
A Note on a Recent Algorithm for Minimum Cut

Paweł Gawrychowski1 Shay Mozes2 Oren Weimann3

1University of Wrocław, Poland

2The Interdisciplinary Center Herzliya, Israel

3University of Haifa, Israel

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 1 / 19

Oren Weimann
Slides by Paweł Gawrychowski

(Global) Minimum Cut
Input: undirected edge-weighted graph G = (V ,E)
Output: nonempty S ⊂ V minimizing the total weight of edges

between S and V \ S

Solvable in polynomial time with n − 1 maximum flow computations.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 2 / 19

(Global) Minimum Cut
Input: undirected edge-weighted graph G = (V ,E)
Output: nonempty S ⊂ V minimizing the total weight of edges

between S and V \ S

G = (V,E)

Solvable in polynomial time with n − 1 maximum flow computations.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 2 / 19

(Global) Minimum Cut
Input: undirected edge-weighted graph G = (V ,E)
Output: nonempty S ⊂ V minimizing the total weight of edges

between S and V \ S

G = (V,E)

S

V \ S

Solvable in polynomial time with n − 1 maximum flow computations.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 2 / 19

(Global) Minimum Cut
Input: undirected edge-weighted graph G = (V ,E)
Output: nonempty S ⊂ V minimizing the total weight of edges

between S and V \ S

G = (V,E)

S

V \ S

Solvable in polynomial time with n − 1 maximum flow computations.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 2 / 19

(Global) Minimum Cut
Input: undirected edge-weighted graph G = (V ,E)
Output: nonempty S ⊂ V minimizing the total weight of edges

between S and V \ S

G = (V,E)

S

V \ S

Solvable in polynomial time with n − 1 maximum flow computations.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 2 / 19

The fastest maximum flow algorithm works in O(nm) time, so applying
it n − 1 times results in O(n2m) complexity. Is there a faster algorithm?

Nagamochi and Ibaraki 1992
In O(m + n log n) time we can either find the global minimum cut or
isolate an edge that doesn’t cross it. This edge can then be contracted
and the procedure repeated, resulting in O(mn + n2 log n) complexity.

Karger and Stein 1996
A different method based on recursion and contracting a randomly
chosen edge finds the global minimum cut in O(n2 log3 n) time whp.

Is there a more efficient algorithm for sparse graphs?

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 3 / 19

The fastest maximum flow algorithm works in O(nm) time, so applying
it n − 1 times results in O(n2m) complexity. Is there a faster algorithm?

Nagamochi and Ibaraki 1992
In O(m + n log n) time we can either find the global minimum cut or
isolate an edge that doesn’t cross it. This edge can then be contracted
and the procedure repeated, resulting in O(mn + n2 log n) complexity.

Karger and Stein 1996
A different method based on recursion and contracting a randomly
chosen edge finds the global minimum cut in O(n2 log3 n) time whp.

Is there a more efficient algorithm for sparse graphs?

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 3 / 19

The fastest maximum flow algorithm works in O(nm) time, so applying
it n − 1 times results in O(n2m) complexity. Is there a faster algorithm?

Nagamochi and Ibaraki 1992
In O(m + n log n) time we can either find the global minimum cut or
isolate an edge that doesn’t cross it. This edge can then be contracted
and the procedure repeated, resulting in O(mn + n2 log n) complexity.

Karger and Stein 1996
A different method based on recursion and contracting a randomly
chosen edge finds the global minimum cut in O(n2 log3 n) time whp.

Is there a more efficient algorithm for sparse graphs?

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 3 / 19

The fastest maximum flow algorithm works in O(nm) time, so applying
it n − 1 times results in O(n2m) complexity. Is there a faster algorithm?

Nagamochi and Ibaraki 1992
In O(m + n log n) time we can either find the global minimum cut or
isolate an edge that doesn’t cross it. This edge can then be contracted
and the procedure repeated, resulting in O(mn + n2 log n) complexity.

Karger and Stein 1996
A different method based on recursion and contracting a randomly
chosen edge finds the global minimum cut in O(n2 log3 n) time whp.

Is there a more efficient algorithm for sparse graphs?

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 3 / 19

Karger’s Framework
In 1996, Karger announced a faster O(m log3 n) time algorithm finding
the minimum cut whp. by solving O(log n) independent instances of a
more structured problem.

Minimum k -respecting cut
Given a spanning tree T , find the minimum cut crossed by exactly k of
its edges.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 4 / 19

Karger’s Framework
In 1996, Karger announced a faster O(m log3 n) time algorithm finding
the minimum cut whp. by solving O(log n) independent instances of a
more structured problem.

Minimum k -respecting cut
Given a spanning tree T , find the minimum cut crossed by exactly k of
its edges.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 4 / 19

Karger’s Framework
In 1996, Karger announced a faster O(m log3 n) time algorithm finding
the minimum cut whp. by solving O(log n) independent instances of a
more structured problem.

Minimum k -respecting cut
Given a spanning tree T , find the minimum cut crossed by exactly k of
its edges.

T

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 4 / 19

Karger’s Framework
In 1996, Karger announced a faster O(m log3 n) time algorithm finding
the minimum cut whp. by solving O(log n) independent instances of a
more structured problem.

Minimum k -respecting cut
Given a spanning tree T , find the minimum cut crossed by exactly k of
its edges.

T, k = 1

S

e

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 4 / 19

Karger’s Framework
In 1996, Karger announced a faster O(m log3 n) time algorithm finding
the minimum cut whp. by solving O(log n) independent instances of a
more structured problem.

Minimum k -respecting cut
Given a spanning tree T , find the minimum cut crossed by exactly k of
its edges.

T, k = 2

S

e′

e

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 4 / 19

Karger’s framework

The high-level structure of Karger’s algorithm is as follows:
1 Find a collection T of O(log n) trees such that whp the minimum

cut 1- or 2-respects some T ∈ T .
2 For every T ∈ T , find the minimum 1-respecting cut.
3 For every T ∈ T , find the minimum 2-respecting cut.

Finding T
Uses the so-called (weighted) tree packing, building on a theorem by
Nash-Williams, and can be implemented in O(m + n log3 n) time whp.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 5 / 19

Karger’s framework

The high-level structure of Karger’s algorithm is as follows:
1 Find a collection T of O(log n) trees such that whp the minimum

cut 1- or 2-respects some T ∈ T .
2 For every T ∈ T , find the minimum 1-respecting cut.
3 For every T ∈ T , find the minimum 2-respecting cut.

Finding T
Uses the so-called (weighted) tree packing, building on a theorem by
Nash-Williams, and can be implemented in O(m + n log3 n) time whp.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 5 / 19

Karger’s framework

The high-level structure of Karger’s algorithm is as follows:
1 Find a collection T of O(log n) trees such that whp the minimum

cut 1- or 2-respects some T ∈ T .
2 For every T ∈ T , find the minimum 1-respecting cut.
3 For every T ∈ T , find the minimum 2-respecting cut.

Finding T
Uses the so-called (weighted) tree packing, building on a theorem by
Nash-Williams, and can be implemented in O(m + n log3 n) time whp.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 5 / 19

Karger’s framework

The high-level structure of Karger’s algorithm is as follows:
1 Find a collection T of O(log n) trees such that whp the minimum

cut 1- or 2-respects some T ∈ T .
2 For every T ∈ T , find the minimum 1-respecting cut.
3 For every T ∈ T , find the minimum 2-respecting cut.

Finding T
Uses the so-called (weighted) tree packing, building on a theorem by
Nash-Williams, and can be implemented in O(m + n log3 n) time whp.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 5 / 19

Karger’s framework

The high-level structure of Karger’s algorithm is as follows:
1 Find a collection T of O(log n) trees such that whp the minimum

cut 1- or 2-respects some T ∈ T .
2 For every T ∈ T , find the minimum 1-respecting cut.
3 For every T ∈ T , find the minimum 2-respecting cut.

Finding T
Uses the so-called (weighted) tree packing, building on a theorem by
Nash-Williams, and can be implemented in O(m + n log3 n) time whp.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 5 / 19

Minimum 1-Respecting Cut
Karger showed that this is actually fairly easy:

T

This information can be propagated in O(m) overall time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 6 / 19

Minimum 1-Respecting Cut
Karger showed that this is actually fairly easy:

T

e

This information can be propagated in O(m) overall time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 6 / 19

Minimum 1-Respecting Cut
Karger showed that this is actually fairly easy:

T

e

This information can be propagated in O(m) overall time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 6 / 19

Minimum 1-Respecting Cut
Karger showed that this is actually fairly easy:

T

u

v

lca(u, v)

This information can be propagated in O(m) overall time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 6 / 19

Minimum 1-Respecting Cut
Karger showed that this is actually fairly easy:

T

u

v

lca(u, v)

This information can be propagated in O(m) overall time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 6 / 19

Minimum 2-Respecting Cut

Sought e and e′ can either be independent or descendant.

T

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 7 / 19

Minimum 2-Respecting Cut

Sought e and e′ can either be independent or descendant.

T

e e′

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 7 / 19

Minimum 2-Respecting Cut

Sought e and e′ can either be independent or descendant.

T

e

e′

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 7 / 19

Minimum 2-Respecting Cut

For both cases, Karger’s algorithm operates in O(log n) phases that
iteratively contracting paths (called boughs) consisting of nodes with
exactly one child terminating at a leaf. Each phase is implemented
with link-cut trees in O(m log n) time.

Karger 1996

Minimum 2-respecting cut can be found in O(m log2 n) time.

The overall time complexity is O(m log3 n + n log3 n) = O(m log3 n).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 8 / 19

Minimum 2-Respecting Cut

For both cases, Karger’s algorithm operates in O(log n) phases that
iteratively contracting paths (called boughs) consisting of nodes with
exactly one child terminating at a leaf. Each phase is implemented
with link-cut trees in O(m log n) time.

Karger 1996

Minimum 2-respecting cut can be found in O(m log2 n) time.

The overall time complexity is O(m log3 n + n log3 n) = O(m log3 n).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 8 / 19

Minimum 2-Respecting Cut

For both cases, Karger’s algorithm operates in O(log n) phases that
iteratively contracting paths (called boughs) consisting of nodes with
exactly one child terminating at a leaf. Each phase is implemented
with link-cut trees in O(m log n) time.

Karger 1996

Minimum 2-respecting cut can be found in O(m log2 n) time.

The overall time complexity is O(m log3 n + n log3 n) = O(m log3 n).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 8 / 19

Recent Developments

Henzinger, Rao, and Wang 2017

A faster O(m log2 n(log log n)2) deterministic time algorithm for simple
unweighted graphs.

Ghaffari, Nowicki and Thorup 2020

An even faster O(min{m + n log3 n,m log n}) randomised time
algorithm for simple unweighted graphs.

Bhardwaj, Lovett, and Sandlund 2020
A different take on the minimum 2-respecting cut based on top trees
instead of link-cut trees, and iterating over the edges of T guided by
heavy-light decomposition. Also O(m log2 n) time, but simpler.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 9 / 19

Recent Developments

Henzinger, Rao, and Wang 2017

A faster O(m log2 n(log log n)2) deterministic time algorithm for simple
unweighted graphs.

Ghaffari, Nowicki and Thorup 2020

An even faster O(min{m + n log3 n,m log n}) randomised time
algorithm for simple unweighted graphs.

Bhardwaj, Lovett, and Sandlund 2020
A different take on the minimum 2-respecting cut based on top trees
instead of link-cut trees, and iterating over the edges of T guided by
heavy-light decomposition. Also O(m log2 n) time, but simpler.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 9 / 19

Recent Developments

Henzinger, Rao, and Wang 2017

A faster O(m log2 n(log log n)2) deterministic time algorithm for simple
unweighted graphs.

Ghaffari, Nowicki and Thorup 2020

An even faster O(min{m + n log3 n,m log n}) randomised time
algorithm for simple unweighted graphs.

Bhardwaj, Lovett, and Sandlund 2020
A different take on the minimum 2-respecting cut based on top trees
instead of link-cut trees, and iterating over the edges of T guided by
heavy-light decomposition. Also O(m log2 n) time, but simpler.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 9 / 19

Recent Developments, Continued
Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in O(m log n) time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in O(m log n + n log3 n) randomised time.

Time complexity of the former dominates that of the latter, but the latter
has the following advantages:

1 uses a nice structural property of minimum 2-respecting cut,
2 extends to the cut-query and the streaming model,
3 can be seen as a reduction to 2D orthogonal range

counting/sampling.

By plugging in appropriate structures, the time complexity for
unweighted multigraphs becomes O(m

√
log n + n log4 n).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 10 / 19

Recent Developments, Continued
Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in O(m log n) time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in O(m log n + n log3 n) randomised time.

Time complexity of the former dominates that of the latter, but the latter
has the following advantages:

1 uses a nice structural property of minimum 2-respecting cut,
2 extends to the cut-query and the streaming model,
3 can be seen as a reduction to 2D orthogonal range

counting/sampling.

By plugging in appropriate structures, the time complexity for
unweighted multigraphs becomes O(m

√
log n + n log4 n).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 10 / 19

Recent Developments, Continued
Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in O(m log n) time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in O(m log n + n log3 n) randomised time.

Time complexity of the former dominates that of the latter, but the latter
has the following advantages:

1 uses a nice structural property of minimum 2-respecting cut,
2 extends to the cut-query and the streaming model,
3 can be seen as a reduction to 2D orthogonal range

counting/sampling.

By plugging in appropriate structures, the time complexity for
unweighted multigraphs becomes O(m

√
log n + n log4 n).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 10 / 19

Recent Developments, Continued
Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in O(m log n) time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in O(m log n + n log3 n) randomised time.

Time complexity of the former dominates that of the latter, but the latter
has the following advantages:

1 uses a nice structural property of minimum 2-respecting cut,
2 extends to the cut-query and the streaming model,
3 can be seen as a reduction to 2D orthogonal range

counting/sampling.

By plugging in appropriate structures, the time complexity for
unweighted multigraphs becomes O(m

√
log n + n log4 n).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 10 / 19

Recent Developments, Continued
Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in O(m log n) time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in O(m log n + n log3 n) randomised time.

Time complexity of the former dominates that of the latter, but the latter
has the following advantages:

1 uses a nice structural property of minimum 2-respecting cut,
2 extends to the cut-query and the streaming model,
3 can be seen as a reduction to 2D orthogonal range

counting/sampling.

By plugging in appropriate structures, the time complexity for
unweighted multigraphs becomes O(m

√
log n + n log4 n).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 10 / 19

Recent Developments, Continued
Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in O(m log n) time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in O(m log n + n log3 n) randomised time.

Time complexity of the former dominates that of the latter, but the latter
has the following advantages:

1 uses a nice structural property of minimum 2-respecting cut,
2 extends to the cut-query and the streaming model,
3 can be seen as a reduction to 2D orthogonal range

counting/sampling.

By plugging in appropriate structures, the time complexity for
unweighted multigraphs becomes O(m

√
log n + n log4 n).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 10 / 19

Recent Developments, Continued
Gawrychowski, Mozes, and Weimann 2020
Minimum 2-respecting cut in O(m log n) time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in O(m log n + n log3 n) randomised time.

Time complexity of the former dominates that of the latter, but the latter
has the following advantages:

1 uses a nice structural property of minimum 2-respecting cut,
2 extends to the cut-query and the streaming model,
3 can be seen as a reduction to 2D orthogonal range

counting/sampling.

By plugging in appropriate structures, the time complexity for
unweighted multigraphs becomes O(m

√
log n + n log4 n).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 10 / 19

Our Contribution

We simplify and streamline the minimum 2-respecting cut algorithm
Mukhopadhyay and Nanongkai to work in only O(m log n + n log2 n)
deterministic time.

Our implementation can be seen as a reduction to just 2D orthogonal
counting. This allows us to obtain the following new bounds for the
mimimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs, for any ε > 0.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 11 / 19

Our Contribution

We simplify and streamline the minimum 2-respecting cut algorithm
Mukhopadhyay and Nanongkai to work in only O(m log n + n log2 n)
deterministic time.

Our implementation can be seen as a reduction to just 2D orthogonal
counting. This allows us to obtain the following new bounds for the
mimimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs, for any ε > 0.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 11 / 19

Our Contribution

We simplify and streamline the minimum 2-respecting cut algorithm
Mukhopadhyay and Nanongkai to work in only O(m log n + n log2 n)
deterministic time.

Our implementation can be seen as a reduction to just 2D orthogonal
counting. This allows us to obtain the following new bounds for the
mimimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs, for any ε > 0.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 11 / 19

Our Contribution

We simplify and streamline the minimum 2-respecting cut algorithm
Mukhopadhyay and Nanongkai to work in only O(m log n + n log2 n)
deterministic time.

Our implementation can be seen as a reduction to just 2D orthogonal
counting. This allows us to obtain the following new bounds for the
mimimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs, for any ε > 0.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 11 / 19

Mukhopadhyay and Nanongkai’s framework

Partition the edges of T into edge-disjoint heavy paths such that any
root-to-leaf path intersects with at most log n heavy paths.

Now we have two cases:
1 e,e′ belong to the same heavy path,
2 e,e′ belong to different heavy paths.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 12 / 19

Mukhopadhyay and Nanongkai’s framework

Partition the edges of T into edge-disjoint heavy paths such that any
root-to-leaf path intersects with at most log n heavy paths.

Now we have two cases:
1 e,e′ belong to the same heavy path,
2 e,e′ belong to different heavy paths.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 12 / 19

Mukhopadhyay and Nanongkai’s framework

Partition the edges of T into edge-disjoint heavy paths such that any
root-to-leaf path intersects with at most log n heavy paths.

Now we have two cases:
1 e,e′ belong to the same heavy path,
2 e,e′ belong to different heavy paths.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 12 / 19

Mukhopadhyay and Nanongkai’s framework

Partition the edges of T into edge-disjoint heavy paths such that any
root-to-leaf path intersects with at most log n heavy paths.

Now we have two cases:
1 e,e′ belong to the same heavy path,
2 e,e′ belong to different heavy paths.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 12 / 19

e,e′ belong to the same heavy path

e1

e2

e3

e4

e5

e6

M [2, 5]

Let M[i , j] be the weight of the cut determined by ei and ej .

M is a partial Monge matrix
For any i 6= j , M[i , j]−M[i , j + 1] ≥ M[i + 1, j]−M[i + 1, j + 1].

Klawe and Kleitman showed how to find the minimum in such an array
in O(` · α(`)) inspections, where ` is the length of the path. This sums
to O(n · α(n)) inspections.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 13 / 19

e,e′ belong to the same heavy path

e1

e2

e3

e4

e5

e6

M [2, 5]

Let M[i , j] be the weight of the cut determined by ei and ej .

M is a partial Monge matrix
For any i 6= j , M[i , j]−M[i , j + 1] ≥ M[i + 1, j]−M[i + 1, j + 1].

Klawe and Kleitman showed how to find the minimum in such an array
in O(` · α(`)) inspections, where ` is the length of the path. This sums
to O(n · α(n)) inspections.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 13 / 19

e,e′ belong to the same heavy path

e1

e2

e3

e4

e5

e6

M [2, 5]

Let M[i , j] be the weight of the cut determined by ei and ej .

M is a partial Monge matrix
For any i 6= j , M[i , j]−M[i , j + 1] ≥ M[i + 1, j]−M[i + 1, j + 1].

Klawe and Kleitman showed how to find the minimum in such an array
in O(` · α(`)) inspections, where ` is the length of the path. This sums
to O(n · α(n)) inspections.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 13 / 19

e,e′ belong to the same heavy path

e1

e2

e3

e4

e5

e6

M [2, 5]

Let M[i , j] be the weight of the cut determined by ei and ej .

M is a partial Monge matrix
For any i 6= j , M[i , j]−M[i , j + 1] ≥ M[i + 1, j]−M[i + 1, j + 1].

Klawe and Kleitman showed how to find the minimum in such an array
in O(` · α(`)) inspections, where ` is the length of the path. This sums
to O(n · α(n)) inspections.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 13 / 19

e,e′ belong to the same heavy path

e1

e2

e3

e4

e5

e6

M [2, 5]

Let M[i , j] be the weight of the cut determined by ei and ej .

M is a partial Monge matrix
For any i 6= j , M[i , j]−M[i , j + 1] ≥ M[i + 1, j]−M[i + 1, j + 1].

Klawe and Kleitman showed how to find the minimum in such an array
in O(` · α(`)) inspections, where ` is the length of the path. This sums
to O(n · α(n)) inspections.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 13 / 19

e,e′ belong to the same heavy path

e1

e2

e3

e4

e5

e6

M [2, 5]

Let M[i , j] be the weight of the cut determined by ei and ej .

M is a partial Monge matrix
For any i 6= j , M[i , j]−M[i , j + 1] ≥ M[i + 1, j]−M[i + 1, j + 1].

Klawe and Kleitman showed how to find the minimum in such an array
in O(` · α(`)) inspections, where ` is the length of the path. This sums
to O(n · α(n)) inspections.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 13 / 19

e,e′ belong to different heavy paths
One could similarly form a Monge matrix for every pair of heavy paths.
However, this would be too slow.

All such edges e′ form a single path from the root to some node ce.

If the minimum cut is determined by independent edges e,e′ then e is
cross-interested in e′ and vice versa.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 14 / 19

e,e′ belong to different heavy paths

An edge e is cross-interested in an edge e′ /∈ Te if more than half of
the edge weight going out Te goes into Te′ .

All such edges e′ form a single path from the root to some node ce.

If the minimum cut is determined by independent edges e,e′ then e is
cross-interested in e′ and vice versa.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 14 / 19

e,e′ belong to different heavy paths

An edge e is cross-interested in an edge e′ /∈ Te if more than half of
the edge weight going out Te goes into Te′ .

Te

Te′

e

e′

All such edges e′ form a single path from the root to some node ce.

If the minimum cut is determined by independent edges e,e′ then e is
cross-interested in e′ and vice versa.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 14 / 19

e,e′ belong to different heavy paths

An edge e is cross-interested in an edge e′ /∈ Te if more than half of
the edge weight going out Te goes into Te′ .

Te

Te′

e

e′

All such edges e′ form a single path from the root to some node ce.

If the minimum cut is determined by independent edges e,e′ then e is
cross-interested in e′ and vice versa.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 14 / 19

e,e′ belong to different heavy paths

An edge e is cross-interested in an edge e′ /∈ Te if more than half of
the edge weight going out Te goes into Te′ .

Te

Te′

e

e′

All such edges e′ form a single path from the root to some node ce.

If the minimum cut is determined by independent edges e,e′ then e is
cross-interested in e′ and vice versa.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 14 / 19

e,e′ belong to different heavy paths

An edge e is cross-interested in an edge e′ /∈ Te if more than half of
the edge weight going out Te goes into Te′ .

Te

Te′

e

e′

All such edges e′ form a single path from the root to some node ce.

If the minimum cut is determined by independent edges e,e′ then e is
cross-interested in e′ and vice versa.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 14 / 19

e,e′ belong to different heavy paths

Similar notion for the case of descendant edges e,e′.

High-level structure of the algorithm:
1 Identify ce for every e.
2 For every e, identify O(log n) interesting heavy paths containing

cross-interesting edges e′.
3 For every pair of heavy paths P,Q such that, for some edges

e ∈ P,e′ ∈ Q, Q is interesting for e and P is interesting for e′:
1 extract P ′ ⊆ P consisting of edges interested in Q,
2 extract Q′ ⊆ Q consisting of edges interested in P,
3 form a |P ′| × |Q′| Monge matrix and find the minimum with SMAWK

using O(|P ′|+ |Q′|) inspections.

We need
∑

(|P ′|+ |Q′|) = O(n log n) inspections, plus O(n log2 n) time
for the bookkeeping, assuming that we know ce for every e.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 15 / 19

e,e′ belong to different heavy paths

Similar notion for the case of descendant edges e,e′.

High-level structure of the algorithm:
1 Identify ce for every e.
2 For every e, identify O(log n) interesting heavy paths containing

cross-interesting edges e′.
3 For every pair of heavy paths P,Q such that, for some edges

e ∈ P,e′ ∈ Q, Q is interesting for e and P is interesting for e′:
1 extract P ′ ⊆ P consisting of edges interested in Q,
2 extract Q′ ⊆ Q consisting of edges interested in P,
3 form a |P ′| × |Q′| Monge matrix and find the minimum with SMAWK

using O(|P ′|+ |Q′|) inspections.

We need
∑

(|P ′|+ |Q′|) = O(n log n) inspections, plus O(n log2 n) time
for the bookkeeping, assuming that we know ce for every e.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 15 / 19

e,e′ belong to different heavy paths

Similar notion for the case of descendant edges e,e′.

High-level structure of the algorithm:
1 Identify ce for every e.
2 For every e, identify O(log n) interesting heavy paths containing

cross-interesting edges e′.
3 For every pair of heavy paths P,Q such that, for some edges

e ∈ P,e′ ∈ Q, Q is interesting for e and P is interesting for e′:
1 extract P ′ ⊆ P consisting of edges interested in Q,
2 extract Q′ ⊆ Q consisting of edges interested in P,
3 form a |P ′| × |Q′| Monge matrix and find the minimum with SMAWK

using O(|P ′|+ |Q′|) inspections.

We need
∑

(|P ′|+ |Q′|) = O(n log n) inspections, plus O(n log2 n) time
for the bookkeeping, assuming that we know ce for every e.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 15 / 19

e,e′ belong to different heavy paths

Similar notion for the case of descendant edges e,e′.

High-level structure of the algorithm:
1 Identify ce for every e.
2 For every e, identify O(log n) interesting heavy paths containing

cross-interesting edges e′.
3 For every pair of heavy paths P,Q such that, for some edges

e ∈ P,e′ ∈ Q, Q is interesting for e and P is interesting for e′:
1 extract P ′ ⊆ P consisting of edges interested in Q,
2 extract Q′ ⊆ Q consisting of edges interested in P,
3 form a |P ′| × |Q′| Monge matrix and find the minimum with SMAWK

using O(|P ′|+ |Q′|) inspections.

We need
∑

(|P ′|+ |Q′|) = O(n log n) inspections, plus O(n log2 n) time
for the bookkeeping, assuming that we know ce for every e.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 15 / 19

e,e′ belong to different heavy paths

Similar notion for the case of descendant edges e,e′.

High-level structure of the algorithm:
1 Identify ce for every e.
2 For every e, identify O(log n) interesting heavy paths containing

cross-interesting edges e′.
3 For every pair of heavy paths P,Q such that, for some edges

e ∈ P,e′ ∈ Q, Q is interesting for e and P is interesting for e′:
1 extract P ′ ⊆ P consisting of edges interested in Q,
2 extract Q′ ⊆ Q consisting of edges interested in P,
3 form a |P ′| × |Q′| Monge matrix and find the minimum with SMAWK

using O(|P ′|+ |Q′|) inspections.

We need
∑

(|P ′|+ |Q′|) = O(n log n) inspections, plus O(n log2 n) time
for the bookkeeping, assuming that we know ce for every e.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 15 / 19

e,e′ belong to different heavy paths

Similar notion for the case of descendant edges e,e′.

High-level structure of the algorithm:
1 Identify ce for every e.
2 For every e, identify O(log n) interesting heavy paths containing

cross-interesting edges e′.
3 For every pair of heavy paths P,Q such that, for some edges

e ∈ P,e′ ∈ Q, Q is interesting for e and P is interesting for e′:
1 extract P ′ ⊆ P consisting of edges interested in Q,
2 extract Q′ ⊆ Q consisting of edges interested in P,
3 form a |P ′| × |Q′| Monge matrix and find the minimum with SMAWK

using O(|P ′|+ |Q′|) inspections.

We need
∑

(|P ′|+ |Q′|) = O(n log n) inspections, plus O(n log2 n) time
for the bookkeeping, assuming that we know ce for every e.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 15 / 19

e,e′ belong to different heavy paths

Similar notion for the case of descendant edges e,e′.

High-level structure of the algorithm:
1 Identify ce for every e.
2 For every e, identify O(log n) interesting heavy paths containing

cross-interesting edges e′.
3 For every pair of heavy paths P,Q such that, for some edges

e ∈ P,e′ ∈ Q, Q is interesting for e and P is interesting for e′:
1 extract P ′ ⊆ P consisting of edges interested in Q,
2 extract Q′ ⊆ Q consisting of edges interested in P,
3 form a |P ′| × |Q′| Monge matrix and find the minimum with SMAWK

using O(|P ′|+ |Q′|) inspections.

We need
∑

(|P ′|+ |Q′|) = O(n log n) inspections, plus O(n log2 n) time
for the bookkeeping, assuming that we know ce for every e.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 15 / 19

e,e′ belong to different heavy paths

Similar notion for the case of descendant edges e,e′.

High-level structure of the algorithm:
1 Identify ce for every e.
2 For every e, identify O(log n) interesting heavy paths containing

cross-interesting edges e′.
3 For every pair of heavy paths P,Q such that, for some edges

e ∈ P,e′ ∈ Q, Q is interesting for e and P is interesting for e′:
1 extract P ′ ⊆ P consisting of edges interested in Q,
2 extract Q′ ⊆ Q consisting of edges interested in P,
3 form a |P ′| × |Q′| Monge matrix and find the minimum with SMAWK

using O(|P ′|+ |Q′|) inspections.

We need
∑

(|P ′|+ |Q′|) = O(n log n) inspections, plus O(n log2 n) time
for the bookkeeping, assuming that we know ce for every e.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 15 / 19

e,e′ belong to different heavy paths

Similar notion for the case of descendant edges e,e′.

High-level structure of the algorithm:
1 Identify ce for every e.
2 For every e, identify O(log n) interesting heavy paths containing

cross-interesting edges e′.
3 For every pair of heavy paths P,Q such that, for some edges

e ∈ P,e′ ∈ Q, Q is interesting for e and P is interesting for e′:
1 extract P ′ ⊆ P consisting of edges interested in Q,
2 extract Q′ ⊆ Q consisting of edges interested in P,
3 form a |P ′| × |Q′| Monge matrix and find the minimum with SMAWK

using O(|P ′|+ |Q′|) inspections.

We need
∑

(|P ′|+ |Q′|) = O(n log n) inspections, plus O(n log2 n) time
for the bookkeeping, assuming that we know ce for every e.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 15 / 19

Preprocessing

To check if e is cross-interested in e′, or to compute the total weight of
the cut determined by e,e′, we use the following tool:

Chazelle 1988
Collection of N weighted points can be preprocesses in O(N logN)
time and space, so that the total weight of all points in any axis-aligned
rectangle can be computed in O(logN) time.

We identify the nodes with their visiting time in the postorder traversal
of T . Then, every edge (u, v) naturally becomes a weighted point in
the plane. We preprocess them in O(m logm) = O(m log n) time.

Both queries translate into a constant number of queries about the
total weight of points in axis-aligned rectangles.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 16 / 19

Preprocessing

To check if e is cross-interested in e′, or to compute the total weight of
the cut determined by e,e′, we use the following tool:

Chazelle 1988
Collection of N weighted points can be preprocesses in O(N logN)
time and space, so that the total weight of all points in any axis-aligned
rectangle can be computed in O(logN) time.

We identify the nodes with their visiting time in the postorder traversal
of T . Then, every edge (u, v) naturally becomes a weighted point in
the plane. We preprocess them in O(m logm) = O(m log n) time.

Both queries translate into a constant number of queries about the
total weight of points in axis-aligned rectangles.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 16 / 19

Preprocessing

To check if e is cross-interested in e′, or to compute the total weight of
the cut determined by e,e′, we use the following tool:

Chazelle 1988
Collection of N weighted points can be preprocesses in O(N logN)
time and space, so that the total weight of all points in any axis-aligned
rectangle can be computed in O(logN) time.

We identify the nodes with their visiting time in the postorder traversal
of T . Then, every edge (u, v) naturally becomes a weighted point in
the plane. We preprocess them in O(m logm) = O(m log n) time.

Both queries translate into a constant number of queries about the
total weight of points in axis-aligned rectangles.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 16 / 19

Finding ce for every e

Recall that all edges e′ cross-interesting for e form a path from the root
to ce, and we have a mechanism for checking in O(log n) time if a
given edge e′ is cross-interesting for e. Instead of random sampling,
we use the following tool to identify ce:

Centroid decomposition
Choose a centroid node v ∈ T such that every connected component
of T \ {v} consists of at most |T |/2 nodes. Recurse on the connected
components of T \ {v}.

Centroid decomposition of T can be constructed in O(n log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 17 / 19

Finding ce for every e

Recall that all edges e′ cross-interesting for e form a path from the root
to ce, and we have a mechanism for checking in O(log n) time if a
given edge e′ is cross-interesting for e. Instead of random sampling,
we use the following tool to identify ce:

Centroid decomposition
Choose a centroid node v ∈ T such that every connected component
of T \ {v} consists of at most |T |/2 nodes. Recurse on the connected
components of T \ {v}.

Centroid decomposition of T can be constructed in O(n log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 17 / 19

Finding ce for every e

Recall that all edges e′ cross-interesting for e form a path from the root
to ce, and we have a mechanism for checking in O(log n) time if a
given edge e′ is cross-interesting for e. Instead of random sampling,
we use the following tool to identify ce:

Centroid decomposition
Choose a centroid node v ∈ T such that every connected component
of T \ {v} consists of at most |T |/2 nodes. Recurse on the connected
components of T \ {v}.

Centroid decomposition of T can be constructed in O(n log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 17 / 19

Finding ce for every e
Let T be binary (otherwise, replace high-degree nodes with small
binary trees). To find ce, traverse the centroid decomposition of T :

1 Check if e1,e2,e3 are cross-interesting for e.
2 Continue in the appropriate connected component of T \ {v}.
3 log n steps, each in O(log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 18 / 19

Finding ce for every e
Let T be binary (otherwise, replace high-degree nodes with small
binary trees). To find ce, traverse the centroid decomposition of T :

v

1 Check if e1,e2,e3 are cross-interesting for e.
2 Continue in the appropriate connected component of T \ {v}.
3 log n steps, each in O(log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 18 / 19

Finding ce for every e
Let T be binary (otherwise, replace high-degree nodes with small
binary trees). To find ce, traverse the centroid decomposition of T :

v

e1 e2

e3

1 Check if e1,e2,e3 are cross-interesting for e.
2 Continue in the appropriate connected component of T \ {v}.
3 log n steps, each in O(log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 18 / 19

Finding ce for every e
Let T be binary (otherwise, replace high-degree nodes with small
binary trees). To find ce, traverse the centroid decomposition of T :

v

e1 e2

e3

1 Check if e1,e2,e3 are cross-interesting for e.
2 Continue in the appropriate connected component of T \ {v}.
3 log n steps, each in O(log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 18 / 19

Finding ce for every e
Let T be binary (otherwise, replace high-degree nodes with small
binary trees). To find ce, traverse the centroid decomposition of T :

v
e1 e2

e3

1 Check if e1,e2,e3 are cross-interesting for e.
2 Continue in the appropriate connected component of T \ {v}.
3 log n steps, each in O(log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 18 / 19

Finding ce for every e
Let T be binary (otherwise, replace high-degree nodes with small
binary trees). To find ce, traverse the centroid decomposition of T :

v
e1 e2

e3

1 Check if e1,e2,e3 are cross-interesting for e.
2 Continue in the appropriate connected component of T \ {v}.
3 log n steps, each in O(log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 18 / 19

Finding ce for every e
Let T be binary (otherwise, replace high-degree nodes with small
binary trees). To find ce, traverse the centroid decomposition of T :

v
e1 e2

e3

1 Check if e1,e2,e3 are cross-interesting for e.
2 Continue in the appropriate connected component of T \ {v}.
3 log n steps, each in O(log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 18 / 19

Finding ce for every e
Let T be binary (otherwise, replace high-degree nodes with small
binary trees). To find ce, traverse the centroid decomposition of T :

v
e1 e2

e3

1 Check if e1,e2,e3 are cross-interesting for e.
2 Continue in the appropriate connected component of T \ {v}.
3 log n steps, each in O(log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 18 / 19

The approach of Mukhopadhyay and Nanongkai for finding minimum
2-respecting cut can be implemented in O(m log n + n log2 n) time
(without randomisation).

By plugging in appropriate data structures, we can also obtain the
following new results for the minimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs,

1 Is there a way to further simplify this approach to remove the
n log2 n?

2 Are similar speedups possible for dense graphs?
3 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 19 / 19

The approach of Mukhopadhyay and Nanongkai for finding minimum
2-respecting cut can be implemented in O(m log n + n log2 n) time
(without randomisation).

By plugging in appropriate data structures, we can also obtain the
following new results for the minimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs,

1 Is there a way to further simplify this approach to remove the
n log2 n?

2 Are similar speedups possible for dense graphs?
3 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 19 / 19

The approach of Mukhopadhyay and Nanongkai for finding minimum
2-respecting cut can be implemented in O(m log n + n log2 n) time
(without randomisation).

By plugging in appropriate data structures, we can also obtain the
following new results for the minimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs,

1 Is there a way to further simplify this approach to remove the
n log2 n?

2 Are similar speedups possible for dense graphs?
3 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 19 / 19

The approach of Mukhopadhyay and Nanongkai for finding minimum
2-respecting cut can be implemented in O(m log n + n log2 n) time
(without randomisation).

By plugging in appropriate data structures, we can also obtain the
following new results for the minimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs,

1 Is there a way to further simplify this approach to remove the
n log2 n?

2 Are similar speedups possible for dense graphs?
3 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 19 / 19

The approach of Mukhopadhyay and Nanongkai for finding minimum
2-respecting cut can be implemented in O(m log n + n log2 n) time
(without randomisation).

By plugging in appropriate data structures, we can also obtain the
following new results for the minimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs,

1 Is there a way to further simplify this approach to remove the
n log2 n?

2 Are similar speedups possible for dense graphs?
3 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 19 / 19

The approach of Mukhopadhyay and Nanongkai for finding minimum
2-respecting cut can be implemented in O(m log n + n log2 n) time
(without randomisation).

By plugging in appropriate data structures, we can also obtain the
following new results for the minimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs,

1 Is there a way to further simplify this approach to remove the
n log2 n?

2 Are similar speedups possible for dense graphs?
3 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 19 / 19

The approach of Mukhopadhyay and Nanongkai for finding minimum
2-respecting cut can be implemented in O(m log n + n log2 n) time
(without randomisation).

By plugging in appropriate data structures, we can also obtain the
following new results for the minimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs,

1 Is there a way to further simplify this approach to remove the
n log2 n?

2 Are similar speedups possible for dense graphs?
3 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 19 / 19

The approach of Mukhopadhyay and Nanongkai for finding minimum
2-respecting cut can be implemented in O(m log n + n log2 n) time
(without randomisation).

By plugging in appropriate data structures, we can also obtain the
following new results for the minimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs,

1 Is there a way to further simplify this approach to remove the
n log2 n?

2 Are similar speedups possible for dense graphs?
3 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 19 / 19

The approach of Mukhopadhyay and Nanongkai for finding minimum
2-respecting cut can be implemented in O(m log n + n log2 n) time
(without randomisation).

By plugging in appropriate data structures, we can also obtain the
following new results for the minimum cut problem:

1 O(m log3/2 n + n log3 n) for unweighted multigraphs.
2 O(m log n + n1+ε) for weighted graphs,

1 Is there a way to further simplify this approach to remove the
n log2 n?

2 Are similar speedups possible for dense graphs?
3 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)On a Recent Algorithm for Minimum Cut 19 / 19

