## Minimum Cut in $\mathcal{O}\left(m \log ^{2} n\right)$ Time

# Paweł Gawrychowski ${ }^{1}$ Shay Mozes ${ }^{2}$ Oren Weimann ${ }^{3}$ 

${ }^{1}$ University of Wrocław, Poland<br>${ }^{2}$ The Interdisciplinary Center Herzliya, Israel<br>${ }^{3}$ University of Haifa, Israel

## Slides by Paweł Gawrychowski1

## (Global) Minimum Cut

## Input: undirected edge-weighted graph $G=(V, E)$ <br> Output: nonempty $S \subset V$ minimizing the total weight of edges between $S$ and $V \backslash S$

## (Global) Minimum Cut

Input: undirected edge-weighted graph $G=(V, E)$
Output: nonempty $S \subset V$ minimizing the total weight of edges between $S$ and $V \backslash S$


Solvable in polynomial time with $n-1$ maximum flow computations.

## (Global) Minimum Cut

Input: undirected edge-weighted graph $G=(V, E)$
Output: nonempty $S \subset V$ minimizing the total weight of edges between $S$ and $V \backslash S$


Solvable in polynomial time with $n-1$ maximum flow computations.

## (Global) Minimum Cut

Input: undirected edge-weighted graph $G=(V, E)$
Output: nonempty $S \subset V$ minimizing the total weight of edges between $S$ and $V \backslash S$


Solvable in polynomial time with $n-1$ maximum flow computations.

## (Global) Minimum Cut

Input: undirected edge-weighted graph $G=(V, E)$
Output: nonempty $S \subset V$ minimizing the total weight of edges between $S$ and $V \backslash S$


Solvable in polynomial time with $n-1$ maximum flow computations.

The fastest maximum flow algorithm works in $\mathcal{O}(n m)$ time, so applying it $n-1$ times results in $\mathcal{O}\left(n^{2} m\right)$ complexity. Is there a faster algorithm?


The fastest maximum flow algorithm works in $\mathcal{O}(n m)$ time, so applying it $n-1$ times results in $\mathcal{O}\left(n^{2} m\right)$ complexity. Is there a faster algorithm?

## Hao and Orlin 1994

Roughly speaking, a single maximum flow computation suffices, resulting in $\mathcal{O}\left(m n \log \left(n^{2} / m\right)\right)$ complexity.

In $\mathcal{O}(m+n \log n)$ time we can either find the global minimum cut or
isolate an edge that doesn't cross it. This edge can then be contracted and the procedure repeated, resulting in $\mathcal{O}\left(m n+n^{2} \log n\right)$ complexity.

The fastest maximum flow algorithm works in $\mathcal{O}(n m)$ time, so applying it $n-1$ times results in $\mathcal{O}\left(n^{2} m\right)$ complexity. Is there a faster algorithm?

## Hao and Orlin 1994

Roughly speaking, a single maximum flow computation suffices, resulting in $\mathcal{O}\left(m n \log \left(n^{2} / m\right)\right)$ complexity.

## Nagamochi and lbaraki 1992

In $\mathcal{O}(m+n \log n)$ time we can either find the global minimum cut or isolate an edge that doesn't cross it. This edge can then be contracted and the procedure repeated, resulting in $\mathcal{O}\left(m n+n^{2} \log n\right)$ complexity.

The fastest maximum flow algorithm works in $\mathcal{O}(n m)$ time, so applying it $n-1$ times results in $\mathcal{O}\left(n^{2} m\right)$ complexity. Is there a faster algorithm?

## Hao and Orlin 1994

Roughly speaking, a single maximum flow computation suffices, resulting in $\mathcal{O}\left(m n \log \left(n^{2} / m\right)\right)$ complexity.

## Nagamochi and lbaraki 1992

In $\mathcal{O}(m+n \log n)$ time we can either find the global minimum cut or isolate an edge that doesn't cross it. This edge can then be contracted and the procedure repeated, resulting in $\mathcal{O}\left(m n+n^{2} \log n\right)$ complexity.

## Karger and Stein 1996

A different method based on recursion and contracting a randomly chosen edge finds the global minimum cut in $\mathcal{O}\left(n^{2} \log ^{3} n\right)$ time with high probability.

The fastest maximum flow algorithm works in $\mathcal{O}(n m)$ time, so applying it $n-1$ times results in $\mathcal{O}\left(n^{2} m\right)$ complexity. Is there a faster algorithm?

## Hao and Orlin 1994

Roughly speaking, a single maximum flow computation suffices, resulting in $\mathcal{O}\left(m n \log \left(n^{2} / m\right)\right)$ complexity.

## Nagamochi and lbaraki 1992

In $\mathcal{O}(m+n \log n)$ time we can either find the global minimum cut or isolate an edge that doesn't cross it. This edge can then be contracted and the procedure repeated, resulting in $\mathcal{O}\left(m n+n^{2} \log n\right)$ complexity.

## Karger and Stein 1996

A different method based on recursion and contracting a randomly chosen edge finds the global minimum cut in $\mathcal{O}\left(n^{2} \log ^{3} n\right)$ time with high probability.

## Is there a more efficient algorithm for sparse graphs?

## Karger's framework

In 1996, Karger announced a faster $\mathcal{O}\left(m \log ^{3} n\right)$ time algorithm that finds the minimum cut with high probability by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

Minimum k-respecting cut
Given a spanning tree $T$, find the minimum cut crossed by exactly $k$ of
its edges.

## Karger's framework

In 1996, Karger announced a faster $\mathcal{O}\left(m \log ^{3} n\right)$ time algorithm that finds the minimum cut with high probability by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

## Minimum $k$-respecting cut

Given a spanning tree $T$, find the minimum cut crossed by exactly $k$ of its edges.

## Karger's framework

In 1996, Karger announced a faster $\mathcal{O}\left(m \log ^{3} n\right)$ time algorithm that finds the minimum cut with high probability by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

## Minimum $k$-respecting cut

Given a spanning tree $T$, find the minimum cut crossed by exactly $k$ of its edges.


## Karger's framework

In 1996, Karger announced a faster $\mathcal{O}\left(m \log ^{3} n\right)$ time algorithm that finds the minimum cut with high probability by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

## Minimum $k$-respecting cut

Given a spanning tree $T$, find the minimum cut crossed by exactly $k$ of its edges.


## Karger's framework

In 1996, Karger announced a faster $\mathcal{O}\left(m \log ^{3} n\right)$ time algorithm that finds the minimum cut with high probability by solving $\mathcal{O}(\log n)$ independent instances of a more structured problem.

## Minimum $k$-respecting cut

Given a spanning tree $T$, find the minimum cut crossed by exactly $k$ of its edges.


## Karger's framework

## Nash-Williams 1961

An unweighted graph with minimum cut $c$ contains a set of $c / 2$ edge-disjoint spanning trees (and clearly not more than $c$ such trees).

```
If we had such c/2 edge-disjoint trees then the average number of
edges from the minimum cut per tree is 2, hence the minimum cut 1- or
2-respects one of these trees.
However, this observation was not straightforward to use:
    (1) One needs to work with weighted graphs.
    2 c might be large, and there might be not enough time to find the
    c/2 trees.
    3) How to efficiently find the minimum 1- and 2-respecting cut?
```


## Karger's framework

## Nash-Williams 1961

An unweighted graph with minimum cut $c$ contains a set of $c / 2$ edge-disjoint spanning trees (and clearly not more than $c$ such trees).

If we had such $c / 2$ edge-disjoint trees then the average number of edges from the minimum cut per tree is 2 , hence the minimum cut 1 - or 2 -respects one of these trees.
However, this observation was not straightforward to use:

- One needs to work with weighted graphs.c might be large, and there might be not enough time to find the c/2 trees.
(0) How to efficiently find the minimum 1
and 2-respecting cut?


## Karger's framework

## Nash-Williams 1961

An unweighted graph with minimum cut $c$ contains a set of $c / 2$ edge-disjoint spanning trees (and clearly not more than $c$ such trees).

If we had such $c / 2$ edge-disjoint trees then the average number of edges from the minimum cut per tree is 2 , hence the minimum cut 1 - or 2 -respects one of these trees.
However, this observation was not straightforward to use:One needs to work with weighted graphs.
c might be large, and there might be not enough time to find the $c / 2$ trees.
(1) How to efficiently find the minimum 1

## Karger's framework

## Nash-Williams 1961

An unweighted graph with minimum cut $c$ contains a set of $c / 2$ edge-disjoint spanning trees (and clearly not more than $c$ such trees).

If we had such $c / 2$ edge-disjoint trees then the average number of edges from the minimum cut per tree is 2 , hence the minimum cut 1 - or 2 -respects one of these trees.
However, this observation was not straightforward to use:
(1) One needs to work with weighted graphs.
(3) $c$ might be large, and there might be not enough time to find
$c / 2$ trees.
(30w to efficiently find the minimum 1 - and 2 -respecting cut?

## Karger's framework

## Nash-Williams 1961

An unweighted graph with minimum cut $c$ contains a set of $c / 2$ edge-disjoint spanning trees (and clearly not more than $c$ such trees).

If we had such $c / 2$ edge-disjoint trees then the average number of edges from the minimum cut per tree is 2 , hence the minimum cut 1 - or 2 -respects one of these trees.
However, this observation was not straightforward to use:
(1) One needs to work with weighted graphs.
(2) $c$ might be large, and there might be not enough time to find the $c / 2$ trees.

## Karger's framework

## Nash-Williams 1961

An unweighted graph with minimum cut $c$ contains a set of $c / 2$ edge-disjoint spanning trees (and clearly not more than $c$ such trees).

If we had such $c / 2$ edge-disjoint trees then the average number of edges from the minimum cut per tree is 2 , hence the minimum cut 1 - or 2 -respects one of these trees.
However, this observation was not straightforward to use:
(1) One needs to work with weighted graphs.
(2) $c$ might be large, and there might be not enough time to find the $c / 2$ trees.
© How to efficiently find the minimum 1- and 2 -respecting cut?

## Karger's framework

Weighted tree packing
A set of spanning trees, each with its assigned weight, such that the total weight of all trees containing an edge is at most its weight.
(1) Find in $\mathcal{O}(m+n \log n)$ time an unweighted graph $H$ with $\mathcal{O}(n \log n)$ edges and minimum cut $c^{\prime}=\mathcal{O}(\log n)$, such that the minimum cut in $G$ corresponds to a $7 / 6$-minimum cut in $H$.
(2) Apply the algorithm of Plotkin-Shmoys-Tardos to find a tree packing of total weight $5 / 12 c^{\prime}$ in $\mathcal{O}\left(n \log ^{3} n\right)$ time.
(3) Fraction of the total weight of all trees in the packing 1 - or 2 -respected by the minimum cut of $G$ must be at least $1 / 10$.

Choosing $\mathcal{O}(\log n)$ trees from the packing (with probability equal to the weight) guarantees that w.h.p. we obtain a tree 1- or 2-respected by the minimum cut.

## Karger's framework

## Weighted tree packing

A set of spanning trees, each with its assigned weight, such that the total weight of all trees containing an edge is at most its weight.
(1) Find in $\mathcal{O}(m+n \log n)$ time an unweighted graph $H$ with $\mathcal{O}(n \log n)$ edges and minimum cut $c^{\prime}=\mathcal{O}(\log n)$, such that the minimum cut in $G$ corresponds to a 7/6-minimum cut in $H$.


Apply the algorithm of Plotkin-Shmoys-Tardos to find a tree packing of total weight $5 / 12 c^{\prime}$ in $\mathcal{O}\left(n \log ^{3} n\right)$ time.Fraction of the total weight of all trees in the packing 1 - or 2 -respected by the minimum cut of $G$ must be at least $1 / 10$

Choosing $\mathcal{O}(\log n)$ trees from the packing (with probability equal to the weight) guarantees that w.h.p. we obtain a tree 1- or 2-respected by

## Karger's framework

## Weighted tree packing

A set of spanning trees, each with its assigned weight, such that the total weight of all trees containing an edge is at most its weight.
(1) Find in $\mathcal{O}(m+n \log n)$ time an unweighted graph $H$ with $\mathcal{O}(n \log n)$ edges and minimum cut $c^{\prime}=\mathcal{O}(\log n)$, such that the minimum cut in $G$ corresponds to a 7/6-minimum cut in $H$.
(2) Apply the algorithm of Plotkin-Shmoys-Tardos to find a tree packing of total weight $5 / 12 c^{\prime}$ in $\mathcal{O}\left(n \log ^{3} n\right)$ time.

2 -respected by the minimum cut of $G$ must be at least $1 / 10$.
Choosing $\mathcal{O}(\log n)$ trees from the packing (with probability equal to the weight) guarantees that w.h.p. we obtain a tree 1- or 2-respected by

## Karger's framework

## Weighted tree packing

A set of spanning trees, each with its assigned weight, such that the total weight of all trees containing an edge is at most its weight.
(1) Find in $\mathcal{O}(m+n \log n)$ time an unweighted graph $H$ with $\mathcal{O}(n \log n)$ edges and minimum cut $c^{\prime}=\mathcal{O}(\log n)$, such that the minimum cut in $G$ corresponds to a 7/6-minimum cut in $H$.
(2) Apply the algorithm of Plotkin-Shmoys-Tardos to find a tree packing of total weight $5 / 12 c^{\prime}$ in $\mathcal{O}\left(n \log ^{3} n\right)$ time.
(3) Fraction of the total weight of all trees in the packing 1- or 2 -respected by the minimum cut of $G$ must be at least $1 / 10$.
Choosing $\mathcal{O}(\log n)$ trees from the packing (with probability equal to the weight) guarantees that w.h.p. we obtain a tree 1- or 2-respected by the minimum cut.

## Karger's framework

## Weighted tree packing

A set of spanning trees, each with its assigned weight, such that the total weight of all trees containing an edge is at most its weight.
(1) Find in $\mathcal{O}(m+n \log n)$ time an unweighted graph $H$ with $\mathcal{O}(n \log n)$ edges and minimum cut $c^{\prime}=\mathcal{O}(\log n)$, such that the minimum cut in $G$ corresponds to a 7/6-minimum cut in $H$.
(2) Apply the algorithm of Plotkin-Shmoys-Tardos to find a tree packing of total weight $5 / 12 c^{\prime}$ in $\mathcal{O}\left(n \log ^{3} n\right)$ time.
(3) Fraction of the total weight of all trees in the packing 1- or 2 -respected by the minimum cut of $G$ must be at least $1 / 10$.

Choosing $\mathcal{O}(\log n)$ trees from the packing (with probability equal to the weight) guarantees that w.h.p. we obtain a tree 1- or 2-respected by the minimum cut.

## 1-Respecting Minimum Cut

Karger showed that this is actually fairly easy:


This information can be propagated in $\mathcal{O}(m)$ overall time.

## 1-Respecting Minimum Cut

Karger showed that this is actually fairly easy:


## 1-Respecting Minimum Cut

Karger showed that this is actually fairly easy:


## 1-Respecting Minimum Cut

Karger showed that this is actually fairly easy:


This information can be propagated in $\mathcal{O}(m)$ overall time.

## 1-Respecting Minimum Cut

Karger showed that this is actually fairly easy:


This information can be propagated in $\mathcal{O}(m)$ overall time.

## 2-Respecting Minimum Cut

Sought $e$ and $e^{\prime}$ can either be independent or descendant.


## 2-Respecting Minimum Cut

Sought $e$ and $e^{\prime}$ can either be independent or descendant.


## 2-Respecting Minimum Cut

Sought $e$ and $e^{\prime}$ can either be independent or descendant.


## 2-Respecting Minimum Cut

For both cases, Karger's algorithm operates in $\mathcal{O}(\log n)$ phases that iteratively contracting paths (called boughs) consisting of nodes with exactly one child terminating at a leaf. Each phase is implemented with link-cut trees in $\mathcal{O}(m \log n)$ time.

Karger 1996
Minimum cut that 2-respects a spanning tree can be found in $\mathcal{O}\left(m \log ^{2} n\right)$ time.

But... no one was able to succeed in doing so!

## 2-Respecting Minimum Cut

For both cases, Karger's algorithm operates in $\mathcal{O}(\log n)$ phases that iteratively contracting paths (called boughs) consisting of nodes with exactly one child terminating at a leaf. Each phase is implemented with link-cut trees in $\mathcal{O}(m \log n)$ time.

## Karger 1996

Minimum cut that 2-respects a spanning tree can be found in $\mathcal{O}\left(m \log ^{2} n\right)$ time.

## 2-Respecting Minimum Cut

For both cases, Karger's algorithm operates in $\mathcal{O}(\log n)$ phases that iteratively contracting paths (called boughs) consisting of nodes with exactly one child terminating at a leaf. Each phase is implemented with link-cut trees in $\mathcal{O}(m \log n)$ time.

## Karger 1996

Minimum cut that 2-respects a spanning tree can be found in $\mathcal{O}\left(m \log ^{2} n\right)$ time.

- Give a dynamic path-minimization data structure taking constant amortized time per operation. This would reduce the running time by a $\log n$ factor. We are not using the full power of dynamic trees (in particular, the tree on which we operate is static, and the sequence of operations is known in advance), so this might be possible.
- Extend the approach for boughs directly to trees in order to avoid the $O(\log n)$ different phases needed for pruning boughs. This too would reduce the running time by a $\log n$ factor.

But... no one was able to succeed in doing so

## 2-Respecting Minimum Cut

For both cases, Karger's algorithm operates in $\mathcal{O}(\log n)$ phases that iteratively contracting paths (called boughs) consisting of nodes with exactly one child terminating at a leaf. Each phase is implemented with link-cut trees in $\mathcal{O}(m \log n)$ time.

## Karger 1996

Minimum cut that 2-respects a spanning tree can be found in $\mathcal{O}\left(m \log ^{2} n\right)$ time.

- Give a dynamic path-minimization data structure taking constant amortized time per operation. This would reduce the running time by a $\log n$ factor. We are not using the full power of dynamic trees (in particular, the tree on which we operate is static, and the sequence of operations is known in advance), so this might be possible.
- Extend the approach for boughs directly to trees in order to avoid the $O(\log n)$ different phases needed for pruning boughs. This too would reduce the running time by a $\log n$ factor.


## But... no one was able to succeed in doing so!

## Recent Developments

Henzinger, Rao, and Wang 2017
A faster $\mathcal{O}\left(m \log ^{2} n(\log \log n)^{2}\right)$ time deterministic algorithm for simple unweighted graphs.

> Ghaffari, Nowicki and Thorup 2020
> An even faster $\mathcal{O}\left(\min \left\{m+n \log ^{3} n, m \log n\right\}\right)$ time algorithm for simple unweighted graphs.

Lovett and Sandlund 2020
A different take on the 2-respecting problem based on top trees instead of link-cut trees, and iterating over the edges of $T$ guided by heavy-light decomposition. Also $\mathcal{O}\left(m \log ^{2} n\right)$ time, but simpler.

## Recent Developments

Henzinger, Rao, and Wang 2017
A faster $\mathcal{O}\left(m \log ^{2} n(\log \log n)^{2}\right)$ time deterministic algorithm for simple unweighted graphs.

## Ghaffari, Nowicki and Thorup 2020

An even faster $\mathcal{O}\left(\min \left\{m+n \log ^{3} n, m \log n\right\}\right)$ time algorithm for simple unweighted graphs.

Lovett and Sandlund 2020
A different take on the 2-respecting problem based on top trees
instead of link-cut trees, and iterating over the edges of $T$ guided by heavy-light decomposition. Also $\mathcal{O}\left(m \log ^{2} n\right)$ time, but simpler.

## Recent Developments

Henzinger, Rao, and Wang 2017
A faster $\mathcal{O}\left(m \log ^{2} n(\log \log n)^{2}\right)$ time deterministic algorithm for simple unweighted graphs.

## Ghaffari, Nowicki and Thorup 2020

An even faster $\mathcal{O}\left(\min \left\{m+n \log ^{3} n, m \log n\right\}\right)$ time algorithm for simple unweighted graphs.

## Lovett and Sandlund 2020

A different take on the 2 -respecting problem based on top trees instead of link-cut trees, and iterating over the edges of $T$ guided by heavy-light decomposition. Also $\mathcal{O}\left(m \log ^{2} n\right)$ time, but simpler.

## Our Contribution

(1) The main technical contribution is a deterministic $\mathcal{O}(m \log n)$ time solution for the 2-respecting problem.
(2) To obtain an improvement on the overall $\mathcal{O}\left(m \log ^{3} n\right)$ complexity of
Karger's algorithm, we also design an alternative sampling
procedure that produces the $\mathcal{O}(\log n)$ spanning trees in
$\mathcal{O}\left(m \log ^{2} n\right)$ instead of $\mathcal{O}\left(m+n \log ^{3} n\right)$ time.
(8) This gives us the minimum cut in $\mathcal{O}\left(m \log ^{2} n\right)$ time.

Mukhopadhyay and Nanongkai 2020
Independently of our result, solves the 2-respecting problem in $\mathcal{O}\left(m \log n+n \log ^{3} n\right)$ randomised time.

## Our Contribution

(1) The main technical contribution is a deterministic $\mathcal{O}(m \log n)$ time solution for the 2-respecting problem.
(2) To obtain an improvement on the overall $\mathcal{O}\left(m \log ^{3} n\right)$ complexity of Karger's algorithm, we also design an alternative sampling procedure that produces the $\mathcal{O}(\log n)$ spanning trees in $\mathcal{O}\left(m \log ^{2} n\right)$ instead of $\mathcal{O}\left(m+n \log ^{3} n\right)$ time.
(3) This gives us the minimum cut in $\mathcal{O}\left(m \log ^{2} n\right)$ time.

Mukhopadhyay and Nanongkai 2020
Independently of our result, solves the 2-respecting problem in $\mathcal{O}\left(m \log n+n \log ^{3} n\right)$ randomised time.

## Our Contribution

(1) The main technical contribution is a deterministic $\mathcal{O}(m \log n)$ time solution for the 2-respecting problem.
(2) To obtain an improvement on the overall $\mathcal{O}\left(m \log ^{3} n\right)$ complexity of Karger's algorithm, we also design an alternative sampling procedure that produces the $\mathcal{O}(\log n)$ spanning trees in $\mathcal{O}\left(m \log ^{2} n\right)$ instead of $\mathcal{O}\left(m+n \log ^{3} n\right)$ time.
(3) This gives us the minimum cut in $\mathcal{O}\left(m \log ^{2} n\right)$ time.

Mukhopadhyay and Nanongkai 2020
Independently of our result, solves the 2-respecting problem in

## Our Contribution

(1) The main technical contribution is a deterministic $\mathcal{O}(m \log n)$ time solution for the 2-respecting problem.
(2) To obtain an improvement on the overall $\mathcal{O}\left(m \log ^{3} n\right)$ complexity of Karger's algorithm, we also design an alternative sampling procedure that produces the $\mathcal{O}(\log n)$ spanning trees in $\mathcal{O}\left(m \log ^{2} n\right)$ instead of $\mathcal{O}\left(m+n \log ^{3} n\right)$ time.
(3) This gives us the minimum cut in $\mathcal{O}\left(m \log ^{2} n\right)$ time.

## Mukhopadhyay and Nanongkai 2020

Independently of our result, solves the 2-respecting problem in $\mathcal{O}\left(m \log n+n \log ^{3} n\right)$ randomised time.

## Faster Sampling

(1) Find constant approximation of $c$ using Matula's algorithm. We implement it in $\mathcal{O}\left(m \log ^{2} n\right)$ time.
(3) Edges with weight larger than c can be now contracted, and we think of an edge with weight $w$ as $w$ parallel unweighted edges.
(3) Sample $\lceil p m\rceil$ (unweighted) edges, where $p=\Theta(\log n) / c$, to obtain graph $H$ with minimum cut $c^{\prime}=\mathcal{O}(\log n)$. This can be implemented in $\mathcal{O}(m c \cdot \log m)=\mathcal{O}\left(m \log ^{2} n\right)$ time w.h.p.
(4) Apply the following specialised instantiation of Young's variant of the Lagrangian packing technique:
1: $\ell(e):=0$ for all $e \in E(H)$
2: while there is no $e$ with $\ell(e) \geq 1$ do
3: find a minimum spanning tree $T$ w.r.t. $\ell(\cdot)$
4: $\quad w(T)=w(T)+1 /\left(96 \ln m^{\prime}\right)$
5: $\quad \ell(e)=\ell(e)+1 /\left(96 \ln m^{\prime}\right)$ for all $e \in T$
6: end while
$\mathcal{O}\left(c^{\prime} \cdot \log n\right)=\mathcal{O}\left(\log ^{2} n\right)$ iterations, each in $\mathcal{O}(m)$ time.

## Faster Sampling

(1) Find constant approximation of $c$ using Matula's algorithm. We implement it in $\mathcal{O}\left(m \log ^{2} n\right)$ time.
(2) Edges with weight larger than $c$ can be now contracted, and we think of an edge with weight $w$ as $w$ parallel unweighted edges.


## Faster Sampling

(1) Find constant approximation of $c$ using Matula's algorithm. We implement it in $\mathcal{O}\left(m \log ^{2} n\right)$ time.
(2) Edges with weight larger than $c$ can be now contracted, and we think of an edge with weight $w$ as $w$ parallel unweighted edges.
(3) Sample $\lceil p m\rceil$ (unweighted) edges, where $p=\Theta(\log n) / c$, to obtain graph $H$ with minimum cut $c^{\prime}=\mathcal{O}(\log n)$. This can be implemented in $\mathcal{O}(m c \cdot \log m)=\mathcal{O}\left(m \log ^{2} n\right)$ time w.h.p.


## Faster Sampling

(1) Find constant approximation of $c$ using Matula's algorithm. We implement it in $\mathcal{O}\left(m \log ^{2} n\right)$ time.
(2) Edges with weight larger than $c$ can be now contracted, and we think of an edge with weight $w$ as $w$ parallel unweighted edges.
(3) Sample $\lceil p m\rceil$ (unweighted) edges, where $p=\Theta(\log n) / c$, to obtain graph $H$ with minimum cut $c^{\prime}=\mathcal{O}(\log n)$. This can be implemented in $\mathcal{O}(m c \cdot \log m)=\mathcal{O}\left(m \log ^{2} n\right)$ time w.h.p.
(4) Apply the following specialised instantiation of Young's variant of the Lagrangian packing technique:
1: $\ell(e):=0$ for all $e \in E(H)$
2: while there is no $e$ with $\ell(e) \geq 1$ do
3: find a minimum spanning tree $T$ w.r.t. $\ell(\cdot)$
4: $\quad w(T)=w(T)+1 /\left(96 \ln m^{\prime}\right)$
5: $\quad \ell(e)=\ell(e)+1 /\left(96 \ln m^{\prime}\right)$ for all $e \in T$
6: end while

## Faster Sampling

(1) Find constant approximation of $c$ using Matula's algorithm. We implement it in $\mathcal{O}\left(m \log ^{2} n\right)$ time.
(2) Edges with weight larger than $c$ can be now contracted, and we think of an edge with weight $w$ as $w$ parallel unweighted edges.
(3) Sample $\lceil p m\rceil$ (unweighted) edges, where $p=\Theta(\log n) / c$, to obtain graph $H$ with minimum cut $c^{\prime}=\mathcal{O}(\log n)$. This can be implemented in $\mathcal{O}(m c \cdot \log m)=\mathcal{O}\left(m \log ^{2} n\right)$ time w.h.p.
(4) Apply the following specialised instantiation of Young's variant of the Lagrangian packing technique:
1: $\ell(e):=0$ for all $e \in E(H)$
2: while there is no $e$ with $\ell(e) \geq 1$ do
3: find a minimum spanning tree $T$ w.r.t. $\ell(\cdot)$
4: $\quad w(T)=w(T)+1 /\left(96 \ln m^{\prime}\right)$
5: $\quad \ell(e)=\ell(e)+1 /\left(96 \ln m^{\prime}\right)$ for all $e \in T$
6: end while
$\mathcal{O}\left(c^{\prime} \cdot \log n\right)=\mathcal{O}\left(\log ^{2} n\right)$ iterations, each in $\mathcal{O}(m)$ time.

## Overview

## We obtain in $\mathcal{O}\left(m \log ^{2} n\right)$ time a collection of $\mathcal{O}(\log n)$ spanning trees $T_{1}, T_{2}, \ldots$ such that the minimum cut 1 - or 2 -respects some $T_{i}$.

Now we iterate over every tree $T_{i}$ and:

- Find the minimum 1 -respecting cut in $\mathcal{O}(m)$ time.
(2) Find the minimum 2 -respecting cut defined by dependent edges in
$O(m \log n)$ time.
© To find the minimum 2 -respecting cut defined by independent edges, obtain in $\mathcal{O}(m \log n)$ time a number of instances of a bipartite problem of total size $\mathcal{O}^{\prime}(m)$
(4) Solve each size-s instance of a bipartite problem in $\mathcal{O}(s \log s)$ time.

This sums up to $\mathcal{O}\left(m \log ^{2} n\right)$ as promised.

## Overview

We obtain in $\mathcal{O}\left(m \log ^{2} n\right)$ time a collection of $\mathcal{O}(\log n)$ spanning trees $T_{1}, T_{2}, \ldots$ such that the minimum cut 1 - or 2-respects some $T_{i}$.

Now we iterate over every tree $T_{i}$ and:Find the minimum 1-respecting cut in $\mathcal{O}(m)$ time.
Find the minimum 2-respecting cut defined by dependent edges in
$\mathcal{O}(m \log n)$ time.
(8) To find the minimum 2-respecting cut defined by independent edges, obtain in $\mathcal{O}(m \log n)$ time a number of instances of a bipartite problem of total size $\mathcal{O}(m)$.
(9) Solve each size-s instance of a bipartite problem in $\mathcal{O}(s \log s)$ time.

This sums up to $\mathcal{O}\left(m \log ^{2} n\right)$ as promised.

## Overview

We obtain in $\mathcal{O}\left(m \log ^{2} n\right)$ time a collection of $\mathcal{O}(\log n)$ spanning trees $T_{1}, T_{2}, \ldots$ such that the minimum cut 1 - or 2-respects some $T_{i}$.

Now we iterate over every tree $T_{i}$ and:
(1) Find the minimum 1 -respecting cut in $\mathcal{O}(m)$ time.
(3) Find the minimum 2 -respecting cut defined by dependent edges in
(3) To find the minimum 2 -respecting cut defined by independent edges, obtain in $\mathcal{O}(m \log n)$ time a number of instances of a biparitite problem of total size $\mathcal{O}^{\prime}(m)$.
(9) Solve each size-s instance of a bipartite problem in $\mathcal{O}(s \log s)$ time.

This sums up to $\mathcal{O}\left(m \log ^{2} n\right)$ as promised.

## Overview

We obtain in $\mathcal{O}\left(m \log ^{2} n\right)$ time a collection of $\mathcal{O}(\log n)$ spanning trees $T_{1}, T_{2}, \ldots$ such that the minimum cut 1- or 2-respects some $T_{i}$.

Now we iterate over every tree $T_{i}$ and:
(1) Find the minimum 1-respecting cut in $\mathcal{O}(m)$ time.
(2) Find the minimum 2-respecting cut defined by dependent edges in $\mathcal{O}(m \log n)$ time.To find the minimum 2-respecting cut defined by independent edges, obtain in $\mathcal{O}(m \log n)$ time a number of instances of a bipartite problem of total size $\mathcal{O}(m)$
(9) Solve each size-s instance of a bipartite problem in $\mathcal{O}(s \log s)$ time.

This sums up to $\mathcal{O}\left(m \log ^{2} n\right)$ as promised.

## Overview

We obtain in $\mathcal{O}\left(m \log ^{2} n\right)$ time a collection of $\mathcal{O}(\log n)$ spanning trees $T_{1}, T_{2}, \ldots$ such that the minimum cut 1- or 2-respects some $T_{i}$.

Now we iterate over every tree $T_{i}$ and:
(1) Find the minimum 1-respecting cut in $\mathcal{O}(m)$ time.
(2) Find the minimum 2-respecting cut defined by dependent edges in $\mathcal{O}(m \log n)$ time.
(3) To find the minimum 2-respecting cut defined by independent edges, obtain in $\mathcal{O}(m \log n)$ time a number of instances of a bipartite problem of total size $\mathcal{O}(m)$.
(9) Solve each size-s instance of a bipartite problem in $\mathcal{O}(s \log s)$ time.

This sums up to $\mathcal{O}\left(m \log ^{2} n\right)$ as promised.

## Overview

We obtain in $\mathcal{O}\left(m \log ^{2} n\right)$ time a collection of $\mathcal{O}(\log n)$ spanning trees $T_{1}, T_{2}, \ldots$ such that the minimum cut 1 - or 2 -respects some $T_{i}$.

Now we iterate over every tree $T_{i}$ and:
(1) Find the minimum 1-respecting cut in $\mathcal{O}(m)$ time.
(2) Find the minimum 2 -respecting cut defined by dependent edges in $\mathcal{O}(m \log n)$ time.
(3) To find the minimum 2 -respecting cut defined by independent edges, obtain in $\mathcal{O}(m \log n)$ time a number of instances of a bipartite problem of total size $\mathcal{O}(m)$.
(1) Solve each size-s instance of a bipartite problem in $\mathcal{O}(s \log s)$ time.

This sums up to $\mathcal{O}\left(m \log ^{2} n\right)$ as promised.

## Overview

We obtain in $\mathcal{O}\left(m \log ^{2} n\right)$ time a collection of $\mathcal{O}(\log n)$ spanning trees $T_{1}, T_{2}, \ldots$ such that the minimum cut 1 - or 2 -respects some $T_{i}$.

Now we iterate over every tree $T_{i}$ and:
(1) Find the minimum 1-respecting cut in $\mathcal{O}(m)$ time.
(2) Find the minimum 2-respecting cut defined by dependent edges in $\mathcal{O}(m \log n)$ time.
(3) To find the minimum 2-respecting cut defined by independent edges, obtain in $\mathcal{O}(m \log n)$ time a number of instances of a bipartite problem of total size $\mathcal{O}(m)$.
(4) Solve each size-s instance of a bipartite problem in $\mathcal{O}(s \log s)$ time.

This sums up to $\mathcal{O}\left(m \log ^{2} n\right)$ as promised.

## Dependent Edges

Link-cut trees implement the following operations in $\mathcal{O}(\log n)$ time:
(3) add $\Delta$ to the score of every edge on a path,
(3) return edge with the smallest score in a subtree. We binarise $T$ and sweep over its edges maintaining the scores.

## Dependent Edges

Link-cut trees implement the following operations in $\mathcal{O}(\log n)$ time:
(1) add $\Delta$ to the score of every edge on a path, (2) return edge with the smallest score in a subtree. We binarise $T$ and sweep over its edges maintaining the scores.

## Dependent Edges

Link-cut trees implement the following operations in $\mathcal{O}(\log n)$ time:
(1) add $\Delta$ to the score of every edge on a path,
(2) return edge with the smallest score in a subtree.

We binarise $T$ and sweep over its edges maintaining the scores.

## Dependent Edges

Link-cut trees implement the following operations in $\mathcal{O}(\log n)$ time:
(0) add $\Delta$ to the score of every edge on a path,
(2) return edge with the smallest score in a subtree.

We binarise $T$ and sweep over its edges maintaining the scores.

> For every $e^{\prime} \in T(e)$, the weight of a cut defined by $\left\{e, e^{\prime}\right\}$ is the score of $e^{\prime}+$ the total weight of all edges with exactly 1 endpoint in $T(e)$.

## Dependent Edges

Link-cut trees implement the following operations in $\mathcal{O}(\log n)$ time:
(0) add $\Delta$ to the score of every edge on a path,
(2) return edge with the smallest score in a subtree.

We binarise $T$ and sweep over its edges maintaining the scores.


> For every $e^{\prime} \in T(e)$, the weight of a cut defined by $\left\{e, e^{\prime}\right\}$ is the score of $e^{\prime}+$ the total weight of all edges with exactly 1 endpoint in $T(e)$.

## Dependent Edges

Link-cut trees implement the following operations in $\mathcal{O}(\log n)$ time:
(0) add $\Delta$ to the score of every edge on a path,
(2) return edge with the smallest score in a subtree.

We binarise $T$ and sweep over its edges maintaining the scores.


For every $e^{\prime} \in T(e)$, the weight of a cut defined by $\left\{e, e^{\prime}\right\}$ is the score of $e^{\prime}+$ the total weight of all edges with exactly 1 endpoint in $T(e)$.

## Dependent Edges

Link-cut trees implement the following operations in $\mathcal{O}(\log n)$ time:
(1) add $\Delta$ to the score of every edge on a path,
(2) return edge with the smallest score in a subtree.

We binarise $T$ and sweep over its edges maintaining the scores.


For every $e^{\prime} \in T(e)$, the weight of a cut defined by $\left\{e, e^{\prime}\right\}$ is the score of $e^{\prime}+$ the total weight of all edges with exactly 1 endpoint in $T(e)$.

## Bipartite Problem

We are given two trees and a number of cross-edges:


> We seek $e \in T_{1}, e^{\prime} \in T_{2}$ minimising the sum of their costs - the total weight of all cross-edges between $T_{1}(e)$ with $T_{2}\left(e^{\prime}\right)$.

## Bipartite Problem

We are given two trees and a number of cross-edges:


We seek $e \in T_{1}, e^{\prime} \in T_{2}$ minimising the sum of their costs - the total weight of all cross-edges between $T_{1}(e)$ with $T_{2}\left(e^{\prime}\right)$.

## Bipartite Problem

We are given two trees and a number of cross-edges:


> We seek $e \in T_{1}, e^{\prime} \in T_{2}$ minimising the sum of their costs - the total weight of all cross-edges between $T_{1}(e)$ with $T_{2}\left(e^{\prime}\right)$.

## Bipartite Problem

We are given two trees and a number of cross-edges:


We seek $e \in T_{1}, e^{\prime} \in T_{2}$ minimising the sum of their costs - the total weight of all cross-edges between $T_{1}(e)$ with $T_{2}\left(e^{\prime}\right)$.

## Bipartite Problem

We are given two trees and a number of cross-edges:


We seek $e \in T_{1}, e^{\prime} \in T_{2}$ minimising the sum of their costs - the total weight of all cross-edges between $T_{1}(e)$ with $T_{2}\left(e^{\prime}\right)$.

## Reduction to Bipartite Problems

We create a separate instance for every node $x$ with two children:


## Reduction to Bipartite Problems

We create a separate instance for every node $x$ with two children:


## Reduction to Bipartite Problems

We create a separate instance for every node $x$ with two children:


> The weight of a cut defined by $\left\{e, e^{\prime}\right\}$ is calculated as follows: + the total weight of all edges with one endpoint in $T(e)$, + the total weight of all edges with one endpoint in $T\left(e^{\prime}\right)$, - the total weight of all edges between $T(e)$ with $T\left(e^{\prime}\right)$.

## Reduction to Bipartite Problems

We create a separate instance for every node $x$ with two children:


> The weight of a cut defined by $\left\{e, e^{\prime}\right\}$ is calculated as follows: + the total weight of all edges with one endpoint in $T(e)$, + the total weight of all edges with one endpoint in $T\left(e^{\prime}\right)$, - the total weight of all edges between $T(e)$ with $T\left(e^{\prime}\right)$.

## Reduction to Bipartite Problems

We create a separate instance for every node $x$ with two children:


> The weight of a cut defined by $\left\{e, e^{\prime}\right\}$ is calculated as follows: + the total weight of all edges with one endpoint in $T(e)$, + the total weight of all edges with one endpoint in $T\left(e^{\prime}\right)$, - the total weight of all edges between $T(e)$ with $T\left(e^{\prime}\right)$.

## Reduction to Bipartite Problems

We create a separate instance for every node $x$ with two children:


The weight of a cut defined by $\left\{e, e^{\prime}\right\}$ is calculated as follows:

+ the total weight of all edges with one endpoint in $T(e)$,
+ the total weight of all edges with one endpoint in $T\left(e^{\prime}\right)$,
- the total weight of all edges between $T(e)$ with $T\left(e^{\prime}\right)$.


## Main Trick <br> $s=$ number of edges $(u, v)$ with $\operatorname{lca}(u, v)=x$.

## Even though both trees might be large, only $\mathcal{O}(s)$ edges really matter.

## Main Trick <br> $s=$ number of edges $(u, v)$ with $\operatorname{lca}(u, v)=x$.

Even though both trees might be large, only $\mathcal{O}(s)$ edges really matter.

## Main Trick

$s=$ number of edges $(u, v)$ with lca $(u, v)=x$.
Even though both trees might be large, only $\mathcal{O}(s)$ edges really matter.


With path-minimum queries we can compress the tree to consist of at most $2 s$ edges in $\mathcal{O}(s \log n)$ time.

## Main Trick

$s=$ number of edges $(u, v)$ with lca $(u, v)=x$.
Even though both trees might be large, only $\mathcal{O}(s)$ edges really matter.


With path-minimum queries we can compress the tree to consist of at most $2 s$ edges in $\mathcal{O}(s \log n)$ time.

## Main Trick

$s=$ number of edges $(u, v)$ with lca $(u, v)=x$.
Even though both trees might be large, only $\mathcal{O}(s)$ edges really matter.


## With path-minimum queries we can compress the tree to consist of at most $2 s$ edges in $\mathcal{O}(s \log n)$ time.

## Main Trick

$s=$ number of edges $(u, v)$ with lca $(u, v)=x$.
Even though both trees might be large, only $\mathcal{O}(s)$ edges really matter.


## With path-minimum queries we can compress the tree to consist of at most $2 s$ edges in $\mathcal{O}(s \log n)$ time.

## Main Trick

$s=$ number of edges $(u, v)$ with lca $(u, v)=x$.
Even though both trees might be large, only $\mathcal{O}(s)$ edges really matter.


## With path-minimum queries we can compress the tree to consist of at most $2 s$ edges in $\mathcal{O}(s \log n)$ time.

## Main Trick

$s=$ number of edges $(u, v)$ with $\operatorname{lca}(u, v)=x$.
Even though both trees might be large, only $\mathcal{O}(s)$ edges really matter.


With path-minimum queries we can compress the tree to consist of at most $2 s$ edges in $\mathcal{O}(s \log n)$ time.

## Solving the Bipartite Problem

Goal: for every $e \in T_{1}$ find the cheapest $e^{\prime} \in T_{2}$.

## Divide-and-conquer guided by the heavy-light decomposition of $T_{1}$.

## Solving the Bipartite Problem

Goal: for every $e \in T_{1}$ find the cheapest $e^{\prime} \in T_{2}$.
Divide-and-conquer guided by the heavy-light decomposition of $T_{1}$.

In every recursive call we operate on a fragment of $T_{1}$ : the subtree rooted at $u_{1}$ (possibly) without the subtree rooted at $u_{k}$.

## Solving the Bipartite Problem

Goal: for every $e \in T_{1}$ find the cheapest $e^{\prime} \in T_{2}$.
Divide-and-conquer guided by the heavy-light decomposition of $T_{1}$.


In every recursive call we operate on a fragment of $T_{1}$ : the subtree rooted at $u_{1}$ (possibly) without the subtree rooted at $u_{k}$.

## Solving the Bipartite Problem

Goal: for every $e \in T_{1}$ find the cheapest $e^{\prime} \in T_{2}$.
Divide-and-conquer guided by the heavy-light decomposition of $T_{1}$.


In every recursive call we operate on a fragment of $T_{1}$ : the subtree rooted at $u_{1}$ (possibly) without the subtree rooted at $u_{k}$.

## Solving the Bipartite Problem

Goal: for every $e \in T_{1}$ find the cheapest $e^{\prime} \in T_{2}$.
Divide-and-conquer guided by the heavy-light decomposition of $T_{1}$.


In every recursive call we operate on a fragment of $T_{1}$ : the subtree rooted at $u_{1}$ (possibly) without the subtree rooted at $u_{k}$.

## Solving Bipartite Problem

By appropriately splitting the current fragment into smaller fragments, we ensure that the depth of the recursion is $\mathcal{O}(\log n)$, and fragments on every level of the recursion are disjoint. But what about $T_{2}$ ?

## Solving Bipartite Problem

By appropriately splitting the current fragment into smaller fragments, we ensure that the depth of the recursion is $\mathcal{O}(\log n)$, and fragments on every level of the recursion are disjoint. But what about $T_{2}$ ?


We maintain a compressed representation of the relevant part of $T_{2}$.

## Solving Bipartite Problem

By appropriately splitting the current fragment into smaller fragments, we ensure that the depth of the recursion is $\mathcal{O}(\log n)$, and fragments on every level of the recursion are disjoint. But what about $T_{2}$ ?


We maintain a compressed representation of the relevant part of $T_{2}$.

## Solving Bipartite Problem

By appropriately splitting the current fragment into smaller fragments, we ensure that the depth of the recursion is $\mathcal{O}(\log n)$, and fragments on every level of the recursion are disjoint. But what about $T_{2}$ ?


We maintain a compressed representation of the relevant part of $T_{2}$.

## Solving Bipartite Problem

By appropriately splitting the current fragment into smaller fragments, we ensure that the depth of the recursion is $\mathcal{O}(\log n)$, and fragments on every level of the recursion are disjoint. But what about $T_{2}$ ?


We maintain a compressed representation of the relevant part of $T_{2}$.

## Solving Bipartite Problem

By appropriately splitting the current fragment into smaller fragments, we ensure that the depth of the recursion is $\mathcal{O}(\log n)$, and fragments on every level of the recursion are disjoint. But what about $T_{2}$ ?


We maintain a compressed representation of the relevant part of $T_{2}$.

## Recursion

In every recursive call we have a fragment $f$ of $T_{1}$ and a compressed representation of the relevant part of $T_{2}$ of size $\mathcal{O}(s)$, where $s$ is the number of cross-edges with one endpoint in $f$. Then:We find the cheapest $e^{\prime} \in T_{2}$ for $\mathcal{O}(1)$ edges $e \in T_{1}$ by considering all $\mathcal{O}(s)$ edges in the compressed representation.
$\square$We partition the remaining into $\mathcal{O}(1)$ fragments $f_{1}, f_{2}$, For every $f_{i}$, we extract a compressed representation of its relevant part of $T_{2}$ from the current compressed representation in $\mathcal{O}(s)$ time, and recurse.

$$
\text { We make sure that the depth of the recursion is } \mathcal{O}(\log n) \text {, and then the }
$$ whole running time becomes $\mathcal{O}(m \log n)$.

There are some technicalities, in particular we actually maintain two separate compressed representations, please see the paper.

## Recursion

In every recursive call we have a fragment $f$ of $T_{1}$ and a compressed representation of the relevant part of $T_{2}$ of size $\mathcal{O}(s)$, where $s$ is the number of cross-edges with one endpoint in $f$. Then:
(1) We find the cheapest $e^{\prime} \in T_{2}$ for $\mathcal{O}(1)$ edges $e \in T_{1}$ by considering all $\mathcal{O}(s)$ edges in the compressed representation.
> (3) We partition the remaining into $\mathcal{O}(1)$ fragments $f_{1}, f_{2}$,
> © For every $f_{i}$, we extract a compressed representation of its
> relevant part of $T_{2}$ from the current compressed representation in
> $\mathcal{O}(s)$ time, and recurse.
> We make sure that the depth of the recursion is $\mathcal{O}(\log n)$, and then the whole running time becomes $\mathcal{O}(m \log n)$.

> There are some technicalities, in particular we actually maintain two separate compressed representations, please see the paper.

## Recursion

In every recursive call we have a fragment $f$ of $T_{1}$ and a compressed representation of the relevant part of $T_{2}$ of size $\mathcal{O}(s)$, where $s$ is the number of cross-edges with one endpoint in $f$. Then:
(1) We find the cheapest $e^{\prime} \in T_{2}$ for $\mathcal{O}(1)$ edges $e \in T_{1}$ by considering all $\mathcal{O}(s)$ edges in the compressed representation.
(2) We partition the remaining into $\mathcal{O}(1)$ fragments $f_{1}, f_{2}, \ldots$.
relevant part of $T_{2}$ from the current compressed representation in
$\mathcal{O}(s)$ time, and recurse.
We make sure that the depth of the recursion is $\mathcal{O}(\log n)$, and then the whole running time becomes $\mathcal{O}(m \log n)$.

There are some technicalities, in particular we actually maintain two separate compressed representations, please see the paper.

## Recursion

In every recursive call we have a fragment $f$ of $T_{1}$ and a compressed representation of the relevant part of $T_{2}$ of size $\mathcal{O}(s)$, where $s$ is the number of cross-edges with one endpoint in $f$. Then:
(1) We find the cheapest $e^{\prime} \in T_{2}$ for $\mathcal{O}(1)$ edges $e \in T_{1}$ by considering all $\mathcal{O}(s)$ edges in the compressed representation.
(2) We partition the remaining into $\mathcal{O}(1)$ fragments $f_{1}, f_{2}, \ldots$.
(3) For every $f_{i}$, we extract a compressed representation of its relevant part of $T_{2}$ from the current compressed representation in $\mathcal{O}(s)$ time, and recurse.
We make sure that the depth of the recursion is $\mathcal{O}(\log n)$, and then the whole running time becomes $\mathcal{O}(m \log n)$.

There are some technicalities, in particular we actually maintain two separate compressed representations, please see the paper.

## Recursion

In every recursive call we have a fragment $f$ of $T_{1}$ and a compressed representation of the relevant part of $T_{2}$ of size $\mathcal{O}(s)$, where $s$ is the number of cross-edges with one endpoint in $f$. Then:
(1) We find the cheapest $e^{\prime} \in T_{2}$ for $\mathcal{O}(1)$ edges $e \in T_{1}$ by considering all $\mathcal{O}(s)$ edges in the compressed representation.
(2) We partition the remaining into $\mathcal{O}(1)$ fragments $f_{1}, f_{2}, \ldots$.
(3) For every $f_{i}$, we extract a compressed representation of its relevant part of $T_{2}$ from the current compressed representation in $\mathcal{O}(s)$ time, and recurse.

We make sure that the depth of the recursion is $\mathcal{O}(\log n)$, and then the whole running time becomes $\mathcal{O}(m \log n)$.

There are some technicalities, in particular we actually maintain two separate compressed representations, please see the paper.

## Recursion

In every recursive call we have a fragment $f$ of $T_{1}$ and a compressed representation of the relevant part of $T_{2}$ of size $\mathcal{O}(s)$, where $s$ is the number of cross-edges with one endpoint in $f$. Then:
(1) We find the cheapest $e^{\prime} \in T_{2}$ for $\mathcal{O}(1)$ edges $e \in T_{1}$ by considering all $\mathcal{O}(s)$ edges in the compressed representation.
(2) We partition the remaining into $\mathcal{O}(1)$ fragments $f_{1}, f_{2}, \ldots$.
(3) For every $f_{i}$, we extract a compressed representation of its relevant part of $T_{2}$ from the current compressed representation in $\mathcal{O}(s)$ time, and recurse.

We make sure that the depth of the recursion is $\mathcal{O}(\log n)$, and then the whole running time becomes $\mathcal{O}(m \log n)$.

There are some technicalities, in particular we actually maintain two separate compressed representations, please see the paper.

## Summary

Minimum cut can be solved in $\mathcal{O}\left(m \log ^{2} n\right)$ time w.h.p.

## (1) Is there a faster algorithm? <br> (2) Is there a near-linear time deterministic algorithm?

## Thank you!

## Summary

Minimum cut can be solved in $\mathcal{O}\left(m \log ^{2} n\right)$ time w.h.p.
(1) Is there a faster algorithm?
© Is there a near-linear time deterministic algorithm?


## Summary

Minimum cut can be solved in $\mathcal{O}\left(m \log ^{2} n\right)$ time w.h.p.
(1) Is there a faster algorithm?
(2) Is there a near-linear time deterministic algorithm?


## Summary

Minimum cut can be solved in $\mathcal{O}\left(m \log ^{2} n\right)$ time w.h.p.
(1) Is there a faster algorithm?
(2) Is there a near-linear time deterministic algorithm?


## Summary

Minimum cut can be solved in $\mathcal{O}\left(m \log ^{2} n\right)$ time w.h.p.
(1) Is there a faster algorithm?
(2) Is there a near-linear time deterministic algorithm?

## Thank you!

