
A Note on a Recent Algorithm for Minimum Cut

Paweł Gawrychowski∗ Shay Mozes† Oren Weimann‡

Abstract
Given an undirected edge-weighted graph G = (V,E) with
m edges and n vertices, the minimum cut problem asks to
find a subset of vertices S such that the total weight of all
edges between S and V \S is minimized. Karger’s longstand-
ing O(m log3 n) time randomized algorithm for this prob-
lem was very recently improved in two independent works
to O(m log2 n) [ICALP’20] and to O(m log2 n + n log5 n)

[STOC’20]. These two algorithms use different approaches
and techniques. In particular, while the former is faster,
the latter has the advantage that it can be used to ob-
tain efficient algorithms in the cut-query and in the stream-
ing models of computation. In this paper, we show how
to simplify and improve the algorithm of [STOC’20] to
O(m log2 n + n log3 n). We obtain this by replacing a ran-
domized algorithm that, given a spanning tree T of G, finds
in O(m logn + n log4 n) time a minimum cut of G that 2-
respects (cuts two edges of) T with a simple O(m logn +

n log2 n) time deterministic algorithm for the same prob-
lem.

1 Introduction
In his seminal work in 1996, Karger [8] showed how to
find the minimum cut of an edge-weighted undirected
graph in O(m log3 n) time. The first step of his algo-
rithm is a procedure that, given an undirected edge-
weighted graph G, produces in O(m + n log3 n) time
a collection of O(log n) spanning trees of G such that
w.h.p the minimum cut 1- or 2-respects some tree in the
collection. That is, one of the trees is such that at most
two of its edges cross the minimum cut (these edges are
said to determine the cut). The minimum cut is then
found by examining each tree T of the O(log n) trees
and finding the minimum cut that 1- or 2-respects T .
Since the minimum cut that 1-respects T can be easily
found in O(m) time [8, Lemma 5.1], the main challenge
is to find the minimum cut that 2-respects T .

Karger showed that the minimum cut that 2-
respects a given tree can be found in O(m log2 n)

∗University of Wrocław, Poland. gawry@cs.uni.wroc.pl.
†The Interdisciplinary Center Herzliya, Israel.

smozes@idc.ac.il. Supported partially by ISF grant 592/17.
‡University of Haifa, Israel. oren@cs.haifa.ac.il. Supported

partially by ISF grant 592/17.

time. This was very recently improved in two inde-
pendent works: In [6] we obtained an O(m log n) de-
terministic algorithm,1 and in [10] Mukhopadhyay and
Nanongkai obtained an O(m log n + n log4 n) random-
ized algorithm. These two results use different tech-
niques. Even though [6] dominates [10] for the en-
tire range of graphs densities, the approach of [10]
has two notable advantages: (1) it can be extended
to other models, namely to find the minimum cut us-
ing Õ(n) cut queries, or using Õ(n) space and O(log n)
passes in a streaming algorithm, and (2) the approach
of [10] can be seen as a reduction from min cut
to geometric two-dimensional orthogonal range count-
ing/sampling/reporting data structures [4]. Therefore,
special cases or future improvements of such data struc-
tures will imply improvements to min cut. For example,
for the special case of unweighted undirected graphs, [10]
use an improved data structure for orthogonal range
counting [3] and range rank/select [2] (that are then
used to design an improved data structure for orthogo-
nal range reporting and, finally, orthogonal range sam-
pling). This yields an O(m

√
log n+ n log4 n) time ran-

domized algorithm for finding a 2-respecting min cut
in unweighted graphs, and hence an O(m log3/2 n +
n log5 n) time algorithm for min cut in such graphs.

Our results. In this paper we show how to sim-
plify the algorithm of Mukhopadhyay and Nanongkai,
improve its running time to O(m log n + n log2 n), and
turn it deterministic. By Karger’s reasoning, this then
implies a randomized min cut algorithm working in
O(m log2 n + n log3 n) time. In fact, one can also ap-
ply his log log n speedup that exploits the fact that 1-
respecting cuts can be found faster than 2-respecting
cuts. As explained in [5, Section 4], by appropriately
tweaking the parameters we can obtain a randomized
min cut algorithm working in O(m log2 n/ log log n +
n log3+ε n) time. Interestingly, with our improvement,
the reduction to the geometric data structure is now
a clean black box reduction to just orthogonal range
counting (no sampling/reporting is required). This al-
lows us to obtain the following new results: (1) an

1We also showed in [6] that the first step of producing the
collection of spanning trees can be performed (using a randomized
algorithm) in O(m log2 n) time, leading to an O(m log2 n) time
randomized algorithm for min cut.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

mailto:gawry@cs.uni.wroc.pl
mailto:smozes@idc.ac.il
mailto:oren@cs.haifa.ac.il

O(m log n + n1+ε)-time randomized algorithm for min
cut in weighted graphs for any fixed ε > 0 (this domi-
nates all previous results for m = Ω(n1+ε)), and (2) an
O(m log3/2 n+ n log3 n) time randomized algorithm for
min cut in unweighted graphs.

Roadmap. In Section 2 we describe the algorithm
of Mukhopadhyay and Nanongkai [10]. Our description
uses slightly different terminology than [10], but all
the ideas described in Section 2 are taken from [10].
In Section 3 we describe our simplification of [10] and
in Section 4 we show how to use it to achieve faster
algorithms for unweighted graphs and for dense graphs.

2 The Algorithm of Mukhopadhyay and
Nanongkai [10]

In this section we describe the algorithm of Mukhopad-
hyay and Nanongkai [10] for finding the pair of edges
{e, e′} determining the minimum cut (observe that the
cut determined by {e, e′} is unique and consists of all
edges (u, v) ∈ G such that the u-to-v path in T contains
exactly one of {e, e′}).

The algorithm begins by partitioning the tree T into
a set P of edge-disjoint paths (called heavy paths [11])
such that any root-to-leaf path in T intersects at most
log n heavy paths.

2.1 Two edges in the same heavy path. Consider
first the case where the minimum cut is determined by
two edges of the same path P ∈ P. Finding these two
edges then boils down to finding the smallest element in
the (`−1)× (`−1) matrixM where ` is the length of P
and M [i, j] is the weight of the cut determined by the
i’th and the j’th edges of P . An important contribution
of Mukhopadhyay and Nanongkai is in observing that
the matrix M is a Partial Monge matrix. That is,
M [i, j] − M [i, j + 1] ≥ M [i + 1, j] − M [i + 1, j + 1]
for any i 6= j.2 They then describe an algorithm
that finds the smallest element in M by inspecting
only O(` · log2 `) entries of M . Instead, one could use
the faster algorithm by Klawe and Kleitman [9] that
requires only O(` · α(`)) inspections (where α is the
inverse-Ackermann function). Lemma 2.1 below shows
that each inspection can be done inO(log n) time. Thus,
in O(` ·α(`) · log n) time one can find the minimum cut
determined by two edges of P . Since paths in P are
disjoint, doing this for all paths in P this takes overall
O(n · α(n) · log n) time.

2Mukhopadhyay and Nanongkai reversed the order of rows so
in their presentation the condition was M [i, j] − M [i, j + 1] ≤
M [i+ 1, j]−M [i+ 1, j + 1].

2.2 Two edges in different heavy paths. Now
consider the case where the minimum cut is determined
by two edges belonging to different paths in P. Another
significant insight of Mukhopadhyay and Nanongkai is
that there is no need to check every pair of paths
P,Q ∈ P but only a small subset of interesting path
pairs as explained next. Let cut(e,e′) denote the weight
of the cut determined by edges {e, e′}. Let Te denote
the subtree of T rooted at the lower (i.e., further from
the root) endpoint of e. If e′ ∈ Te then we say that e′
is a descendant of e. If e′ is not a descendant of e and e
is not a descendant of e′ then we say that e and e′ are
independent.

Cross-interested edges. An edge e ∈ T is said to
be cross-interested in an edge e′ ∈ T \ Te if

w(Te) < 2w(Te, Te′)

where w(Te) is the total weight of edges between Te
and V (G) \ V (Te) and w(Te, Te′) is the total weight of
edges between Te and Te′ . That is, e is cross-interested
in e′ if more than half the edge weight going out of
Te goes into Te′ . Observe that if the minimum cut is
determined by independent edges {e, e′} then e must be
cross-interested in e′ (and vice versa) because otherwise
cut(e,e′) = w(Te) + w(Te′) − 2w(Te, Te′) > w(Te′) (i.e.
the cut determined by the single edge e′ has smaller
weight, a contradiction). This means that there is no
need to check every pair of independent edges, only ones
that are cross-interested. It is easy to see that for any
tree-edge e, all the edges that e is cross-interested in
form a single path Ce in T going down from the root to
some node ce.

Down-interested edges. An edge e ∈ T is said
to be down-interested in an edge e′ ∈ Te if

w(Te) < 2w(Te′ , T \ Te)

where w(Te′ , T \Te) is the total weight of edges between
Te′ and V (G) \ V (Te). That is, e is down-interested in
e′ if more than half the edge weight going out of Te
originates in Te′ . Observe that if the minimum cut is
determined by edges e and e′ where e′ is a descendant
of e, then e must be down-interested in e′ because
otherwise cut(e,e′) = w(Te) + w(Te′) − 2w(Te′ , T \
Te) > w(Te′) (again, a contradiction). For convenience,
define that e is down-interested in all of its ancestor
edges. This means that we only need to check pairs
of descendant edges that are down-interested in each
other. Furthermore, for any tree-edge e, all the edges
that e is down-interested in form a single path De in T
going down from the root to some node de.

A third important realization of Mukhopadhyay
and Nanongkai is that a geometric range searching

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

data structure of Chazelle [4] can be used to efficiently
determine whether an edge e is interested in an edge e′.
This is described in the following lemma.

Lemma 2.1. Given a graph G and a spanning tree T ,
we can construct in O(m log n) time a data structure
that, given any two edges e, e′, can report in O(log n)
time (1) the value cut(e,e′), (2) whether e is cross-
interested in e′, and (3) whether e is down-interested
in e′.

Proof. In O(n) time we construct a data structure that
can answer lowest common ancestor queries on T in
constant time [7]. For every node v ∈ T , let v̂ ∈ [n]
denote the visiting time of v in a postorder traversal
of T and let v̂↓ denote the minimum visiting time of a
node in the subtree of T rooted at v. Let w(v↓) be the
total weight of edges with exactly one endpoint in the
subtree of T rooted at v. As also done by Karger [8],
in a bottom up fashion (in linear time) we compute v̂,
v̂↓, and w(v↓) for every v ∈ T . We map each edge
(u, v) ∈ G to the point (û, v̂) in the two-dimensional
plane. On this set of m points we construct Chazelle’s
2D orthogonal range searching data structure [4]. This
data structure is constructed in O(m log n) time and can
report in O(log n) time the total weight of all points in
any given axis-aligned rectangle.

Consider any two edges e and e′. Let u and v be
the lower endpoints of e and e′, respectively. Note that
w(Te) = w(u↓) and w(Te′) = w(v↓). Consider first the
case that e and e′ are independent. Deciding whether e
is cross-interested in e′ reduces to computing w(Te, Te′)
which is obtained by a range query to the rectangle
[û↓, û] × [v̂↓, v̂]. The value cut(e,e′) is computed as
w(v↓) + w(u↓)− 2w(Te, Te′).

Now consider the case that e′ is a descendant of e.
Then deciding whether e is down-interested in e′ reduces
to computing w(Te′ , T \Te) which is obtained as the sum
of the answers to the rectangles [v̂↓, v̂] × [1, û − 1] and
[v̂↓, v̂] × [û + 1, n]. The value cut(e,e′) is computed as
w(u↓) + w(v↓)− 2w(Te′ , T \ Te).

Finally, if e is a descendant of e′, then we always
report that e is down-interested in e′. The value
cut(e,e′) is computed (symmetrically to the above) as
w(v↓) + w(u↓)− 2w(Te, T \ Te′).

Interesting path pairs. Recall that the goal is
two find the two tree-edges {e, e′} that determine the
minimum cut and we know that these edges belong
to different heavy paths P,Q ∈ P. A tree-edge e is
said to be interested in a path P in P if it is cross-
interested or down-interested in some edge of P . Notice
that by the above, any tree-edge e is interested in only
O(log n) paths. Define a pair of paths P,Q ∈ P to be

an interesting pair if P has an edge interested in Q and
Q has an edge interested in P .

Notice that the number of interesting pairs P,Q
is only O(n log n). However, Mukhopadhyay and
Nanongkai do not identify all the interesting pairs.
Instead, they apply a complicated random sampling
scheme in order to find the best pair with high prob-
ability. This sampling makes their algorithm random-
ized and its running time O(m log n+ n log4 n). In Sec-
tion 3.1 we show how to replace the random sampling
step with a much simpler deterministic algorithm that
finds all interesting pairs of paths. Our algorithm is
also faster, taking O(m log n+n log2 n) time. Then, for
each interesting pair P,Q, we (conceptually) contract
all tree-edges except those in P that are interested in
Q and those in Q that are interested in P , and run the
solution from Section 2.1 on the resulting paths. This
last step is very similar to the corresponding step in [10].
We explain it in detail in Section 3.2.

3 The Simplification
For every edge e ∈ T , let Ce (De) denote the path in
T consisting of all the edges that e is cross-interested
(down-interested) in. The path Ce (De) starts at the
root and terminates at some node denoted ce (de). For
every e ∈ T , we compute ce and de in O(log2 n) time.
In contrast to [10], we do this deterministically by using
a centroid decomposition.

3.1 Finding interesting path pairs. A node v ∈ T
is a centroid if every connected component of T \ {v}
consists of at most |T |/2 nodes. The centroid decom-
position of T is defined recursively by first choosing a
centroid v ∈ T and then recursing on every connected
component of T \ {v}. We assume T is a binary tree
(we can replace a node of degree d with a binary tree
of size O(d) where internal edges have weight ∞ and
edges incident to leaves have their original weight). We
also assume we have a centroid decomposition of T (we
can compute a centroid decomposition of every tree in
O(n log n) time so overall in O(n log2 n) time). To com-
pute ce, consider the (at most) three edges e1, e2, e3 in-
cident to the centroid node. Using Lemma 2.1, we check
in O(log n) time whether e is cross-interested in e1, in
e2, and in e3. From this we can deduce in which con-
nected component ce lies, and we continue recursively
there. Since the recursion depth is O(log n), we find
ce after O(log2 n) time so overall we spend O(n log2 n)
time. We compute de similarly (querying Lemma 2.1
for down-interested rather than cross-interested).

3.2 Checking interesting path pairs. For each
interesting pair of heavy paths P,Q, we will store a list

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

of the edges of Q that are interested in P and vice versa.
Recall that, since each edge is interested in O(log n)
heavy paths, the number of interesting pairs of heavy
paths is only O(n log n). Moreover, the total length of
all the lists is also O(n log n).

We first show how to compute a list of all interesting
pairs of heavy paths. By going over all the edges of T
we prepare for each heavy path P ∈ P a list of all the
heavy paths Q s.t. an edge of P is interested in an edge
of Q. The total size of all these lists is O(n log n) and
they can be computed in O(n log2 n) time as follows.
We go over every edge e of T , and denote by P the
heavy path containing e. Then, we iterate over every
heavy path Q intersecting Ce or De and add Q to the
list of P in O(log n) time per edge. Finally, we sort
all the lists (according to some canonical order on the
heavy paths) and remove duplicates in O(n log2 n) time.
Next, for every P ∈ P we go over all heavy paths Q
that P is interested in. For each such Q we determine
in O(log n) time whether Q is also interested in P using
binary search on the list of Q. Thus we construct the
lists of all interesting pairs in total O(n log2 n) time.

For each interesting pair of paths P,Q, we construct
a list of the edges of Q that are interested in P and vice
versa as follows. We go over the edges e of T . Let Q
be the heavy path containing e. For each heavy path P
that intersects Ce or De, if P,Q is an interesting pair,
we add e to the list of the pair P,Q. This takes O(log n)
time since there are O(log n) such paths P , so the total
time to construct all these lists is O(n log n). Finally,
we sort the edges on each list in O(n log2 n) total time.

For each interesting pair of paths P,Q, let P ′ (Q′)
denote the set of edges of P (Q) that are interested in Q
(P). We find the minimum cut determined by pairs of
edges e, e′ such that e ∈ P ′ and e′ ∈ Q′ in a single batch
as follows. We assume that either P ′ is a descendant of
Q′ (i.e. all edges in P ′ are descendants of all edges
in Q′) or that P ′ is independent of Q′ (i.e. no edge
in P ′ is a descendant of an edge in Q′). Otherwise, if
P ′ is a descendant of one part of Q′ and independent
of another part then we just split Q′ into two parts
and handle each separately. We think of P ′ as being
oriented root-wards. If P ′ is a descendant of Q′ then
we orient Q′ root-wards, and if P ′ is independent of Q′
then we orient Q′ leaf-wards. Let M be the |P ′| × |Q′|
matrix whereM [i, j] is the weight of the cut determined
by the i’th edge of P ′ and the j’th edge of Q′. We
observe that the matrix M is a Monge matrix (rather
than Partial Monge). That is, the Monge condition
M [i, j] − M [i, j + 1] ≥ M [i + 1, j] − M [i + 1, j + 1]
holds for any i, j (and not only for i 6= j). This means
that instead of the Klawe-Kleitman algorithm [9] we can
use the SMAWK algorithm [1] that finds the maximum

entry in M by inspecting only a linear O(|P ′| + |Q′|)
number of entries of M (i.e. without the additional
inverse-Ackermann term). Using Lemma 2.1 for each
inspection, this takes O((|P ′| + |Q′|) log n) time. Since
the sum

∑
(|P ′|+ |Q′|) over all interesting pairs of paths

is O(n log n), the overall time is O(n log2 n).
The proof that M is Monge appears in [10, Claim

3.5]. We give one here for completeness.

Lemma 3.1. M [i, j]−M [i, j+ 1] ≥M [i+ 1, j]−M [i+
1, j + 1] for any i, j.

Proof. Recall that the order of edges in P ′ is root-wards
and that that the order of edges in Q′ is root-wards
if P ′ is a descendant of Q′ and leaf-wards if P ′ is
independent of Q′. With this order in mind, let (v1, v2)
and (v3, v4) denote the i’th and (i + 1)’th edges of
P ′ and let (v5, v6) and (v7, v8) denote the j’th and
(j+1)’th edges of Q′ (it is possible that vi = vi+1 when
i is even). Let C1, . . . , C5 denote the five connected
components obtained from T after removing these
four edges, where v1 ∈ C1, v2, v3 ∈ C2, v4, v5 ∈ C3,
v6, v7 ∈ C4, v8 ∈ C5. See Figure 1. Let Cij denote
the total weight of all edges of G between Ci and Cj .
Notice that

M [i, j] = C12 + C13 + C24 + C25 + C34 + C35,

M [i, j + 1] = C12 + C13 + C14 + C25 + C35 + C45,

M [i+ 1, j] = C13 + C23 + C34 + C35,

M [i+ 1, j + 1] = C13 + C14 + C23 + C24 + C35 + C45,

and since C24 ≥ 0 we get that M [i, j] −M [i, j + 1] ≥
M [i+ 1, j]−M [i+ 1, j + 1].

4 Unweighted Graphs and Dense Graphs
The main advantage of the approach of Mukhopadhyay
and Nanongkai [10] is that for restricted graph families
they can plug in range counting/reporting structures
with faster construction time.

4.1 Unweighted graphs. For unweighted graphs
(with parallel edges), [10] used a two dimensional or-
thogonal range counting structure with faster prepro-
cessing [3] and a data structure of [2] to devise a
two dimensional orthogonal range sampling/reporting
data structure with faster preprocessing. They plugged
these improved data structures into their algorithm
for 2-respecting min cut, to obtain a running time of
O(m

√
log n + n log4 n) (multiply this by another log n

factor for the running time of the resulting min cut al-
gorithm). We show that an analogous speedup can be
applied to our simplification (leading to anO(m

√
log n+

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 1: Two independent heavy paths P and Q (solid edges). The red edges are P ′ (oriented root-wards) and
Q′ (oriented leaf-wards). The connected components C1, . . . , C5 (shaded) are obtained by deleting the i’th and
(i+ 1)’th edges of P ′ and the j’th and (j + 1)’th edges of Q′.

n log2 n) time algorithm). In fact, we only need the fol-
lowing range counting structure [3]:

Lemma 4.1. ([3]) Given m points in the 2D plane, we
can construct in O(m

√
logm) time a range counting

structure with O(logm/ log logm) query time.

We use Lemma 4.1 instead of Chazelle’s struc-
ture in the proof of Lemma 2.1. This decreases
the overall running time to O(m

√
logm + n log2 n +

n log n logm/ log logm). If m ≤ n2 log n, this is
O(m

√
log n + n log2 n). Otherwise, we replace the un-

weighted graph G by a new weighted graph G′ with
only n2 edges (by collapsing parallel unweighted edges
into a single weighted edge), and run the previous al-
gorithm in O(n2 log n + n log2 n) = O(m + n log2 n)
time. This gives us an O(m

√
log n + n log2 n) time de-

terministic algorithm for 2-respecting min cut, and an
O(m log3/2 n+ n log3 n) time randomized algorithm for
min cut for unweighted undirected graphs.

4.2 Dense weighted graphs. We now present an-
other speedup that can be applied to dense (weighted)
graphs with m = Ω(n1+ε), for any ε > 0. For such
graphs, we obtain an O(m log n+ n1+ε)-time algorithm
for min cut. We need the following structure:

Lemma 4.2. For any ε > 0, given m ≥ n weighted
points in the [n] × [n] grid, we can construct in O(m)
time a data structure that reports the total weight of all

points in any given rectangle [x1, x2]× [y1, y2] in O(nε)
time.

Proof. It is enough to construct a structure capable of
reporting the total weight of all points in [x, n]× [y, n].
We use the standard approach of decomposing a 2D
query into a number of 1D queries.

We start by designing a 1D structure storing a set
S of weighted numbers (weighted points in 1D) from
[n] that can be constructed in O(|S|) time and returns
the total weight of all numbers in [x, n] in O(nε) time.
Consider a complete tree T of degree B = nε over the
set of leaves [n]. Note that the depth of T is O(1/ε).
We construct and store the subtree TS of T induced
by the leaves that belong to S. This takes O(|S|)
time and space and, assuming that S is given sorted,
we can assume that the children of each node of TS
are sorted. Each node of TS stores the total weight
of all numbers corresponding to its leaves. Then, to
find the total weight of numbers in [x, n], we traverse
TS starting from the root. Let u be the current node
of TS . We scan the (at most) B children of u from
right to left and, as long as all leaves in their subtrees
correspond to numbers from [x, n], we add their stored
total weight to the answer. Then, if the interval of the
leaves corresponding to the next child intersects [x, n]
(but not entirely contained in [x, n]), we recurse on that
child. Overall, there are at most 1/ε steps, each taking
O(B) time, so O(nε) overall.

Our 2D structure for a set of m weighted points

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

from [n]×[n] uses the same idea. We consider a complete
tree T of degree B = nε on the y coordinates. We
construct and store the subtree T ′ of T induced by the
y coordinates of the points. At each node v of T ′ we
store a 1D structure responsible for all the points whose
y coordinate corresponds to a leaf in the subtree of v.
Overall, each point is stored at 1/ε nodes of T ′. By first
sorting all the points in O(n + m) = O(m) time with
radix sort we can assume that the points received by
every 1D structure are sorted, and construct all the 1D
structures in O(1/ε ·m) = O(m) total time.

Then, a query [x, n]× [y, n] is decomposed into 1/ε ·
B = O(nε) queries to the 1D structures by proceeding as
above: we descend from the root, scanning the children
of the current node from right to left, issuing a 1D query
to every child corresponding to a y interval completely
contained in [y, n], and then possibly recursing on the
next child if its y interval intersects [y, n]. Each 1D
query takes O(nε) time, and there are O(1/ε·nε) queries,
so overall the query time is O(n2ε). By adjusting ε we
obtain the lemma.

By replacing Chazelle’s structure with Lemma 4.2,
we obtain an algorithm with running time O(m +
n log2 n + n1+ε log n). Because m ≤ n2, by adjusting
ε, this implies an O(m log n+ n1+ε)-time algorithm for
min cut for any constant ε > 0.

References

[1] Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Pe-
ter W. Shor, and Robert E. Wilber. Geometric appli-
cations of a matrix-searching algorithm. Algorithmica,
2(1):195–208, 1987.

[2] Maxim A. Babenko, Pawel Gawrychowski, Tomasz
Kociumaka, and Tatiana Starikovskaya. Wavelet trees
meet suffix trees. In 26th SODA, pages 572–591, 2015.

[3] Timothy M. Chan and Mihai Patrascu. Counting in-
versions, offline orthogonal range counting, and related
problems. In 21st SODA, pages 161–173, 2010.

[4] Bernard Chazelle. A functional approach to data
structures and its use in multidimensional searching.
SIAM J. Comput., 17(3):427–462, 1988.

[5] Pawel Gawrychowski, Shay Mozes, and Oren
Weimann. Minimum cut in O(m log2 n) time.
CoRR, abs/1911.01145, 2019.

[6] Pawel Gawrychowski, Shay Mozes, and Oren
Weimann. Minimum cut in O(m log2 n) time. In
47th ICALP, pages 57:1–57:15, 2020.

[7] Dov Harel and Robert E. Tarjan. Fast algorithms for
finding nearest common ancestors. SIAM J. Comput.,
13(2):338–355, 1984.

[8] David R. Karger. Minimum cuts in near-linear time. J.
ACM, 47(1):46–76, 2000. Announced at STOC 1996.

[9] Maria M. Klawe and Daniel J. Kleitman. An almost
linear time algorithm for generalized matrix searching.
SIAM Journal Discret. Math., 3(1):81–97, 1990.

[10] Sagnik Mukhopadhyay and Danupon Nanongkai.
Weighted min-cut: Sequential, cut-query and stream-
ing algorithms. In 52nd STOC, pages 496–509, 2020.

[11] Daniel D. Sleator and Robert Endre Tarjan. A data
structure for dynamic trees. J. Comput. Syst. Sci.,
26(3):362–391, 1983.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	The Algorithm of Mukhopadhyay and Nanongkai Danupon
	Two edges in the same heavy path.
	Two edges in different heavy paths.

	The Simplification
	Finding interesting path pairs.
	Checking interesting path pairs.

	Unweighted Graphs and Dense Graphs
	Unweighted graphs.
	Dense weighted graphs.

