A Note on a Recent Algorithm for Minimum Cut

Paweł Gawrychowski¹ Shay Mozes² Oren Weimann³

¹University of Wrocław, Poland

²The Interdisciplinary Center Herzliya, Israel

³University of Haifa, Israel

Slides by Paweł Gawrychowski

Input: undirected edge-weighted graph G = (V, E)Output: nonempty $S \subset V$ minimizing the total weight of edges between S and $V \setminus S$

Solvable in polynomial time with n - 1 maximum flow computations.

Paweł Gawrychowski

On a Recent Algorithm for Minimum Cut

Input: undirected edge-weighted graph G = (V, E)Output: nonempty $S \subset V$ minimizing the total weight of edges between S and $V \setminus S$

Solvable in polynomial time with n - 1 maximum flow computations.

Input: undirected edge-weighted graph G = (V, E)

Output: nonempty $S \subset V$ minimizing the total weight of edges between S and $V \setminus S$

Solvable in polynomial time with n - 1 maximum flow computations.

Input: undirected edge-weighted graph G = (V, E)

Output: nonempty $S \subset V$ minimizing the total weight of edges between S and $V \setminus S$

Solvable in polynomial time with n - 1 maximum flow computations.

Input: undirected edge-weighted graph G = (V, E)

Output: nonempty $S \subset V$ minimizing the total weight of edges between S and $V \setminus S$

Solvable in polynomial time with n - 1 maximum flow computations.

Nagamochi and Ibaraki 1992

In $\mathcal{O}(m + n \log n)$ time we can either find the global minimum cut or isolate an edge that doesn't cross it. This edge can then be contracted and the procedure repeated, resulting in $\mathcal{O}(mn + n^2 \log n)$ complexity.

Karger and Stein 1996

A different method based on recursion and contracting a randomly chosen edge finds the global minimum cut in $\mathcal{O}(n^2 \log^3 n)$ time whp.

Nagamochi and Ibaraki 1992

In $\mathcal{O}(m + n \log n)$ time we can either find the global minimum cut or isolate an edge that doesn't cross it. This edge can then be contracted and the procedure repeated, resulting in $\mathcal{O}(mn + n^2 \log n)$ complexity.

Karger and Stein 1996

A different method based on recursion and contracting a randomly chosen edge finds the global minimum cut in $\mathcal{O}(n^2 \log^3 n)$ time whp.

Nagamochi and Ibaraki 1992

In $\mathcal{O}(m + n \log n)$ time we can either find the global minimum cut or isolate an edge that doesn't cross it. This edge can then be contracted and the procedure repeated, resulting in $\mathcal{O}(mn + n^2 \log n)$ complexity.

Karger and Stein 1996

A different method based on recursion and contracting a randomly chosen edge finds the global minimum cut in $\mathcal{O}(n^2 \log^3 n)$ time whp.

Nagamochi and Ibaraki 1992

In $\mathcal{O}(m + n \log n)$ time we can either find the global minimum cut or isolate an edge that doesn't cross it. This edge can then be contracted and the procedure repeated, resulting in $\mathcal{O}(mn + n^2 \log n)$ complexity.

Karger and Stein 1996

A different method based on recursion and contracting a randomly chosen edge finds the global minimum cut in $\mathcal{O}(n^2 \log^3 n)$ time whp.

In 1996, Karger announced a faster $\mathcal{O}(m \log^3 n)$ time algorithm finding the minimum cut whp. by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

Minimum *k*-respecting cut

In 1996, Karger announced a faster $\mathcal{O}(m \log^3 n)$ time algorithm finding the minimum cut whp. by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

Minimum k-respecting cut

In 1996, Karger announced a faster $\mathcal{O}(m \log^3 n)$ time algorithm finding the minimum cut whp. by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

Minimum k-respecting cut

In 1996, Karger announced a faster $\mathcal{O}(m \log^3 n)$ time algorithm finding the minimum cut whp. by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

Minimum k-respecting cut

In 1996, Karger announced a faster $\mathcal{O}(m \log^3 n)$ time algorithm finding the minimum cut whp. by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

Minimum k-respecting cut

The high-level structure of Karger's algorithm is as follows:

- Find a collection T of $O(\log n)$ trees such that whp the minimum cut 1- or 2-respects some $T \in T$.
- ② For every $T \in \mathcal{T}$, find the minimum 1-respecting cut.
- ③ For every $T \in T$, find the minimum 2-respecting cut.

Finding ${\mathcal T}$

The high-level structure of Karger's algorithm is as follows:

- Find a collection T of $O(\log n)$ trees such that whp the minimum cut 1- or 2-respects some $T \in T$.
- 3 For every $T \in T$, find the minimum 1-respecting cut.
- If the second s

Finding ${\mathcal T}$

The high-level structure of Karger's algorithm is as follows:

- Find a collection T of $O(\log n)$ trees such that whp the minimum cut 1- or 2-respects some $T \in T$.
- **2** For every $T \in T$, find the minimum 1-respecting cut.

3 For every $T \in T$, find the minimum 2-respecting cut.

Finding ${\mathcal T}$

The high-level structure of Karger's algorithm is as follows:

- Find a collection T of $O(\log n)$ trees such that whp the minimum cut 1- or 2-respects some $T \in T$.
- **2** For every $T \in T$, find the minimum 1-respecting cut.
- So For every $T \in T$, find the minimum 2-respecting cut.

Finding ${\mathcal T}$

The high-level structure of Karger's algorithm is as follows:

- Find a collection T of $O(\log n)$ trees such that whp the minimum cut 1- or 2-respects some $T \in T$.
- **2** For every $T \in T$, find the minimum 1-respecting cut.
- So For every $T \in T$, find the minimum 2-respecting cut.

Finding ${\mathcal T}$

Karger showed that this is actually fairly easy:

This information can be propagated in $\mathcal{O}(m)$ overall time.

Karger showed that this is actually fairly easy:

This information can be propagated in $\mathcal{O}(m)$ overall time.

Karger showed that this is actually fairly easy:

This information can be propagated in $\mathcal{O}(m)$ overall time.

Karger showed that this is actually fairly easy:

This information can be propagated in $\mathcal{O}(m)$ overall time.

Karger showed that this is actually fairly easy:

This information can be propagated in $\mathcal{O}(m)$ overall time.

Sought e and e' can either be independent or descendant.

Sought e and e' can either be independent or descendant.

Sought e and e' can either be independent or descendant.

For both cases, Karger's algorithm operates in $\mathcal{O}(\log n)$ phases that iteratively contracting paths (called *boughs*) consisting of nodes with exactly one child terminating at a leaf. Each phase is implemented with link-cut trees in $\mathcal{O}(m \log n)$ time.

Karger 1996

Minimum 2-respecting cut can be found in $\mathcal{O}(m \log^2 n)$ time.

The overall time complexity is $\mathcal{O}(m \log^3 n + n \log^3 n) = \mathcal{O}(m \log^3 n)$.

For both cases, Karger's algorithm operates in $\mathcal{O}(\log n)$ phases that iteratively contracting paths (called *boughs*) consisting of nodes with exactly one child terminating at a leaf. Each phase is implemented with link-cut trees in $\mathcal{O}(m \log n)$ time.

Karger 1996

Minimum 2-respecting cut can be found in $\mathcal{O}(m \log^2 n)$ time.

The overall time complexity is $\mathcal{O}(m \log^3 n + n \log^3 n) = \mathcal{O}(m \log^3 n)$.

For both cases, Karger's algorithm operates in $\mathcal{O}(\log n)$ phases that iteratively contracting paths (called *boughs*) consisting of nodes with exactly one child terminating at a leaf. Each phase is implemented with link-cut trees in $\mathcal{O}(m \log n)$ time.

Karger 1996

Minimum 2-respecting cut can be found in $\mathcal{O}(m \log^2 n)$ time.

The overall time complexity is $\mathcal{O}(m \log^3 n + n \log^3 n) = \mathcal{O}(m \log^3 n)$.

Recent Developments

Henzinger, Rao, and Wang 2017

A faster $\mathcal{O}(m \log^2 n (\log \log n)^2)$ deterministic time algorithm for simple unweighted graphs.

Ghaffari, Nowicki and Thorup 2020

An even faster $O(\min\{m + n \log^3 n, m \log n\})$ randomised time algorithm for simple unweighted graphs.

Bhardwaj, Lovett, and Sandlund 2020

A different take on the minimum 2-respecting cut based on top trees instead of link-cut trees, and iterating over the edges of T guided by heavy-light decomposition. Also $\mathcal{O}(m \log^2 n)$ time, but simpler.

Recent Developments

Henzinger, Rao, and Wang 2017

A faster $\mathcal{O}(m \log^2 n (\log \log n)^2)$ deterministic time algorithm for simple unweighted graphs.

Ghaffari, Nowicki and Thorup 2020

An even faster $\mathcal{O}(\min\{m + n \log^3 n, m \log n\})$ randomised time algorithm for simple unweighted graphs.

Bhardwaj, Lovett, and Sandlund 2020

A different take on the minimum 2-respecting cut based on top trees instead of link-cut trees, and iterating over the edges of T guided by heavy-light decomposition. Also $\mathcal{O}(m \log^2 n)$ time, but simpler.

Recent Developments

Henzinger, Rao, and Wang 2017

A faster $\mathcal{O}(m \log^2 n (\log \log n)^2)$ deterministic time algorithm for simple unweighted graphs.

Ghaffari, Nowicki and Thorup 2020

An even faster $\mathcal{O}(\min\{m + n \log^3 n, m \log n\})$ randomised time algorithm for simple unweighted graphs.

Bhardwaj, Lovett, and Sandlund 2020

A different take on the minimum 2-respecting cut based on top trees instead of link-cut trees, and iterating over the edges of T guided by heavy-light decomposition. Also $\mathcal{O}(m \log^2 n)$ time, but simpler.

Recent Developments, Continued

Gawrychowski, Mozes, and Weimann 2020

Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in $\mathcal{O}(m \log n + n \log^3 n)$ randomised time.

Time complexity of the former dominates that of the latter, but the latter has the following advantages:

- uses a nice structural property of minimum 2-respecting cut,
- extends to the cut-query and the streaming model,
- can be seen as a reduction to 2D orthogonal range counting/sampling.

By plugging in appropriate structures, the time complexity for unweighted multigraphs becomes $O(m\sqrt{\log n} + n \log^4 n)$.

Recent Developments, Continued

Gawrychowski, Mozes, and Weimann 2020

Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in $O(m \log n + n \log^3 n)$ randomised time.

Time complexity of the former dominates that of the latter, but the latter has the following advantages:

- uses a nice structural property of minimum 2-respecting cut,
- extends to the cut-query and the streaming model,
- can be seen as a reduction to 2D orthogonal range counting/sampling.

By plugging in appropriate structures, the time complexity for unweighted multigraphs becomes $O(m\sqrt{\log n} + n \log^4 n)$.

Gawrychowski, Mozes, and Weimann 2020

Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in $O(m \log n + n \log^3 n)$ randomised time.

Time complexity of the former dominates that of the latter, but the latter has the following advantages:

- uses a nice structural property of minimum 2-respecting cut,
- extends to the cut-query and the streaming model,
- can be seen as a reduction to 2D orthogonal range counting/sampling.

Gawrychowski, Mozes, and Weimann 2020

Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in $O(m \log n + n \log^3 n)$ randomised time.

Time complexity of the former dominates that of the latter, but the latter has the following advantages:

- uses a nice structural property of minimum 2-respecting cut,
- extends to the cut-query and the streaming model,
- 3 can be seen as a reduction to 2D orthogonal range counting/sampling.

Gawrychowski, Mozes, and Weimann 2020

Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in $O(m \log n + n \log^3 n)$ randomised time.

Time complexity of the former dominates that of the latter, but the latter has the following advantages:

- uses a nice structural property of minimum 2-respecting cut,
- extends to the cut-query and the streaming model,
- 3 can be seen as a reduction to 2D orthogonal range counting/sampling.

Gawrychowski, Mozes, and Weimann 2020

Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in $O(m \log n + n \log^3 n)$ randomised time.

Time complexity of the former dominates that of the latter, but the latter has the following advantages:

- uses a nice structural property of minimum 2-respecting cut,
- extends to the cut-query and the streaming model,
- can be seen as a reduction to 2D orthogonal range counting/sampling.

Gawrychowski, Mozes, and Weimann 2020

Minimum 2-respecting cut in $\mathcal{O}(m \log n)$ time.

Mukhopadhyay and Nanongkai 2020

Minimum 2-respecting cut in $O(m \log n + n \log^3 n)$ randomised time.

Time complexity of the former dominates that of the latter, but the latter has the following advantages:

- uses a nice structural property of minimum 2-respecting cut,
- extends to the cut-query and the streaming model,
- can be seen as a reduction to 2D orthogonal range counting/sampling.

We simplify and streamline the minimum 2-respecting cut algorithm Mukhopadhyay and Nanongkai to work in only $O(m \log n + n \log^2 n)$ deterministic time.

- $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.
- 2 $\mathcal{O}(m \log n + n^{1+\epsilon})$ for weighted graphs, for any $\epsilon > 0$.

We simplify and streamline the minimum 2-respecting cut algorithm Mukhopadhyay and Nanongkai to work in only $O(m \log n + n \log^2 n)$ deterministic time.

- $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.
- 2 $\mathcal{O}(m \log n + n^{1+\epsilon})$ for weighted graphs, for any $\epsilon > 0$.

We simplify and streamline the minimum 2-respecting cut algorithm Mukhopadhyay and Nanongkai to work in only $O(m \log n + n \log^2 n)$ deterministic time.

- $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.
- 2 $\mathcal{O}(m \log n + n^{1+\epsilon})$ for weighted graphs, for any $\epsilon > 0$.

We simplify and streamline the minimum 2-respecting cut algorithm Mukhopadhyay and Nanongkai to work in only $O(m \log n + n \log^2 n)$ deterministic time.

- $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.
- 2 $\mathcal{O}(m \log n + n^{1+\epsilon})$ for weighted graphs, for any $\epsilon > 0$.

Partition the edges of T into edge-disjoint heavy paths such that any root-to-leaf path intersects with at most $\log n$ heavy paths.

- e, e' belong to the same heavy path,
- e, e' belong to different heavy paths.

Partition the edges of T into edge-disjoint heavy paths such that any root-to-leaf path intersects with at most $\log n$ heavy paths.

- e, e' belong to the same heavy path,
- e, e' belong to different heavy paths.

Partition the edges of T into edge-disjoint heavy paths such that any root-to-leaf path intersects with at most $\log n$ heavy paths.

- e, e' belong to the same heavy path,
- e, e' belong to different heavy paths.

Partition the edges of T into edge-disjoint heavy paths such that any root-to-leaf path intersects with at most $\log n$ heavy paths.

- e, e' belong to the same heavy path,
- e, e' belong to different heavy paths.

Let M[i, j] be the weight of the cut determined by e_i and e_j .

M is a partial Monge matrix

For any $i \neq j$, $M[i, j] - M[i, j+1] \ge M[i+1, j] - M[i+1, j+1]$.

Let M[i, j] be the weight of the cut determined by e_i and e_j .

M is a partial Monge matrix

For any $i \neq j$, $M[i, j] - M[i, j+1] \ge M[i+1, j] - M[i+1, j+1]$.

Let M[i, j] be the weight of the cut determined by e_i and e_j .

M is a partial Monge matrix

For any $i \neq j$, $M[i, j] - M[i, j+1] \ge M[i+1, j] - M[i+1, j+1]$.

Let M[i, j] be the weight of the cut determined by e_i and e_j .

M is a partial Monge matrix

For any $i \neq j$, $M[i, j] - M[i, j+1] \ge M[i+1, j] - M[i+1, j+1]$.

Let M[i, j] be the weight of the cut determined by e_i and e_j .

M is a partial Monge matrix

For any $i \neq j$, $M[i, j] - M[i, j+1] \ge M[i+1, j] - M[i+1, j+1]$.

Let M[i, j] be the weight of the cut determined by e_i and e_j .

M is a partial Monge matrix

For any $i \neq j$, $M[i,j] - M[i,j+1] \ge M[i+1,j] - M[i+1,j+1]$.

One could similarly form a Monge matrix for every pair of heavy paths. However, this would be too slow.

All such edges e' form a single path from the root to some node c_e .

If the minimum cut is determined by independent edges e, e' then e is cross-interested in e' and vice versa.

An edge *e* is cross-interested in an edge $e' \notin T_e$ if more than half of the edge weight going out T_e goes into $T_{e'}$.

All such edges e' form a single path from the root to some node c_e .

If the minimum cut is determined by independent edges e, e' then e is cross-interested in e' and vice versa.

Paweł Gawrychowski

An edge *e* is cross-interested in an edge $e' \notin T_e$ if more than half of the edge weight going out T_e goes into $T_{e'}$.

All such edges e' form a single path from the root to some node c_e .

If the minimum cut is determined by independent edges e, e' then e is cross-interested in e' and vice versa.

Paweł Gawrychowski

An edge *e* is cross-interested in an edge $e' \notin T_e$ if more than half of the edge weight going out T_e goes into $T_{e'}$.

All such edges e' form a single path from the root to some node c_e .

If the minimum cut is determined by independent edges e, e' then e is cross-interested in e' and vice versa.

Paweł Gawrychowski

An edge *e* is cross-interested in an edge $e' \notin T_e$ if more than half of the edge weight going out T_e goes into $T_{e'}$.

All such edges e' form a single path from the root to some node c_e .

If the minimum cut is determined by independent edges e, e' then e is cross-interested in e' and vice versa.

Paweł Gawrychowski

An edge *e* is cross-interested in an edge $e' \notin T_e$ if more than half of the edge weight going out T_e goes into $T_{e'}$.

All such edges e' form a single path from the root to some node c_e .

If the minimum cut is determined by independent edges e, e' then e is cross-interested in e' and vice versa.

Paweł Gawrychowski

Similar notion for the case of descendant edges e, e'.

High-level structure of the algorithm:

- Identify c_e for every e.
- 2 For every *e*, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges *e*'.
- So For every pair of heavy paths P, Q such that, for some edges $e \in P, e' \in Q, Q$ is interesting for e and P is interesting for e':
 - extract $P' \subseteq P$ consisting of edges interested in Q,
 - 2 extract $Q' \subseteq Q$ consisting of edges interested in P,
 - of form a $|P'| \times |Q'|$ Monge matrix and find the minimum with SMAWK using $\mathcal{O}(|P'| + |Q'|)$ inspections.

Similar notion for the case of descendant edges e, e'.

High-level structure of the algorithm:

- Identify c_e for every e.
- Por every *e*, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges *e*'.
- Solution For every pair of heavy paths P, Q such that, for some edges $e \in P, e' \in Q, Q$ is interesting for e and P is interesting for e':
 - extract $P' \subseteq P$ consisting of edges interested in Q,
 - 2 extract $Q' \subseteq Q$ consisting of edges interested in P,
 - of form a $|P'| \times |Q'|$ Monge matrix and find the minimum with SMAWK using $\mathcal{O}(|P'| + |Q'|)$ inspections.

Similar notion for the case of descendant edges e, e'.

High-level structure of the algorithm:

Identify c_e for every e.

- For every e, identify O(log n) interesting heavy paths containing cross-interesting edges e'.
- So For every pair of heavy paths P, Q such that, for some edges $e \in P, e' \in Q, Q$ is interesting for e and P is interesting for e':
 - extract $P' \subseteq P$ consisting of edges interested in Q,
 - 2 extract $Q' \subseteq Q$ consisting of edges interested in P,
 - s form a $|P'| \times |Q'|$ Monge matrix and find the minimum with SMAWK using $\mathcal{O}(|P'| + |Q'|)$ inspections.

Similar notion for the case of descendant edges e, e'.

High-level structure of the algorithm:

- Identify c_e for every e.
- Solution For every *e*, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges *e'*.
- Some every pair of heavy paths P, Q such that, for some edges e ∈ P, e' ∈ Q, Q is interesting for e and P is interesting for e':
 - extract $P' \subseteq P$ consisting of edges interested in Q,
 - 2 extract $Q' \subseteq Q$ consisting of edges interested in P,
 - s form a $|P'| \times |Q'|$ Monge matrix and find the minimum with SMAWK using $\mathcal{O}(|P'| + |Q'|)$ inspections.

Similar notion for the case of descendant edges e, e'.

High-level structure of the algorithm:

- **1** Identify c_e for every e.
- Solution For every *e*, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges *e'*.
- So For every pair of heavy paths P, Q such that, for some edges $e \in P, e' \in Q, Q$ is interesting for e and P is interesting for e':
 - extract $P' \subseteq P$ consisting of edges interested in Q_i
 - ② extract Q' ⊆ Q consisting of edges interested in P,
 - of form a $|P'| \times |Q'|$ Monge matrix and find the minimum with SMAWK using $\mathcal{O}(|P'| + |Q'|)$ inspections.

Similar notion for the case of descendant edges e, e'.

High-level structure of the algorithm:

- Identify c_e for every e.
- Solution For every *e*, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges *e'*.
- So For every pair of heavy paths P, Q such that, for some edges $e \in P, e' \in Q, Q$ is interesting for e and P is interesting for e':
 - extract $P' \subseteq P$ consisting of edges interested in Q,
 - 2 extract Q' ⊆ Q consisting of edges interested in P
 - is form a $|P'| \times |Q'|$ Monge matrix and find the minimum with SMAWK using $\mathcal{O}(|P'| + |Q'|)$ inspections.

Similar notion for the case of descendant edges e, e'.

High-level structure of the algorithm:

- Identify c_e for every e.
- Solution For every *e*, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges *e'*.
- So For every pair of heavy paths P, Q such that, for some edges $e \in P, e' \in Q, Q$ is interesting for e and P is interesting for e':
 - extract $P' \subseteq P$ consisting of edges interested in Q,
 - 2 extract $Q' \subseteq Q$ consisting of edges interested in P,
 - s form a $|P'| \times |Q'|$ Monge matrix and find the minimum with SMAWK using $\mathcal{O}(|P'| + |Q'|)$ inspections.

Similar notion for the case of descendant edges e, e'.

High-level structure of the algorithm:

- Identify c_e for every e.
- Solution For every *e*, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges *e'*.
- So For every pair of heavy paths P, Q such that, for some edges $e \in P, e' \in Q, Q$ is interesting for e and P is interesting for e':
 - extract $P' \subseteq P$ consisting of edges interested in Q,
 - 2 extract $Q' \subseteq Q$ consisting of edges interested in P,
 - If orm a |P'| × |Q'| Monge matrix and find the minimum with SMAWK using O(|P'| + |Q'|) inspections.

Similar notion for the case of descendant edges e, e'.

High-level structure of the algorithm:

- Identify c_e for every e.
- Solution For every *e*, identify $\mathcal{O}(\log n)$ interesting heavy paths containing cross-interesting edges *e'*.
- So For every pair of heavy paths P, Q such that, for some edges $e \in P, e' \in Q, Q$ is interesting for e and P is interesting for e':
 - extract $P' \subseteq P$ consisting of edges interested in Q,
 - 2 extract $Q' \subseteq Q$ consisting of edges interested in P,
 - If orm a |P'| × |Q'| Monge matrix and find the minimum with SMAWK using O(|P'| + |Q'|) inspections.

Preprocessing

To check if e is cross-interested in e', or to compute the total weight of the cut determined by e, e', we use the following tool:

Chazelle 1988

Collection of *N* weighted points can be preprocesses in $\mathcal{O}(N \log N)$ time and space, so that the total weight of all points in any axis-aligned rectangle can be computed in $\mathcal{O}(\log N)$ time.

We identify the nodes with their visiting time in the postorder traversal of T. Then, every edge (u, v) naturally becomes a weighted point in the plane. We preprocess them in $\mathcal{O}(m \log m) = \mathcal{O}(m \log n)$ time.

Both queries translate into a constant number of queries about the total weight of points in axis-aligned rectangles.

Preprocessing

To check if e is cross-interested in e', or to compute the total weight of the cut determined by e, e', we use the following tool:

Chazelle 1988

Collection of *N* weighted points can be preprocesses in $\mathcal{O}(N \log N)$ time and space, so that the total weight of all points in any axis-aligned rectangle can be computed in $\mathcal{O}(\log N)$ time.

We identify the nodes with their visiting time in the postorder traversal of T. Then, every edge (u, v) naturally becomes a weighted point in the plane. We preprocess them in $\mathcal{O}(m \log m) = \mathcal{O}(m \log n)$ time.

Both queries translate into a constant number of queries about the total weight of points in axis-aligned rectangles.

Preprocessing

To check if e is cross-interested in e', or to compute the total weight of the cut determined by e, e', we use the following tool:

Chazelle 1988

Collection of *N* weighted points can be preprocesses in $\mathcal{O}(N \log N)$ time and space, so that the total weight of all points in any axis-aligned rectangle can be computed in $\mathcal{O}(\log N)$ time.

We identify the nodes with their visiting time in the postorder traversal of T. Then, every edge (u, v) naturally becomes a weighted point in the plane. We preprocess them in $\mathcal{O}(m \log m) = \mathcal{O}(m \log n)$ time.

Both queries translate into a constant number of queries about the total weight of points in axis-aligned rectangles.

Recall that all edges e' cross-interesting for e form a path from the root to c_e , and we have a mechanism for checking in $\mathcal{O}(\log n)$ time if a given edge e' is cross-interesting for e. Instead of random sampling, we use the following tool to identify c_e :

Centroid decomposition

Choose a centroid node $v \in T$ such that every connected component of $T \setminus \{v\}$ consists of at most |T|/2 nodes. Recurse on the connected components of $T \setminus \{v\}$.

Centroid decomposition of T can be constructed in $O(n \log n)$ time.

Recall that all edges e' cross-interesting for e form a path from the root to c_e , and we have a mechanism for checking in $\mathcal{O}(\log n)$ time if a given edge e' is cross-interesting for e. Instead of random sampling, we use the following tool to identify c_e :

Centroid decomposition

Choose a centroid node $v \in T$ such that every connected component of $T \setminus \{v\}$ consists of at most |T|/2 nodes. Recurse on the connected components of $T \setminus \{v\}$.

Centroid decomposition of T can be constructed in $\mathcal{O}(n \log n)$ time.

Recall that all edges e' cross-interesting for e form a path from the root to c_e , and we have a mechanism for checking in $\mathcal{O}(\log n)$ time if a given edge e' is cross-interesting for e. Instead of random sampling, we use the following tool to identify c_e :

Centroid decomposition

Choose a centroid node $v \in T$ such that every connected component of $T \setminus \{v\}$ consists of at most |T|/2 nodes. Recurse on the connected components of $T \setminus \{v\}$.

Centroid decomposition of *T* can be constructed in $O(n \log n)$ time.

- Check if e_1, e_2, e_3 are cross-interesting for e_1 .
- ② Continue in the appropriate connected component of $T \setminus \{v\}$.
- It log n steps, each in $\mathcal{O}(\log n)$ time.

- ① Check if e_1, e_2, e_3 are cross-interesting for e_1 .
- ② Continue in the appropriate connected component of $T \setminus \{v\}$.
- It log *n* steps, each in $\mathcal{O}(\log n)$ time.

- ① Check if e_1, e_2, e_3 are cross-interesting for e_1 .
- ② Continue in the appropriate connected component of $T \setminus \{v\}$.
- It log *n* steps, each in $\mathcal{O}(\log n)$ time.

Let *T* be binary (otherwise, replace high-degree nodes with small binary trees). To find c_e , traverse the centroid decomposition of *T*:

• Check if e_1, e_2, e_3 are cross-interesting for e_1 .

② Continue in the appropriate connected component of $T \setminus \{v\}$.

Iog *n* steps, each in $\mathcal{O}(\log n)$ time.

Let *T* be binary (otherwise, replace high-degree nodes with small binary trees). To find c_e , traverse the centroid decomposition of *T*:

- Check if e_1, e_2, e_3 are cross-interesting for e_1 .
- ② Continue in the appropriate connected component of $T \setminus \{v\}$.

log *n* steps, each in $\mathcal{O}(\log n)$ time.

- Check if e_1, e_2, e_3 are cross-interesting for e_1 .
- 2 Continue in the appropriate connected component of $T \setminus \{v\}$.
- It log *n* steps, each in $\mathcal{O}(\log n)$ time.

- **1** Check if e_1, e_2, e_3 are cross-interesting for e_1 .
- 2 Continue in the appropriate connected component of $T \setminus \{v\}$.
- log *n* steps, each in $\mathcal{O}(\log n)$ time.

- Check if e_1, e_2, e_3 are cross-interesting for e_1 .
- ② Continue in the appropriate connected component of $T \setminus \{v\}$.
- log *n* steps, each in $\mathcal{O}(\log n)$ time.

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:

- $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.
- 2 $\mathcal{O}(m \log n + n^{1+\epsilon})$ for weighted graphs,
- Is there a way to further simplify this approach to remove the n log² n?
- ② Are similar speedups possible for dense graphs?
- Is there a near-linear time deterministic algorithm?

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:

- $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.
- O(m log $n + n^{1+\epsilon}$) for weighted graphs,
- Is there a way to further simplify this approach to remove the n log² n?
- Are similar speedups possible for dense graphs?
- Is there a near-linear time deterministic algorithm?

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:

• $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.

 $\mathcal{O}(m \log n + n^{1+\epsilon})$ for weighted graphs,

- Is there a way to further simplify this approach to remove the $n \log^2 n$?
- ② Are similar speedups possible for dense graphs?
- Is there a near-linear time deterministic algorithm?

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:

- $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.
- 2 $\mathcal{O}(m \log n + n^{1+\epsilon})$ for weighted graphs,
- Is there a way to further simplify this approach to remove the n log² n?
- Are similar speedups possible for dense graphs?
- Is there a near-linear time deterministic algorithm?

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:

- $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.
- 2 $\mathcal{O}(m \log n + n^{1+\epsilon})$ for weighted graphs,

Is there a way to further simplify this approach to remove the n log² n?

- Are similar speedups possible for dense graphs?
- Is there a near-linear time deterministic algorithm?

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:

- $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.
- 2 $\mathcal{O}(m \log n + n^{1+\epsilon})$ for weighted graphs,
- Is there a way to further simplify this approach to remove the n log² n?
- Are similar speedups possible for dense graphs?
- Is there a near-linear time deterministic algorithm?

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:

- $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.
- 2 $\mathcal{O}(m \log n + n^{1+\epsilon})$ for weighted graphs,
- Is there a way to further simplify this approach to remove the n log² n?
- Are similar speedups possible for dense graphs?
- Is there a near-linear time deterministic algorithm?

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:

- $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.
- 2 $\mathcal{O}(m \log n + n^{1+\epsilon})$ for weighted graphs,
- Is there a way to further simplify this approach to remove the n log² n?
- Are similar speedups possible for dense graphs?
- Is there a near-linear time deterministic algorithm?

By plugging in appropriate data structures, we can also obtain the following new results for the minimum cut problem:

- $\mathcal{O}(m \log^{3/2} n + n \log^3 n)$ for unweighted multigraphs.
- 2 $\mathcal{O}(m \log n + n^{1+\epsilon})$ for weighted graphs,
- Is there a way to further simplify this approach to remove the n log² n?
- Are similar speedups possible for dense graphs?
- Is there a near-linear time deterministic algorithm?