Karger's algorithm is as follows:
(1) Find a collection \mathcal{T} of $\mathcal{O}(\log n)$ trees such that whp the minimum cut 1- or 2-respects some $T \in \mathcal{T}$.
(2) For every $T \in \mathcal{T}$, find the minimum 1-respecting cut.
(3) For every $T \in \mathcal{T}$, find the minimum 2-respecting cut.

Finding \mathcal{T}

Uses the so-called (weighted) tree packing, building on a theorem by Nash-Williams, and can be implemented in $\mathcal{O}\left(m+n \log ^{3} n\right)$ time whp.

Minimum 1-Respecting Cut

Karger showed that this is actually fairly easy:

This information can be propagated in $\mathcal{O}(m)$ overall time.

Minimum 1-Respecting Cut

Karger showed that this is actually fairly easy:

Minimum 1-Respecting Cut

Karger showed that this is actually fairly easy:

This information can be propagated in $\mathcal{O}(m)$ overall time.

Minimum 1-Respecting Cut

Karger showed that this is actually fairly easy:

This information can be propagated in $\mathcal{O}(m)$ overall time.

Minimum 1-Respecting Cut

Karger showed that this is actually fairly easy:

This information can be propagated in $\mathcal{O}(m)$ overall time.

Minimum 2-Respecting Cut

Sought e and e^{\prime} can either be independent or descendant.

Minimum 2-Respecting Cut

Sought e and e^{\prime} can either be independent or descendant.

Minimum 2-Respecting Cut

Sought e and e^{\prime} can either be independent or descendant.

Minimum 2-Respecting Cut

For both cases, Karger's algorithm operates in $\mathcal{O}(\log n)$ phases that iteratively contracting paths (called boughs) consisting of nodes with exactly one child terminating at a leaf. Each phase is implemented with link-cut trees in $\mathcal{O}(m \log n)$ time.

Karger 1996
Minimum 2-respecting cut can be found in $\mathcal{O}\left(m \log ^{2} n\right)$ time.

The overall time complexity is $\mathcal{O}\left(m \log ^{3} n+n \log ^{3} n\right)=\mathcal{O}\left(m \log ^{3} n\right)$.

Minimum 2-Respecting Cut

For both cases, Karger's algorithm operates in $\mathcal{O}(\log n)$ phases that iteratively contracting paths (called boughs) consisting of nodes with exactly one child terminating at a leaf. Each phase is implemented with link-cut trees in $\mathcal{O}(m \log n)$ time.

Karger 1996

Minimum 2-respecting cut can be found in $\mathcal{O}\left(m \log ^{2} n\right)$ time.

Minimum 2-Respecting Cut

For both cases, Karger's algorithm operates in $\mathcal{O}(\log n)$ phases that iteratively contracting paths (called boughs) consisting of nodes with exactly one child terminating at a leaf. Each phase is implemented with link-cut trees in $\mathcal{O}(m \log n)$ time.

Karger 1996

Minimum 2-respecting cut can be found in $\mathcal{O}\left(m \log ^{2} n\right)$ time.

The overall time complexity is $\mathcal{O}\left(m \log ^{3} n+n \log ^{3} n\right)=\mathcal{O}\left(m \log ^{3} n\right)$.

Recent Developments

Henzinger, Rao, and Wang 2017
A faster $\mathcal{O}\left(m \log ^{2} n(\log \log n)^{2}\right)$ deterministic time algorithm for simple unweighted graphs.

Ghaffari, Nowicki and Thorup 2020
An even faster $\mathcal{O}\left(\min \left\{m+n \log ^{3} n, m \log n\right\}\right)$ randomised time algorithm for simple unweighted graphs.

Bhardwaj, Lovett, and Sandlund 2020
A different take on the minimum 2-respecting cut based on top trees instead of link-cut trees, and iterating over the edges of T guided by heavy-light decomposition. Also $\mathcal{O}\left(m \log ^{2} n\right)$ time, but simpler.

Recent Developments

Henzinger, Rao, and Wang 2017

A faster $\mathcal{O}\left(m \log ^{2} n(\log \log n)^{2}\right)$ deterministic time algorithm for simple unweighted graphs.

Ghaffari, Nowicki and Thorup 2020

An even faster $\mathcal{O}\left(\min \left\{m+n \log ^{3} n, m \log n\right\}\right)$ randomised time algorithm for simple unweighted graphs.

> Bhardwaj, Lovett, and Sandlund 2020
> A different take on the minimum 2-respecting cut based on top trees instead of link-cut trees, and iterating over the edges of T guided by heavy-light decomposition. Also $\mathcal{O}\left(m \log ^{2} n\right)$ time, but simpler.

Recent Developments

Henzinger, Rao, and Wang 2017

A faster $\mathcal{O}\left(m \log ^{2} n(\log \log n)^{2}\right)$ deterministic time algorithm for simple unweighted graphs.

Ghaffari, Nowicki and Thorup 2020

An even faster $\mathcal{O}\left(\min \left\{m+n \log ^{3} n, m \log n\right\}\right)$ randomised time algorithm for simple unweighted graphs.

Bhardwaj, Lovett, and Sandlund 2020

A different take on the minimum 2-respecting cut based on top trees instead of link-cut trees, and iterating over the edges of T guided by heavy-light decomposition. Also $\mathcal{O}\left(m \log ^{2} n\right)$ time, but simpler.

Recent Developments, Continued

Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020
 Minimum 2-respecting cut in $\mathcal{O}\left(m \log n+n \log ^{3} n\right)$ randomised time.

Time complexity of the former dominates that of the latter, but the latter has the following advantages:
(1) uses a nice structural property of minimum 2-respecting cut,
(2) extends to the cut-query and the streaming model,
(3) can be seen as a reduction to 2D orthogonal range counting/sampling.

By plugging in appropriate structures, the time complexity for unweighted multigraphs becomes $\mathcal{O}\left(m \sqrt{\log n}+n \log ^{4} n\right)$.

Recent Developments, Continued

Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.
Mukhopadhyay and Nanongkai 2020
Minimum 2-respecting cut in $\mathcal{O}\left(m \log n+n \log ^{3} n\right)$ randomised time.

> Time complexity of the former dominates that of the latter, but the latter has the following advantages:
> (1) uses a nice structural property of minimum 2-respecting cut,
> (2) extends to the cut-query and the streaming model,
> (3) can be seen as a reduction to 2D orthogonal range
> counting/sampling.

By plugging in appropriate structures, the time complexity for unweighted multigraphs becomes $\mathcal{O}\left(m \sqrt{\log n}+n \log ^{4} n\right)$.

Recent Developments, Continued

Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in $\mathcal{O}\left(m \log n+n \log ^{3} n\right)$ randomised time.
Time complexity of the former dominates that of the latter, but the latter has the following advantages:

> By plugging in appropriate structures, the time complexity for unweighted multigraphs becomes $\mathcal{O}\left(m \sqrt{\log n}+n \log ^{4} n\right)$.

Recent Developments, Continued

Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in $\mathcal{O}\left(m \log n+n \log ^{3} n\right)$ randomised time.
Time complexity of the former dominates that of the latter, but the latter has the following advantages:
(1) uses a nice structural property of minimum 2-respecting cut,
(3) extends to the cut-query and the streaming model,
(3) can be seen as a reduction to 2D orthogonal range
counting/sampling.
By plugging in appropriate structures, the time complexity for
unweighted multigraphs becomes $\mathcal{O}\left(m \sqrt{\log n}+n \log ^{4} n\right)$.

Recent Developments, Continued

Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in $\mathcal{O}\left(m \log n+n \log ^{3} n\right)$ randomised time.
Time complexity of the former dominates that of the latter, but the latter has the following advantages:
(1) uses a nice structural property of minimum 2-respecting cut,
(2) extends to the cut-query and the streaming model,
> (3) can be seen as a reduction to 2D orthogonal range counting/sampling.

> By plugging in appropriate structures, the time complexity for unweighted multigraphs becomes $\mathcal{O}\left(m \sqrt{\log n}+n \log ^{4} n\right)$.

Recent Developments, Continued

Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in $\mathcal{O}\left(m \log n+n \log ^{3} n\right)$ randomised time.
Time complexity of the former dominates that of the latter, but the latter has the following advantages:
(1) uses a nice structural property of minimum 2-respecting cut,
(2) extends to the cut-query and the streaming model,
(3) can be seen as a reduction to 2D orthogonal range counting/sampling.

By plugging in appropriate structures, the time complexity for unweighted multigraphs becomes $\mathcal{O}\left(m \sqrt{\log n}+n \log ^{4} n\right)$.

Recent Developments, Continued

Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in $\mathcal{O}\left(m \log n+n \log ^{3} n\right)$ randomised time.
Time complexity of the former dominates that of the latter, but the latter has the following advantages:
(1) uses a nice structural property of minimum 2-respecting cut,
(2) extends to the cut-query and the streaming model,
(3) can be seen as a reduction to 2D orthogonal range counting/sampling.

By plugging in appropriate structures, the time complexity for unweighted multigraphs becomes $\mathcal{O}\left(m \sqrt{\log n}+n \log ^{4} n\right)$.

Our Contribution

We simplify and streamline the minimum 2-respecting cut algorithm Mukhopadhyay and Nanongkai to work in only $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ deterministic time.

Our implementation can be seen as a reduction to just 2D orthogonal counting. This allows us to obtain the following new bounds for the mimimum cut problem:
(1) $\mathcal{O}\left(m \log ^{3 / 2} n+n \log ^{3} n\right)$ for unweighted multigraphs.
(2) $\mathcal{O}\left(m \log n+n^{1+\epsilon}\right)$ for weighted graphs, for any $\epsilon>0$.

Our Contribution

We simplify and streamline the minimum 2-respecting cut algorithm Mukhopadhyay and Nanongkai to work in only $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ deterministic time.

Our implementation can be seen as a reduction to just 2D orthogonal counting. This allows us to obtain the following new bounds for the mimimum cut problem:
(3) $\mathcal{O}\left(m \log ^{3 / 2} n+n \log ^{3} n\right)$ for unweighted multigraphs.

Our Contribution

We simplify and streamline the minimum 2-respecting cut algorithm Mukhopadhyay and Nanongkai to work in only $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ deterministic time.

Our implementation can be seen as a reduction to just 2D orthogonal counting. This allows us to obtain the following new bounds for the mimimum cut problem:
(1) $\mathcal{O}\left(m \log ^{3 / 2} n+n \log ^{3} n\right)$ for unweighted multigraphs.
(2) $\mathcal{O}\left(m \log n+n^{1+\epsilon}\right)$ for weighted graphs, for any $\epsilon>0$.

Our Contribution

We simplify and streamline the minimum 2-respecting cut algorithm Mukhopadhyay and Nanongkai to work in only $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ deterministic time.

Our implementation can be seen as a reduction to just 2D orthogonal counting. This allows us to obtain the following new bounds for the mimimum cut problem:
(1) $\mathcal{O}\left(m \log ^{3 / 2} n+n \log ^{3} n\right)$ for unweighted multigraphs.
(2) $\mathcal{O}\left(m \log n+n^{1+\epsilon}\right)$ for weighted graphs, for any $\epsilon>0$.

Mukhopadhyay and Nanongkai's framework

Partition the edges of T into edge-disjoint heavy paths such that any root-to-leaf path intersects with at most $\log n$ heavy paths.

Now we have two cases:
(1) e, e^{\prime} belong to the same heavy path,
(2) e, e^{\prime} belong to different heavy paths.

Mukhopadhyay and Nanongkai's framework

Partition the edges of T into edge-disjoint heavy paths such that any root-to-leaf path intersects with at most $\log n$ heavy paths.

Now we have two cases:
(1) e, e^{\prime} belong to the same heavy path,
(2) e, e^{\prime} belong to different heavy paths.

Mukhopadhyay and Nanongkai's framework

Partition the edges of T into edge-disjoint heavy paths such that any root-to-leaf path intersects with at most $\log n$ heavy paths.

Now we have two cases:
(1) e, e^{\prime} belong to the same heavy path,
(2) e, e^{\prime} belong to different heavy paths.

Mukhopadhyay and Nanongkai's framework

Partition the edges of T into edge-disjoint heavy paths such that any root-to-leaf path intersects with at most $\log n$ heavy paths.

Now we have two cases:
(1) e, e^{\prime} belong to the same heavy path,
(2) e, e^{\prime} belong to different heavy paths.

e, e^{\prime} belong to the same heavy path

Let $M[i, j]$ be the weight of the cut determined by e_{i} and e_{j}.
M is a partial Monge matrix
For any $i \neq j, M[i, j]-M[i, j+1] \geq M[i+1, j]-M[i+1, j+1]$.
Klawe and Kleitman showed how to find the minimum in such an array in $\mathcal{O}(\ell \cdot \alpha(\ell))$ inspections, where ℓ is the length of the path. This sums to $\mathcal{O}(n \cdot \alpha(n))$ inspections.

e, e^{\prime} belong to the same heavy path

Let $M[i, j]$ be the weight of the cut determined by e_{i} and e_{j}.

$$
\begin{aligned}
& \text { M is a partial Monge matrix } \\
& \text { For any } i \neq j, M[i, j]-M[i, j+1] \geq M[i+1, j]-M[i+1, j+1] \\
& \text { Klawe and Kleitman showed how to find the minimum in such an array } \\
& \text { in } \mathcal{O}(\ell \cdot \alpha(\ell)) \text { inspections, where } \ell \text { is the length of the path. This sums } \\
& \text { to } \mathcal{O}(n \cdot \alpha(n)) \text { inspections. }
\end{aligned}
$$

e, e^{\prime} belong to the same heavy path

Let $M[i, j]$ be the weight of the cut determined by e_{i} and e_{j}.

$$
\begin{aligned}
& \text { M is a partial Monge matrix } \\
& \text { For any } i \neq j, M[i, j]-M[i, j+1] \geq M[i+1, j]-M[i+1, j+1] \text {. } \\
& \text { Klawe and Kleitman showed how to find the minimum in such an array } \\
& \text { in } \mathcal{O}(\ell \cdot \alpha(\ell) \text { inspections, where } \ell \text { is the length of the path. This sums } \\
& \text { to } \mathcal{O}(n \cdot \alpha(n)) \text { inspections. }
\end{aligned}
$$

e, e^{\prime} belong to the same heavy path

Let $M[i, j]$ be the weight of the cut determined by e_{i} and e_{j}.

$$
\begin{aligned}
& \text { M is a partial Monge matrix } \\
& \text { For any } i \neq j, M[i, j]-M[i, j+1] \geq M[i+1, j]-M[i+1, j+1] \text {. } \\
& \text { Klawe and Kleitman showed how to find the minimum in such an array } \\
& \text { in } \mathcal{O}(\ell \cdot \alpha(\ell) \text { inspections, where } \ell \text { is the length of the path. This sums } \\
& \text { to } \mathcal{O}(n \cdot \alpha(n)) \text { inspections. }
\end{aligned}
$$

e, e^{\prime} belong to the same heavy path

Let $M[i, j]$ be the weight of the cut determined by e_{i} and e_{j}.
M is a partial Monge matrix
For any $i \neq j, M[i, j]-M[i, j+1] \geq M[i+1, j]-M[i+1, j+1]$.

> Klawe and Kleitman showed how to find the minimum in such an array in $\mathcal{O}(\ell \cdot \alpha(\ell))$ inspections, where ℓ is the length of the path. This sums to $\mathcal{O}(n \cdot \alpha(n))$ inspections.

e, e^{\prime} belong to the same heavy path

Let $M[i, j]$ be the weight of the cut determined by e_{i} and e_{j}.
M is a partial Monge matrix
For any $i \neq j, M[i, j]-M[i, j+1] \geq M[i+1, j]-M[i+1, j+1]$.
Klawe and Kleitman showed how to find the minimum in such an array in $\mathcal{O}(\ell \cdot \alpha(\ell))$ inspections, where ℓ is the length of the path. This sums to $\mathcal{O}(n \cdot \alpha(n))$ inspections.

e, e^{\prime} belong to different heavy paths

One could similarly form a Monge matrix for every pair of heavy paths. However, this would be too slow.

e, e^{\prime} belong to different heavy paths

An edge e is cross-interested in an edge $e^{\prime} \notin T_{e}$ if more than half of the edge weight going out T_{e} goes into $T_{e^{\prime}}$.

All such edges e^{\prime} form a single path from the root to some node c_{e}.

If the minimum cut is determined by independent edges e, e^{\prime} then e is cross-interested in e^{\prime} and vice versa.

e, e^{\prime} belong to different heavy paths

An edge e is cross-interested in an edge $e^{\prime} \notin T_{e}$ if more than half of the edge weight going out T_{e} goes into $T_{e^{\prime}}$.

All such edges e^{\prime} form a single path from the root to some node c_{e}.

If the minimum cut is determined by independent edges e, e^{\prime} then e is cross-interested in e^{\prime} and vice versa.

e, e^{\prime} belong to different heavy paths

An edge e is cross-interested in an edge $e^{\prime} \notin T_{e}$ if more than half of the edge weight going out T_{e} goes into $T_{e^{\prime}}$.

All such edges e^{\prime} form a single path from the root to some node c_{e}.

If the minimum cut is determined by independent edges e, e^{\prime} then e is cross-interested in e^{\prime} and vice versa.

e, e^{\prime} belong to different heavy paths

An edge e is cross-interested in an edge $e^{\prime} \notin T_{e}$ if more than half of the edge weight going out T_{e} goes into $T_{e^{\prime}}$.

All such edges e^{\prime} form a single path from the root to some node c_{e}.

If the minimum cut is determined by independent edges e, e^{\prime} then e is cross-interested in e^{\prime} and vice versa.

e, e^{\prime} belong to different heavy paths

An edge e is cross-interested in an edge $e^{\prime} \notin T_{e}$ if more than half of the edge weight going out T_{e} goes into $T_{e^{\prime}}$.

All such edges e^{\prime} form a single path from the root to some node c_{e}.
If the minimum cut is determined by independent edges e, e^{\prime} then e is cross-interested in e^{\prime} and vice versa.

e, e^{\prime} belong to different heavy paths

Similar notion for the case of descendant edges e, e^{\prime}.

High-level structure of the algorithm:
(1) Identify c_{e} for every e.
(2) For every e, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges e^{\prime}.

(3)For every pair of heavy paths P, Q such that, for some edges $e \in P, e^{\prime} \in Q, Q$ is interesting for e and P is interesting for e^{\prime} : (1) extract $P^{\prime} \subseteq P$ consisting of edges interested in Q, (2) extract $Q^{\prime} \subseteq Q$ consisting of edges interested in P, (3) form a $\left|P^{\prime}\right| \times\left|Q^{\prime}\right|$ Monge matrix and find the minimum with SMAWK using $\mathcal{O}\left(\left|P^{\prime}\right|+\left|Q^{\prime}\right|\right)$ inspections.

We need $\sum\left(\left|P^{\prime}\right|+\left|Q^{\prime}\right|\right)=\mathcal{O}(n \log n)$ inspections, plus $\mathcal{O}\left(n \log ^{2} n\right)$ time for the bookkeeping, assuming that we know c_{e} for every e.

e, e^{\prime} belong to different heavy paths

Similar notion for the case of descendant edges e, e^{\prime}.
High-level structure of the algorithm:

We need $\sum\left(\left|P^{\prime}\right|+\left|Q^{\prime}\right|\right)=\mathcal{O}(n \log n)$ inspections, plus $\mathcal{O}\left(n \log ^{2} n\right)$ time for the bookkeeping, assuming that we know c_{e} for every e.

e, e^{\prime} belong to different heavy paths

Similar notion for the case of descendant edges e, e^{\prime}.
High-level structure of the algorithm:
(1) Identify c_{e} for every e.
© For every e, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges e^{\prime}.

-

We need $\sum\left(\left|P^{\prime}\right|+\left|Q^{\prime}\right|\right)=\mathcal{O}(n \log n)$ inspections, plus $\mathcal{O}\left(n \log ^{2} n\right)$ time for the bookkeeping, assuming that we know c_{e} for every e.

e, e^{\prime} belong to different heavy paths

Similar notion for the case of descendant edges e, e^{\prime}.
High-level structure of the algorithm:
(1) Identify c_{e} for every e.
(2) For every e, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges e^{\prime}.
 for the bookkeeping, assuming that we know c_{e} for every e.

e, e^{\prime} belong to different heavy paths

Similar notion for the case of descendant edges e, e^{\prime}.
High-level structure of the algorithm:
(1) Identify c_{e} for every e.
(2) For every e, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges e^{\prime}.
(0) For every pair of heavy paths P, Q such that, for some edges $e \in P, e^{\prime} \in Q, Q$ is interesting for e and P is interesting for e^{\prime} :
$Q^{\prime} \mid$ Monge matrix and find the minimum with SMAWK $\left.\left|Q^{\prime}\right|\right)$ inspections.

e, e^{\prime} belong to different heavy paths

Similar notion for the case of descendant edges e, e^{\prime}.
High-level structure of the algorithm:
(1) Identify c_{e} for every e.
(2) For every e, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges e^{\prime}.
(For every pair of heavy paths P, Q such that, for some edges $e \in P, e^{\prime} \in Q, Q$ is interesting for e and P is interesting for e^{\prime} :

- extract $P^{\prime} \subseteq P$ consisting of edges interested in Q,

e, e^{\prime} belong to different heavy paths

Similar notion for the case of descendant edges e, e^{\prime}.
High-level structure of the algorithm:
(1) Identify c_{e} for every e.
(2) For every e, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges e^{\prime}.
(For every pair of heavy paths P, Q such that, for some edges $e \in P, e^{\prime} \in Q, Q$ is interesting for e and P is interesting for e^{\prime} :

- extract $P^{\prime} \subseteq P$ consisting of edges interested in Q,
(3) extract $Q^{\prime} \subseteq Q$ consisting of edges interested in P,
using $\mathcal{O}\left(\left|P^{\prime}\right|+\left|Q^{\prime}\right|\right)$ inspections.

e, e^{\prime} belong to different heavy paths

Similar notion for the case of descendant edges e, e^{\prime}.
High-level structure of the algorithm:
(1) Identify c_{e} for every e.
(2) For every e, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges e^{\prime}.
(For every pair of heavy paths P, Q such that, for some edges $e \in P, e^{\prime} \in Q, Q$ is interesting for e and P is interesting for e^{\prime} :

- extract $P^{\prime} \subseteq P$ consisting of edges interested in Q,
(2) extract $Q^{\prime} \subseteq Q$ consisting of edges interested in P,
- form a $\left|P^{\prime}\right| \times\left|Q^{\prime}\right|$ Monge matrix and find the minimum with SMAWK using $\mathcal{O}\left(\left|P^{\prime}\right|+\left|Q^{\prime}\right|\right)$ inspections.

e, e^{\prime} belong to different heavy paths

Similar notion for the case of descendant edges e, e^{\prime}.
High-level structure of the algorithm:
(1) Identify c_{e} for every e.
(2) For every e, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges e^{\prime}.
(For every pair of heavy paths P, Q such that, for some edges $e \in P, e^{\prime} \in Q, Q$ is interesting for e and P is interesting for e^{\prime} :

- extract $P^{\prime} \subseteq P$ consisting of edges interested in Q,
(2) extract $Q^{\prime} \subseteq Q$ consisting of edges interested in P,
- form a $\left|P^{\prime}\right| \times\left|Q^{\prime}\right|$ Monge matrix and find the minimum with SMAWK using $\mathcal{O}\left(\left|P^{\prime}\right|+\left|Q^{\prime}\right|\right)$ inspections.

We need $\sum\left(\left|P^{\prime}\right|+\left|Q^{\prime}\right|\right)=\mathcal{O}(n \log n)$ inspections, plus $\mathcal{O}\left(n \log ^{2} n\right)$ time for the bookkeeping, assuming that we know c_{e} for every e.

Preprocessing

To check if e is cross-interested in e^{\prime}, or to compute the total weight of the cut determined by e, e^{\prime}, we use the following tool:

> Chazelle 1988
> Collection of N weighted points can be preprocesses in $\mathcal{O}(N \log N)$ time and space, so that the total weight of all points in any axis-aligned rectangle can be computed in $\mathcal{O}(\log N)$ time.

> We identify the nodes with their visiting time in the postorder traversal of T. Then, every edge (u, v) naturally becomes a weighted point in the plane. We preprocess them in $\mathcal{O}(m \log m)=\mathcal{O}(m \log n)$ time.

> Both queries translate into a constant number of queries about the total weight of points in axis-aligned rectangles.

Preprocessing

To check if e is cross-interested in e^{\prime}, or to compute the total weight of the cut determined by e, e^{\prime}, we use the following tool:

Chazelle 1988

Collection of N weighted points can be preprocesses in $\mathcal{O}(N \log N)$ time and space, so that the total weight of all points in any axis-aligned rectangle can be computed in $\mathcal{O}(\log N)$ time.

> We identify the nodes with their visiting time in the postorder traversal of T. Then, every edge (u, v) naturally becomes a weighted point in the plane. We preprocess them in $\mathcal{O}(m \log m)=\mathcal{O}(m \log n)$ time. Both queries translate into a constant number of queries about the total weight of points in axis-aligned rectangles.

Preprocessing

To check if e is cross-interested in e^{\prime}, or to compute the total weight of the cut determined by e, e^{\prime}, we use the following tool:

Chazelle 1988

Collection of N weighted points can be preprocesses in $\mathcal{O}(N \log N)$ time and space, so that the total weight of all points in any axis-aligned rectangle can be computed in $\mathcal{O}(\log N)$ time.

We identify the nodes with their visiting time in the postorder traversal of T. Then, every edge (u, v) naturally becomes a weighted point in the plane. We preprocess them in $\mathcal{O}(m \log m)=\mathcal{O}(m \log n)$ time.
Both queries translate into a constant number of queries about the total weight of points in axis-aligned rectangles.

Finding c_{e} for every e

Recall that all edges e^{\prime} cross-interesting for e form a path from the root to c_{e}, and we have a mechanism for checking in $\mathcal{O}(\log n)$ time if a given edge e^{\prime} is cross-interesting for e. Instead of random sampling, we use the following tool to identify c_{e} :

Centroid decomposition of T can be constructed in $\mathcal{O}(n \log n)$ time.

Finding c_{e} for every e

Recall that all edges e^{\prime} cross-interesting for e form a path from the root to c_{e}, and we have a mechanism for checking in $\mathcal{O}(\log n)$ time if a given edge e^{\prime} is cross-interesting for e. Instead of random sampling, we use the following tool to identify c_{e} :

Centroid decomposition

Choose a centroid node $v \in T$ such that every connected component of $T \backslash\{v\}$ consists of at most $|T| / 2$ nodes. Recurse on the connected components of $T \backslash\{v\}$.

Centroid decomposition of T can be constructed in $\mathcal{O}(n \log n)$ time.

Finding c_{e} for every e

Recall that all edges e^{\prime} cross-interesting for e form a path from the root to c_{e}, and we have a mechanism for checking in $\mathcal{O}(\log n)$ time if a given edge e^{\prime} is cross-interesting for e. Instead of random sampling, we use the following tool to identify c_{e} :

Centroid decomposition

Choose a centroid node $v \in T$ such that every connected component of $T \backslash\{v\}$ consists of at most $|T| / 2$ nodes. Recurse on the connected components of $T \backslash\{v\}$.

Centroid decomposition of T can be constructed in $\mathcal{O}(n \log n)$ time.

Finding c_{e} for every e

Let T be binary (otherwise, replace high-degree nodes with small binary trees). To find c_{e}, traverse the centroid decomposition of T :
(1) Check if e_{1}, e_{2}, e_{3} are cross-interesting for e.
(2) Continue in the appropriate connected component of $T \backslash\{\mathrm{~V}\}$.
(3) $\log n$ steps, each in $\mathcal{O}(\log n)$ time

Finding c_{e} for every e

Let T be binary (otherwise, replace high-degree nodes with small binary trees). To find c_{e}, traverse the centroid decomposition of T :

(1) Check if e_{1}, e_{2}, e_{3} are cross-interesting for e.
(2) Continue in the appropriate connected component of $T \backslash\{v\}$.
(3) $\log n$ steps, each in $\mathcal{O}(\log n)$ time.

Finding c_{e} for every e

Let T be binary (otherwise, replace high-degree nodes with small binary trees). To find c_{e}, traverse the centroid decomposition of T :

(1) Check if e_{1}, e_{2}, e_{3} are cross-interesting for e.
(2) Continue in the appropriate connected component of $T \backslash\{v\}$.
(3) $\log n$ steps, each in $\mathcal{O}(\log n)$ time.

Finding c_{e} for every e

Let T be binary (otherwise, replace high-degree nodes with small binary trees). To find c_{e}, traverse the centroid decomposition of T :

(1) Check if e_{1}, e_{2}, e_{3} are cross-interesting for e.
(2) Continue in the appropriate connected component of $T \backslash\{v\}$.
(3) $\log n$ steps, each in $\mathcal{O}(\log n)$ time.

Finding c_{e} for every e

Let T be binary (otherwise, replace high-degree nodes with small binary trees). To find c_{e}, traverse the centroid decomposition of T :

(1) Check if e_{1}, e_{2}, e_{3} are cross-interesting for e.
(2) Continue in the appropriate connected component of $T \backslash\{v\}$.
(3) $\log n$ steps, each in $\mathcal{O}(\log n)$ time.

Finding c_{e} for every e

Let T be binary (otherwise, replace high-degree nodes with small binary trees). To find c_{e}, traverse the centroid decomposition of T :

(1) Check if e_{1}, e_{2}, e_{3} are cross-interesting for e.
(2) Continue in the appropriate connected component of $T \backslash\{v\}$.
(3) $\log n$ steps, each in $\mathcal{O}(\log n)$ time.

Finding c_{e} for every e

Let T be binary (otherwise, replace high-degree nodes with small binary trees). To find c_{e}, traverse the centroid decomposition of T :

(1) Check if e_{1}, e_{2}, e_{3} are cross-interesting for e.
(2) Continue in the appropriate connected component of $T \backslash\{v\}$.
(3) $\log n$ steps, each in $\mathcal{O}(\log n)$ time.

Finding c_{e} for every e

Let T be binary (otherwise, replace high-degree nodes with small binary trees). To find c_{e}, traverse the centroid decomposition of T :

(1) Check if e_{1}, e_{2}, e_{3} are cross-interesting for e.
(2) Continue in the appropriate connected component of $T \backslash\{v\}$.
(3) $\log n$ steps, each in $\mathcal{O}(\log n)$ time.

The approach of Mukhopadhyay and Nanongkai for finding minimum 2 -respecting cut can be implemented in $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ time (without randomisation).

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:
(1) $\mathcal{O}\left(m \log ^{3 / 2} n+n \log ^{3} n\right)$ for unweighted multigraphs.
(2) $\mathcal{O}\left(m \log n+n^{1+\epsilon}\right)$ for weighted graphs,
(1) Is there a way to further simplify this approach to remove the $n \log ^{2} n$?
(2) Are similar speedups possible for dense graphs?
(3) Is there a near-linear time deterministic algorithm?

The approach of Mukhopadhyay and Nanongkai for finding minimum 2-respecting cut can be implemented in $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ time (without randomisation).

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:
\square
(1) Is there a way to further simplify this approach to remove the
(2) Are similar speedups possible for dense graphs?
(3) Is there a near-linear time deterministic algorithm?

The approach of Mukhopadhyay and Nanongkai for finding minimum 2 -respecting cut can be implemented in $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ time (without randomisation).

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:
(1) $\mathcal{O}\left(m \log ^{3 / 2} n+n \log ^{3} n\right)$ for unweighted multigraphs.
(1) Is there a way to further simplify this approach to remove the
(2) Are similar speedups possible for dense graphs?
(3) Is there a near-linear time deterministic algorithm?

The approach of Mukhopadhyay and Nanongkai for finding minimum 2-respecting cut can be implemented in $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ time (without randomisation).

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:
(1) $\mathcal{O}\left(m \log ^{3 / 2} n+n \log ^{3} n\right)$ for unweighted multigraphs.
(2) $\mathcal{O}\left(m \log n+n^{1+\epsilon}\right)$ for weighted graphs,
(1) Is there a way to further simplify this approach to remove the
(2) Are similar speedups possible for dense graphs?
(3) Is there a near-linear time deterministic algorithm?

The approach of Mukhopadhyay and Nanongkai for finding minimum 2-respecting cut can be implemented in $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ time (without randomisation).

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:
(1) $\mathcal{O}\left(m \log ^{3 / 2} n+n \log ^{3} n\right)$ for unweighted multigraphs.
(2) $\mathcal{O}\left(m \log n+n^{1+\epsilon}\right)$ for weighted graphs,
(1) Is there a way to further simplify this approach to remove the $n \log ^{2} n$?
(2) Are similar speedups possible for dense graphs?
(3) Is there a near-linear time deterministic algorithm?

The approach of Mukhopadhyay and Nanongkai for finding minimum 2-respecting cut can be implemented in $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ time (without randomisation).

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:
(1) $\mathcal{O}\left(m \log ^{3 / 2} n+n \log ^{3} n\right)$ for unweighted multigraphs.
(2) $\mathcal{O}\left(m \log n+n^{1+\epsilon}\right)$ for weighted graphs,
(1) Is there a way to further simplify this approach to remove the $n \log ^{2} n$?
(2) Are similar speedups possible for dense graphs?
(3) Is there a near-linear time deterministic algorithm?

Thank you!

The approach of Mukhopadhyay and Nanongkai for finding minimum 2-respecting cut can be implemented in $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ time (without randomisation).

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:
(1) $\mathcal{O}\left(m \log ^{3 / 2} n+n \log ^{3} n\right)$ for unweighted multigraphs.
(2) $\mathcal{O}\left(m \log n+n^{1+\epsilon}\right)$ for weighted graphs,
(1) Is there a way to further simplify this approach to remove the $n \log ^{2} n$?
(2) Are similar speedups possible for dense graphs?
(3) Is there a near-linear time deterministic algorithm?

The approach of Mukhopadhyay and Nanongkai for finding minimum 2-respecting cut can be implemented in $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ time (without randomisation).

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:
(1) $\mathcal{O}\left(m \log ^{3 / 2} n+n \log ^{3} n\right)$ for unweighted multigraphs.
(2) $\mathcal{O}\left(m \log n+n^{1+\epsilon}\right)$ for weighted graphs,
(1) Is there a way to further simplify this approach to remove the $n \log ^{2} n$?
(2) Are similar speedups possible for dense graphs?
(3) Is there a near-linear time deterministic algorithm?

The approach of Mukhopadhyay and Nanongkai for finding minimum 2-respecting cut can be implemented in $\mathcal{O}\left(m \log n+n \log ^{2} n\right)$ time (without randomisation).

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:
(1) $\mathcal{O}\left(m \log ^{3 / 2} n+n \log ^{3} n\right)$ for unweighted multigraphs.
(2) $\mathcal{O}\left(m \log n+n^{1+\epsilon}\right)$ for weighted graphs,
(1) Is there a way to further simplify this approach to remove the $n \log ^{2} n$?
(2) Are similar speedups possible for dense graphs?
(3) Is there a near-linear time deterministic algorithm?

Thank you!

