
Minimum Cut in O(m log2 n) Time

Paweł Gawrychowski1 Shay Mozes2 Oren Weimann3

1University of Wrocław, Poland

2The Interdisciplinary Center Herzliya, Israel

3University of Haifa, Israel

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 1 / 21

Oren Weimann
Slides by Paweł Gawrychowski1

(Global) Minimum Cut
Input: undirected edge-weighted graph G = (V ,E)
Output: nonempty S ⊂ V minimizing the total weight of edges

between S and V \ S

Solvable in polynomial time with n − 1 maximum flow computations.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 2 / 21

(Global) Minimum Cut
Input: undirected edge-weighted graph G = (V ,E)
Output: nonempty S ⊂ V minimizing the total weight of edges

between S and V \ S

G = (V,E)

Solvable in polynomial time with n − 1 maximum flow computations.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 2 / 21

(Global) Minimum Cut
Input: undirected edge-weighted graph G = (V ,E)
Output: nonempty S ⊂ V minimizing the total weight of edges

between S and V \ S

G = (V,E)

S

V \ S

Solvable in polynomial time with n − 1 maximum flow computations.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 2 / 21

(Global) Minimum Cut
Input: undirected edge-weighted graph G = (V ,E)
Output: nonempty S ⊂ V minimizing the total weight of edges

between S and V \ S

G = (V,E)

S

V \ S

Solvable in polynomial time with n − 1 maximum flow computations.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 2 / 21

(Global) Minimum Cut
Input: undirected edge-weighted graph G = (V ,E)
Output: nonempty S ⊂ V minimizing the total weight of edges

between S and V \ S

G = (V,E)

S

V \ S

Solvable in polynomial time with n − 1 maximum flow computations.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 2 / 21

The fastest maximum flow algorithm works in O(nm) time, so applying
it n − 1 times results in O(n2m) complexity. Is there a faster algorithm?

Hao and Orlin 1994
Roughly speaking, a single maximum flow computation suffices,
resulting in O(mn log(n2/m)) complexity.

Nagamochi and Ibaraki 1992
In O(m + n log n) time we can either find the global minimum cut or
isolate an edge that doesn’t cross it. This edge can then be contracted
and the procedure repeated, resulting in O(mn + n2 log n) complexity.

Karger and Stein 1996
A different method based on recursion and contracting a randomly
chosen edge finds the global minimum cut in O(n2 log3 n) time with
high probability.

Is there a more efficient algorithm for sparse graphs?
Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 3 / 21

The fastest maximum flow algorithm works in O(nm) time, so applying
it n − 1 times results in O(n2m) complexity. Is there a faster algorithm?

Hao and Orlin 1994
Roughly speaking, a single maximum flow computation suffices,
resulting in O(mn log(n2/m)) complexity.

Nagamochi and Ibaraki 1992
In O(m + n log n) time we can either find the global minimum cut or
isolate an edge that doesn’t cross it. This edge can then be contracted
and the procedure repeated, resulting in O(mn + n2 log n) complexity.

Karger and Stein 1996
A different method based on recursion and contracting a randomly
chosen edge finds the global minimum cut in O(n2 log3 n) time with
high probability.

Is there a more efficient algorithm for sparse graphs?
Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 3 / 21

The fastest maximum flow algorithm works in O(nm) time, so applying
it n − 1 times results in O(n2m) complexity. Is there a faster algorithm?

Hao and Orlin 1994
Roughly speaking, a single maximum flow computation suffices,
resulting in O(mn log(n2/m)) complexity.

Nagamochi and Ibaraki 1992
In O(m + n log n) time we can either find the global minimum cut or
isolate an edge that doesn’t cross it. This edge can then be contracted
and the procedure repeated, resulting in O(mn + n2 log n) complexity.

Karger and Stein 1996
A different method based on recursion and contracting a randomly
chosen edge finds the global minimum cut in O(n2 log3 n) time with
high probability.

Is there a more efficient algorithm for sparse graphs?
Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 3 / 21

The fastest maximum flow algorithm works in O(nm) time, so applying
it n − 1 times results in O(n2m) complexity. Is there a faster algorithm?

Hao and Orlin 1994
Roughly speaking, a single maximum flow computation suffices,
resulting in O(mn log(n2/m)) complexity.

Nagamochi and Ibaraki 1992
In O(m + n log n) time we can either find the global minimum cut or
isolate an edge that doesn’t cross it. This edge can then be contracted
and the procedure repeated, resulting in O(mn + n2 log n) complexity.

Karger and Stein 1996
A different method based on recursion and contracting a randomly
chosen edge finds the global minimum cut in O(n2 log3 n) time with
high probability.

Is there a more efficient algorithm for sparse graphs?
Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 3 / 21

The fastest maximum flow algorithm works in O(nm) time, so applying
it n − 1 times results in O(n2m) complexity. Is there a faster algorithm?

Hao and Orlin 1994
Roughly speaking, a single maximum flow computation suffices,
resulting in O(mn log(n2/m)) complexity.

Nagamochi and Ibaraki 1992
In O(m + n log n) time we can either find the global minimum cut or
isolate an edge that doesn’t cross it. This edge can then be contracted
and the procedure repeated, resulting in O(mn + n2 log n) complexity.

Karger and Stein 1996
A different method based on recursion and contracting a randomly
chosen edge finds the global minimum cut in O(n2 log3 n) time with
high probability.

Is there a more efficient algorithm for sparse graphs?
Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 3 / 21

Karger’s framework
In 1996, Karger announced a faster O(m log3 n) time algorithm that
finds the minimum cut with high probability by solving O(log n)
independent instances of a more structured problem.

Minimum k -respecting cut
Given a spanning tree T , find the minimum cut crossed by exactly k of
its edges.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 4 / 21

Karger’s framework
In 1996, Karger announced a faster O(m log3 n) time algorithm that
finds the minimum cut with high probability by solving O(log n)
independent instances of a more structured problem.

Minimum k -respecting cut
Given a spanning tree T , find the minimum cut crossed by exactly k of
its edges.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 4 / 21

Karger’s framework
In 1996, Karger announced a faster O(m log3 n) time algorithm that
finds the minimum cut with high probability by solving O(log n)
independent instances of a more structured problem.

Minimum k -respecting cut
Given a spanning tree T , find the minimum cut crossed by exactly k of
its edges.

T

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 4 / 21

Karger’s framework
In 1996, Karger announced a faster O(m log3 n) time algorithm that
finds the minimum cut with high probability by solving O(log n)
independent instances of a more structured problem.

Minimum k -respecting cut
Given a spanning tree T , find the minimum cut crossed by exactly k of
its edges.

T, k = 1

S

e

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 4 / 21

Karger’s framework
In 1996, Karger announced a faster O(m log3 n) time algorithm that
finds the minimum cut with high probability by solving O(log n)
independent instances of a more structured problem.

Minimum k -respecting cut
Given a spanning tree T , find the minimum cut crossed by exactly k of
its edges.

T, k = 2

S

e′

e

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 4 / 21

Karger’s framework

Nash-Williams 1961
An unweighted graph with minimum cut c contains a set of c/2
edge-disjoint spanning trees (and clearly not more than c such trees).

If we had such c/2 edge-disjoint trees then the average number of
edges from the minimum cut per tree is 2, hence the minimum cut 1- or
2-respects one of these trees.

However, this observation was not straightforward to use:
1 One needs to work with weighted graphs.
2 c might be large, and there might be not enough time to find the

c/2 trees.
3 How to efficiently find the minimum 1- and 2-respecting cut?

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 5 / 21

Karger’s framework

Nash-Williams 1961
An unweighted graph with minimum cut c contains a set of c/2
edge-disjoint spanning trees (and clearly not more than c such trees).

If we had such c/2 edge-disjoint trees then the average number of
edges from the minimum cut per tree is 2, hence the minimum cut 1- or
2-respects one of these trees.

However, this observation was not straightforward to use:
1 One needs to work with weighted graphs.
2 c might be large, and there might be not enough time to find the

c/2 trees.
3 How to efficiently find the minimum 1- and 2-respecting cut?

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 5 / 21

Karger’s framework

Nash-Williams 1961
An unweighted graph with minimum cut c contains a set of c/2
edge-disjoint spanning trees (and clearly not more than c such trees).

If we had such c/2 edge-disjoint trees then the average number of
edges from the minimum cut per tree is 2, hence the minimum cut 1- or
2-respects one of these trees.

However, this observation was not straightforward to use:
1 One needs to work with weighted graphs.
2 c might be large, and there might be not enough time to find the

c/2 trees.
3 How to efficiently find the minimum 1- and 2-respecting cut?

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 5 / 21

Karger’s framework

Nash-Williams 1961
An unweighted graph with minimum cut c contains a set of c/2
edge-disjoint spanning trees (and clearly not more than c such trees).

If we had such c/2 edge-disjoint trees then the average number of
edges from the minimum cut per tree is 2, hence the minimum cut 1- or
2-respects one of these trees.

However, this observation was not straightforward to use:
1 One needs to work with weighted graphs.
2 c might be large, and there might be not enough time to find the

c/2 trees.
3 How to efficiently find the minimum 1- and 2-respecting cut?

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 5 / 21

Karger’s framework

Nash-Williams 1961
An unweighted graph with minimum cut c contains a set of c/2
edge-disjoint spanning trees (and clearly not more than c such trees).

If we had such c/2 edge-disjoint trees then the average number of
edges from the minimum cut per tree is 2, hence the minimum cut 1- or
2-respects one of these trees.

However, this observation was not straightforward to use:
1 One needs to work with weighted graphs.
2 c might be large, and there might be not enough time to find the

c/2 trees.
3 How to efficiently find the minimum 1- and 2-respecting cut?

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 5 / 21

Karger’s framework

Nash-Williams 1961
An unweighted graph with minimum cut c contains a set of c/2
edge-disjoint spanning trees (and clearly not more than c such trees).

If we had such c/2 edge-disjoint trees then the average number of
edges from the minimum cut per tree is 2, hence the minimum cut 1- or
2-respects one of these trees.

However, this observation was not straightforward to use:
1 One needs to work with weighted graphs.
2 c might be large, and there might be not enough time to find the

c/2 trees.
3 How to efficiently find the minimum 1- and 2-respecting cut?

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 5 / 21

Karger’s framework

Weighted tree packing
A set of spanning trees, each with its assigned weight, such that the
total weight of all trees containing an edge is at most its weight.

1 Find in O(m + n log n) time an unweighted graph H with O(n log n)
edges and minimum cut c′ = O(log n), such that the minimum cut
in G corresponds to a 7/6-minimum cut in H.

2 Apply the algorithm of Plotkin-Shmoys-Tardos to find a tree
packing of total weight 5/12c′ in O(n log3 n) time.

3 Fraction of the total weight of all trees in the packing 1- or
2-respected by the minimum cut of G must be at least 1/10.

Choosing O(log n) trees from the packing (with probability equal to the
weight) guarantees that w.h.p. we obtain a tree 1- or 2-respected by
the minimum cut.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 6 / 21

Karger’s framework

Weighted tree packing
A set of spanning trees, each with its assigned weight, such that the
total weight of all trees containing an edge is at most its weight.

1 Find in O(m + n log n) time an unweighted graph H with O(n log n)
edges and minimum cut c′ = O(log n), such that the minimum cut
in G corresponds to a 7/6-minimum cut in H.

2 Apply the algorithm of Plotkin-Shmoys-Tardos to find a tree
packing of total weight 5/12c′ in O(n log3 n) time.

3 Fraction of the total weight of all trees in the packing 1- or
2-respected by the minimum cut of G must be at least 1/10.

Choosing O(log n) trees from the packing (with probability equal to the
weight) guarantees that w.h.p. we obtain a tree 1- or 2-respected by
the minimum cut.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 6 / 21

Karger’s framework

Weighted tree packing
A set of spanning trees, each with its assigned weight, such that the
total weight of all trees containing an edge is at most its weight.

1 Find in O(m + n log n) time an unweighted graph H with O(n log n)
edges and minimum cut c′ = O(log n), such that the minimum cut
in G corresponds to a 7/6-minimum cut in H.

2 Apply the algorithm of Plotkin-Shmoys-Tardos to find a tree
packing of total weight 5/12c′ in O(n log3 n) time.

3 Fraction of the total weight of all trees in the packing 1- or
2-respected by the minimum cut of G must be at least 1/10.

Choosing O(log n) trees from the packing (with probability equal to the
weight) guarantees that w.h.p. we obtain a tree 1- or 2-respected by
the minimum cut.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 6 / 21

Karger’s framework

Weighted tree packing
A set of spanning trees, each with its assigned weight, such that the
total weight of all trees containing an edge is at most its weight.

1 Find in O(m + n log n) time an unweighted graph H with O(n log n)
edges and minimum cut c′ = O(log n), such that the minimum cut
in G corresponds to a 7/6-minimum cut in H.

2 Apply the algorithm of Plotkin-Shmoys-Tardos to find a tree
packing of total weight 5/12c′ in O(n log3 n) time.

3 Fraction of the total weight of all trees in the packing 1- or
2-respected by the minimum cut of G must be at least 1/10.

Choosing O(log n) trees from the packing (with probability equal to the
weight) guarantees that w.h.p. we obtain a tree 1- or 2-respected by
the minimum cut.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 6 / 21

Karger’s framework

Weighted tree packing
A set of spanning trees, each with its assigned weight, such that the
total weight of all trees containing an edge is at most its weight.

1 Find in O(m + n log n) time an unweighted graph H with O(n log n)
edges and minimum cut c′ = O(log n), such that the minimum cut
in G corresponds to a 7/6-minimum cut in H.

2 Apply the algorithm of Plotkin-Shmoys-Tardos to find a tree
packing of total weight 5/12c′ in O(n log3 n) time.

3 Fraction of the total weight of all trees in the packing 1- or
2-respected by the minimum cut of G must be at least 1/10.

Choosing O(log n) trees from the packing (with probability equal to the
weight) guarantees that w.h.p. we obtain a tree 1- or 2-respected by
the minimum cut.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 6 / 21

1-Respecting Minimum Cut
Karger showed that this is actually fairly easy:

T

This information can be propagated in O(m) overall time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 7 / 21

1-Respecting Minimum Cut
Karger showed that this is actually fairly easy:

T

e

This information can be propagated in O(m) overall time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 7 / 21

1-Respecting Minimum Cut
Karger showed that this is actually fairly easy:

T

e

This information can be propagated in O(m) overall time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 7 / 21

1-Respecting Minimum Cut
Karger showed that this is actually fairly easy:

T

u

v

lca(u, v)

This information can be propagated in O(m) overall time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 7 / 21

1-Respecting Minimum Cut
Karger showed that this is actually fairly easy:

T

u

v

lca(u, v)

This information can be propagated in O(m) overall time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 7 / 21

2-Respecting Minimum Cut
Sought e and e′ can either be independent or descendant.

T

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 8 / 21

2-Respecting Minimum Cut
Sought e and e′ can either be independent or descendant.

T

e e′

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 8 / 21

2-Respecting Minimum Cut
Sought e and e′ can either be independent or descendant.

T

e

e′

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 8 / 21

2-Respecting Minimum Cut

For both cases, Karger’s algorithm operates in O(log n) phases that
iteratively contracting paths (called boughs) consisting of nodes with
exactly one child terminating at a leaf. Each phase is implemented
with link-cut trees in O(m log n) time.

Karger 1996
Minimum cut that 2-respects a spanning tree can be found in
O(m log2 n) time.

But... no one was able to succeed in doing so!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 9 / 21

2-Respecting Minimum Cut

For both cases, Karger’s algorithm operates in O(log n) phases that
iteratively contracting paths (called boughs) consisting of nodes with
exactly one child terminating at a leaf. Each phase is implemented
with link-cut trees in O(m log n) time.

Karger 1996
Minimum cut that 2-respects a spanning tree can be found in
O(m log2 n) time.

But... no one was able to succeed in doing so!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 9 / 21

2-Respecting Minimum Cut

For both cases, Karger’s algorithm operates in O(log n) phases that
iteratively contracting paths (called boughs) consisting of nodes with
exactly one child terminating at a leaf. Each phase is implemented
with link-cut trees in O(m log n) time.

Karger 1996
Minimum cut that 2-respects a spanning tree can be found in
O(m log2 n) time.

But... no one was able to succeed in doing so!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 9 / 21

2-Respecting Minimum Cut

For both cases, Karger’s algorithm operates in O(log n) phases that
iteratively contracting paths (called boughs) consisting of nodes with
exactly one child terminating at a leaf. Each phase is implemented
with link-cut trees in O(m log n) time.

Karger 1996
Minimum cut that 2-respects a spanning tree can be found in
O(m log2 n) time.

But... no one was able to succeed in doing so!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 9 / 21

Recent Developments

Henzinger, Rao, and Wang 2017

A faster O(m log2 n(log log n)2) time deterministic algorithm for simple
unweighted graphs.

Ghaffari, Nowicki and Thorup 2020

An even faster O(min{m + n log3 n,m log n}) time algorithm for simple
unweighted graphs.

Lovett and Sandlund 2020
A different take on the 2-respecting problem based on top trees
instead of link-cut trees, and iterating over the edges of T guided by
heavy-light decomposition. Also O(m log2 n) time, but simpler.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 10 / 21

Recent Developments

Henzinger, Rao, and Wang 2017

A faster O(m log2 n(log log n)2) time deterministic algorithm for simple
unweighted graphs.

Ghaffari, Nowicki and Thorup 2020

An even faster O(min{m + n log3 n,m log n}) time algorithm for simple
unweighted graphs.

Lovett and Sandlund 2020
A different take on the 2-respecting problem based on top trees
instead of link-cut trees, and iterating over the edges of T guided by
heavy-light decomposition. Also O(m log2 n) time, but simpler.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 10 / 21

Recent Developments

Henzinger, Rao, and Wang 2017

A faster O(m log2 n(log log n)2) time deterministic algorithm for simple
unweighted graphs.

Ghaffari, Nowicki and Thorup 2020

An even faster O(min{m + n log3 n,m log n}) time algorithm for simple
unweighted graphs.

Lovett and Sandlund 2020
A different take on the 2-respecting problem based on top trees
instead of link-cut trees, and iterating over the edges of T guided by
heavy-light decomposition. Also O(m log2 n) time, but simpler.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 10 / 21

Our Contribution

1 The main technical contribution is a deterministic O(m log n) time
solution for the 2-respecting problem.

2 To obtain an improvement on the overall O(m log3 n) complexity of
Karger’s algorithm, we also design an alternative sampling
procedure that produces the O(log n) spanning trees in
O(m log2 n) instead of O(m + n log3 n) time.

3 This gives us the minimum cut in O(m log2 n) time.

Mukhopadhyay and Nanongkai 2020
Independently of our result, solves the 2-respecting problem in
O(m log n + n log3 n) randomised time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 11 / 21

Our Contribution

1 The main technical contribution is a deterministic O(m log n) time
solution for the 2-respecting problem.

2 To obtain an improvement on the overall O(m log3 n) complexity of
Karger’s algorithm, we also design an alternative sampling
procedure that produces the O(log n) spanning trees in
O(m log2 n) instead of O(m + n log3 n) time.

3 This gives us the minimum cut in O(m log2 n) time.

Mukhopadhyay and Nanongkai 2020
Independently of our result, solves the 2-respecting problem in
O(m log n + n log3 n) randomised time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 11 / 21

Our Contribution

1 The main technical contribution is a deterministic O(m log n) time
solution for the 2-respecting problem.

2 To obtain an improvement on the overall O(m log3 n) complexity of
Karger’s algorithm, we also design an alternative sampling
procedure that produces the O(log n) spanning trees in
O(m log2 n) instead of O(m + n log3 n) time.

3 This gives us the minimum cut in O(m log2 n) time.

Mukhopadhyay and Nanongkai 2020
Independently of our result, solves the 2-respecting problem in
O(m log n + n log3 n) randomised time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 11 / 21

Our Contribution

1 The main technical contribution is a deterministic O(m log n) time
solution for the 2-respecting problem.

2 To obtain an improvement on the overall O(m log3 n) complexity of
Karger’s algorithm, we also design an alternative sampling
procedure that produces the O(log n) spanning trees in
O(m log2 n) instead of O(m + n log3 n) time.

3 This gives us the minimum cut in O(m log2 n) time.

Mukhopadhyay and Nanongkai 2020
Independently of our result, solves the 2-respecting problem in
O(m log n + n log3 n) randomised time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 11 / 21

Faster Sampling
1 Find constant approximation of c using Matula’s algorithm. We

implement it in O(m log2 n) time.
2 Edges with weight larger than c can be now contracted, and we

think of an edge with weight w as w parallel unweighted edges.
3 Sample dpme (unweighted) edges, where p = Θ(log n)/c, to

obtain graph H with minimum cut c′ = O(log n). This can be
implemented in O(mc · log m) = O(m log2 n) time w.h.p.

4 Apply the following specialised instantiation of Young’s variant of
the Lagrangian packing technique:

1: `(e) := 0 for all e ∈ E(H)
2: while there is no e with `(e) ≥ 1 do
3: find a minimum spanning tree T w.r.t. `(·)
4: w(T) = w(T) + 1/(96 ln m′)
5: `(e) = `(e) + 1/(96 ln m′) for all e ∈ T
6: end while
O(c′ · log n) = O(log2 n) iterations, each in O(m) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 12 / 21

Faster Sampling
1 Find constant approximation of c using Matula’s algorithm. We

implement it in O(m log2 n) time.
2 Edges with weight larger than c can be now contracted, and we

think of an edge with weight w as w parallel unweighted edges.
3 Sample dpme (unweighted) edges, where p = Θ(log n)/c, to

obtain graph H with minimum cut c′ = O(log n). This can be
implemented in O(mc · log m) = O(m log2 n) time w.h.p.

4 Apply the following specialised instantiation of Young’s variant of
the Lagrangian packing technique:

1: `(e) := 0 for all e ∈ E(H)
2: while there is no e with `(e) ≥ 1 do
3: find a minimum spanning tree T w.r.t. `(·)
4: w(T) = w(T) + 1/(96 ln m′)
5: `(e) = `(e) + 1/(96 ln m′) for all e ∈ T
6: end while
O(c′ · log n) = O(log2 n) iterations, each in O(m) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 12 / 21

Faster Sampling
1 Find constant approximation of c using Matula’s algorithm. We

implement it in O(m log2 n) time.
2 Edges with weight larger than c can be now contracted, and we

think of an edge with weight w as w parallel unweighted edges.
3 Sample dpme (unweighted) edges, where p = Θ(log n)/c, to

obtain graph H with minimum cut c′ = O(log n). This can be
implemented in O(mc · log m) = O(m log2 n) time w.h.p.

4 Apply the following specialised instantiation of Young’s variant of
the Lagrangian packing technique:

1: `(e) := 0 for all e ∈ E(H)
2: while there is no e with `(e) ≥ 1 do
3: find a minimum spanning tree T w.r.t. `(·)
4: w(T) = w(T) + 1/(96 ln m′)
5: `(e) = `(e) + 1/(96 ln m′) for all e ∈ T
6: end while
O(c′ · log n) = O(log2 n) iterations, each in O(m) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 12 / 21

Faster Sampling
1 Find constant approximation of c using Matula’s algorithm. We

implement it in O(m log2 n) time.
2 Edges with weight larger than c can be now contracted, and we

think of an edge with weight w as w parallel unweighted edges.
3 Sample dpme (unweighted) edges, where p = Θ(log n)/c, to

obtain graph H with minimum cut c′ = O(log n). This can be
implemented in O(mc · log m) = O(m log2 n) time w.h.p.

4 Apply the following specialised instantiation of Young’s variant of
the Lagrangian packing technique:

1: `(e) := 0 for all e ∈ E(H)
2: while there is no e with `(e) ≥ 1 do
3: find a minimum spanning tree T w.r.t. `(·)
4: w(T) = w(T) + 1/(96 ln m′)
5: `(e) = `(e) + 1/(96 ln m′) for all e ∈ T
6: end while
O(c′ · log n) = O(log2 n) iterations, each in O(m) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 12 / 21

Faster Sampling
1 Find constant approximation of c using Matula’s algorithm. We

implement it in O(m log2 n) time.
2 Edges with weight larger than c can be now contracted, and we

think of an edge with weight w as w parallel unweighted edges.
3 Sample dpme (unweighted) edges, where p = Θ(log n)/c, to

obtain graph H with minimum cut c′ = O(log n). This can be
implemented in O(mc · log m) = O(m log2 n) time w.h.p.

4 Apply the following specialised instantiation of Young’s variant of
the Lagrangian packing technique:

1: `(e) := 0 for all e ∈ E(H)
2: while there is no e with `(e) ≥ 1 do
3: find a minimum spanning tree T w.r.t. `(·)
4: w(T) = w(T) + 1/(96 ln m′)
5: `(e) = `(e) + 1/(96 ln m′) for all e ∈ T
6: end while
O(c′ · log n) = O(log2 n) iterations, each in O(m) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 12 / 21

Overview

We obtain in O(m log2 n) time a collection of O(log n) spanning trees
T1,T2, . . . such that the minimum cut 1- or 2-respects some Ti .

Now we iterate over every tree Ti and:
1 Find the minimum 1-respecting cut in O(m) time.
2 Find the minimum 2-respecting cut defined by dependent edges in
O(m log n) time.

3 To find the minimum 2-respecting cut defined by independent
edges, obtain in O(m log n) time a number of instances of a
bipartite problem of total size O(m).

4 Solve each size-s instance of a bipartite problem in O(s log s)
time.

This sums up to O(m log2 n) as promised.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 13 / 21

Overview

We obtain in O(m log2 n) time a collection of O(log n) spanning trees
T1,T2, . . . such that the minimum cut 1- or 2-respects some Ti .

Now we iterate over every tree Ti and:
1 Find the minimum 1-respecting cut in O(m) time.
2 Find the minimum 2-respecting cut defined by dependent edges in
O(m log n) time.

3 To find the minimum 2-respecting cut defined by independent
edges, obtain in O(m log n) time a number of instances of a
bipartite problem of total size O(m).

4 Solve each size-s instance of a bipartite problem in O(s log s)
time.

This sums up to O(m log2 n) as promised.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 13 / 21

Overview

We obtain in O(m log2 n) time a collection of O(log n) spanning trees
T1,T2, . . . such that the minimum cut 1- or 2-respects some Ti .

Now we iterate over every tree Ti and:
1 Find the minimum 1-respecting cut in O(m) time.
2 Find the minimum 2-respecting cut defined by dependent edges in
O(m log n) time.

3 To find the minimum 2-respecting cut defined by independent
edges, obtain in O(m log n) time a number of instances of a
bipartite problem of total size O(m).

4 Solve each size-s instance of a bipartite problem in O(s log s)
time.

This sums up to O(m log2 n) as promised.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 13 / 21

Overview

We obtain in O(m log2 n) time a collection of O(log n) spanning trees
T1,T2, . . . such that the minimum cut 1- or 2-respects some Ti .

Now we iterate over every tree Ti and:
1 Find the minimum 1-respecting cut in O(m) time.
2 Find the minimum 2-respecting cut defined by dependent edges in
O(m log n) time.

3 To find the minimum 2-respecting cut defined by independent
edges, obtain in O(m log n) time a number of instances of a
bipartite problem of total size O(m).

4 Solve each size-s instance of a bipartite problem in O(s log s)
time.

This sums up to O(m log2 n) as promised.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 13 / 21

Overview

We obtain in O(m log2 n) time a collection of O(log n) spanning trees
T1,T2, . . . such that the minimum cut 1- or 2-respects some Ti .

Now we iterate over every tree Ti and:
1 Find the minimum 1-respecting cut in O(m) time.
2 Find the minimum 2-respecting cut defined by dependent edges in
O(m log n) time.

3 To find the minimum 2-respecting cut defined by independent
edges, obtain in O(m log n) time a number of instances of a
bipartite problem of total size O(m).

4 Solve each size-s instance of a bipartite problem in O(s log s)
time.

This sums up to O(m log2 n) as promised.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 13 / 21

Overview

We obtain in O(m log2 n) time a collection of O(log n) spanning trees
T1,T2, . . . such that the minimum cut 1- or 2-respects some Ti .

Now we iterate over every tree Ti and:
1 Find the minimum 1-respecting cut in O(m) time.
2 Find the minimum 2-respecting cut defined by dependent edges in
O(m log n) time.

3 To find the minimum 2-respecting cut defined by independent
edges, obtain in O(m log n) time a number of instances of a
bipartite problem of total size O(m).

4 Solve each size-s instance of a bipartite problem in O(s log s)
time.

This sums up to O(m log2 n) as promised.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 13 / 21

Overview

We obtain in O(m log2 n) time a collection of O(log n) spanning trees
T1,T2, . . . such that the minimum cut 1- or 2-respects some Ti .

Now we iterate over every tree Ti and:
1 Find the minimum 1-respecting cut in O(m) time.
2 Find the minimum 2-respecting cut defined by dependent edges in
O(m log n) time.

3 To find the minimum 2-respecting cut defined by independent
edges, obtain in O(m log n) time a number of instances of a
bipartite problem of total size O(m).

4 Solve each size-s instance of a bipartite problem in O(s log s)
time.

This sums up to O(m log2 n) as promised.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 13 / 21

Dependent Edges
Link-cut trees implement the following operations in O(log n) time:

1 add ∆ to the score of every edge on a path,
2 return edge with the smallest score in a subtree.

We binarise T and sweep over its edges maintaining the scores.

For every e′ ∈ T (e), the weight of a cut defined by {e,e′} is the score
of e′ + the total weight of all edges with exactly 1 endpoint in T (e).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 14 / 21

Dependent Edges
Link-cut trees implement the following operations in O(log n) time:

1 add ∆ to the score of every edge on a path,
2 return edge with the smallest score in a subtree.

We binarise T and sweep over its edges maintaining the scores.

For every e′ ∈ T (e), the weight of a cut defined by {e,e′} is the score
of e′ + the total weight of all edges with exactly 1 endpoint in T (e).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 14 / 21

Dependent Edges
Link-cut trees implement the following operations in O(log n) time:

1 add ∆ to the score of every edge on a path,
2 return edge with the smallest score in a subtree.

We binarise T and sweep over its edges maintaining the scores.

For every e′ ∈ T (e), the weight of a cut defined by {e,e′} is the score
of e′ + the total weight of all edges with exactly 1 endpoint in T (e).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 14 / 21

Dependent Edges
Link-cut trees implement the following operations in O(log n) time:

1 add ∆ to the score of every edge on a path,
2 return edge with the smallest score in a subtree.

We binarise T and sweep over its edges maintaining the scores.

For every e′ ∈ T (e), the weight of a cut defined by {e,e′} is the score
of e′ + the total weight of all edges with exactly 1 endpoint in T (e).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 14 / 21

Dependent Edges
Link-cut trees implement the following operations in O(log n) time:

1 add ∆ to the score of every edge on a path,
2 return edge with the smallest score in a subtree.

We binarise T and sweep over its edges maintaining the scores.

T

For every e′ ∈ T (e), the weight of a cut defined by {e,e′} is the score
of e′ + the total weight of all edges with exactly 1 endpoint in T (e).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 14 / 21

Dependent Edges
Link-cut trees implement the following operations in O(log n) time:

1 add ∆ to the score of every edge on a path,
2 return edge with the smallest score in a subtree.

We binarise T and sweep over its edges maintaining the scores.

T

e

For every e′ ∈ T (e), the weight of a cut defined by {e,e′} is the score
of e′ + the total weight of all edges with exactly 1 endpoint in T (e).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 14 / 21

Dependent Edges
Link-cut trees implement the following operations in O(log n) time:

1 add ∆ to the score of every edge on a path,
2 return edge with the smallest score in a subtree.

We binarise T and sweep over its edges maintaining the scores.

T

e

e′

For every e′ ∈ T (e), the weight of a cut defined by {e,e′} is the score
of e′ + the total weight of all edges with exactly 1 endpoint in T (e).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 14 / 21

Bipartite Problem

We are given two trees and a number of cross-edges:

T1 T2

We seek e ∈ T1,e′ ∈ T2 minimising the sum of their costs - the total
weight of all cross-edges between T1(e) with T2(e′).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 15 / 21

Bipartite Problem

We are given two trees and a number of cross-edges:

T1 T2

We seek e ∈ T1,e′ ∈ T2 minimising the sum of their costs - the total
weight of all cross-edges between T1(e) with T2(e′).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 15 / 21

Bipartite Problem

We are given two trees and a number of cross-edges:

T1 T2

e
e′

We seek e ∈ T1,e′ ∈ T2 minimising the sum of their costs - the total
weight of all cross-edges between T1(e) with T2(e′).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 15 / 21

Bipartite Problem

We are given two trees and a number of cross-edges:

T1 T2

e
e′

We seek e ∈ T1,e′ ∈ T2 minimising the sum of their costs - the total
weight of all cross-edges between T1(e) with T2(e′).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 15 / 21

Bipartite Problem

We are given two trees and a number of cross-edges:

T1 T2

e
e′

We seek e ∈ T1,e′ ∈ T2 minimising the sum of their costs - the total
weight of all cross-edges between T1(e) with T2(e′).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 15 / 21

Reduction to Bipartite Problems

We create a separate instance for every node x with two children:

T

e e′

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 16 / 21

Reduction to Bipartite Problems

We create a separate instance for every node x with two children:

T

e e′

x

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 16 / 21

Reduction to Bipartite Problems

We create a separate instance for every node x with two children:

x

The weight of a cut defined by {e,e′} is calculated as follows:
+ the total weight of all edges with one endpoint in T (e),
+ the total weight of all edges with one endpoint in T (e′),
– the total weight of all edges between T (e) with T (e′).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 16 / 21

Reduction to Bipartite Problems

We create a separate instance for every node x with two children:

x

e e′

The weight of a cut defined by {e,e′} is calculated as follows:
+ the total weight of all edges with one endpoint in T (e),
+ the total weight of all edges with one endpoint in T (e′),
– the total weight of all edges between T (e) with T (e′).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 16 / 21

Reduction to Bipartite Problems

We create a separate instance for every node x with two children:

x

e e′

The weight of a cut defined by {e,e′} is calculated as follows:
+ the total weight of all edges with one endpoint in T (e),
+ the total weight of all edges with one endpoint in T (e′),
– the total weight of all edges between T (e) with T (e′).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 16 / 21

Reduction to Bipartite Problems

We create a separate instance for every node x with two children:

x

e e′

The weight of a cut defined by {e,e′} is calculated as follows:
+ the total weight of all edges with one endpoint in T (e),
+ the total weight of all edges with one endpoint in T (e′),
– the total weight of all edges between T (e) with T (e′).

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 16 / 21

Main Trick
s = number of edges (u, v) with lca(u, v) = x .

Even though both trees might be large, only O(s) edges really matter.

With path-minimum queries we can compress the tree to consist of at
most 2s edges in O(s log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 17 / 21

Main Trick
s = number of edges (u, v) with lca(u, v) = x .

Even though both trees might be large, only O(s) edges really matter.

With path-minimum queries we can compress the tree to consist of at
most 2s edges in O(s log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 17 / 21

Main Trick
s = number of edges (u, v) with lca(u, v) = x .

Even though both trees might be large, only O(s) edges really matter.

With path-minimum queries we can compress the tree to consist of at
most 2s edges in O(s log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 17 / 21

Main Trick
s = number of edges (u, v) with lca(u, v) = x .

Even though both trees might be large, only O(s) edges really matter.

With path-minimum queries we can compress the tree to consist of at
most 2s edges in O(s log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 17 / 21

Main Trick
s = number of edges (u, v) with lca(u, v) = x .

Even though both trees might be large, only O(s) edges really matter.

With path-minimum queries we can compress the tree to consist of at
most 2s edges in O(s log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 17 / 21

Main Trick
s = number of edges (u, v) with lca(u, v) = x .

Even though both trees might be large, only O(s) edges really matter.

With path-minimum queries we can compress the tree to consist of at
most 2s edges in O(s log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 17 / 21

Main Trick
s = number of edges (u, v) with lca(u, v) = x .

Even though both trees might be large, only O(s) edges really matter.

keep the cheapest edge

With path-minimum queries we can compress the tree to consist of at
most 2s edges in O(s log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 17 / 21

Main Trick
s = number of edges (u, v) with lca(u, v) = x .

Even though both trees might be large, only O(s) edges really matter.

keep the cheapest edge

With path-minimum queries we can compress the tree to consist of at
most 2s edges in O(s log n) time.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 17 / 21

Solving the Bipartite Problem
Goal: for every e ∈ T1 find the cheapest e′ ∈ T2.

Divide-and-conquer guided by the heavy-light decomposition of T1.

In every recursive call we operate on a fragment of T1: the subtree
rooted at u1 (possibly) without the subtree rooted at uk .

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 18 / 21

Solving the Bipartite Problem
Goal: for every e ∈ T1 find the cheapest e′ ∈ T2.

Divide-and-conquer guided by the heavy-light decomposition of T1.

In every recursive call we operate on a fragment of T1: the subtree
rooted at u1 (possibly) without the subtree rooted at uk .

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 18 / 21

Solving the Bipartite Problem
Goal: for every e ∈ T1 find the cheapest e′ ∈ T2.

Divide-and-conquer guided by the heavy-light decomposition of T1.

T1

In every recursive call we operate on a fragment of T1: the subtree
rooted at u1 (possibly) without the subtree rooted at uk .

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 18 / 21

Solving the Bipartite Problem
Goal: for every e ∈ T1 find the cheapest e′ ∈ T2.

Divide-and-conquer guided by the heavy-light decomposition of T1.

T1

u1

uk

In every recursive call we operate on a fragment of T1: the subtree
rooted at u1 (possibly) without the subtree rooted at uk .

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 18 / 21

Solving the Bipartite Problem
Goal: for every e ∈ T1 find the cheapest e′ ∈ T2.

Divide-and-conquer guided by the heavy-light decomposition of T1.

T1

u1

uk

In every recursive call we operate on a fragment of T1: the subtree
rooted at u1 (possibly) without the subtree rooted at uk .

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 18 / 21

Solving Bipartite Problem
By appropriately splitting the current fragment into smaller fragments,
we ensure that the depth of the recursion is O(log n), and fragments on
every level of the recursion are disjoint. But what about T2?

We maintain a compressed representation of the relevant part of T2.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 19 / 21

Solving Bipartite Problem
By appropriately splitting the current fragment into smaller fragments,
we ensure that the depth of the recursion is O(log n), and fragments on
every level of the recursion are disjoint. But what about T2?

u1

uk

T1 T2

We maintain a compressed representation of the relevant part of T2.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 19 / 21

Solving Bipartite Problem
By appropriately splitting the current fragment into smaller fragments,
we ensure that the depth of the recursion is O(log n), and fragments on
every level of the recursion are disjoint. But what about T2?

u1

uk

T1 T2

We maintain a compressed representation of the relevant part of T2.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 19 / 21

Solving Bipartite Problem
By appropriately splitting the current fragment into smaller fragments,
we ensure that the depth of the recursion is O(log n), and fragments on
every level of the recursion are disjoint. But what about T2?

u1

uk

T1 T2

We maintain a compressed representation of the relevant part of T2.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 19 / 21

Solving Bipartite Problem
By appropriately splitting the current fragment into smaller fragments,
we ensure that the depth of the recursion is O(log n), and fragments on
every level of the recursion are disjoint. But what about T2?

u1

uk

T1 T2

We maintain a compressed representation of the relevant part of T2.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 19 / 21

Solving Bipartite Problem
By appropriately splitting the current fragment into smaller fragments,
we ensure that the depth of the recursion is O(log n), and fragments on
every level of the recursion are disjoint. But what about T2?

u1

uk

T1 T2

We maintain a compressed representation of the relevant part of T2.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 19 / 21

Recursion

In every recursive call we have a fragment f of T1 and a compressed
representation of the relevant part of T2 of size O(s), where s is the
number of cross-edges with one endpoint in f . Then:

1 We find the cheapest e′ ∈ T2 for O(1) edges e ∈ T1 by
considering all O(s) edges in the compressed representation.

2 We partition the remaining into O(1) fragments f1, f2,
3 For every fi , we extract a compressed representation of its

relevant part of T2 from the current compressed representation in
O(s) time, and recurse.

We make sure that the depth of the recursion is O(log n), and then the
whole running time becomes O(m log n).

There are some technicalities, in particular we actually maintain two
separate compressed representations, please see the paper.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 20 / 21

Recursion

In every recursive call we have a fragment f of T1 and a compressed
representation of the relevant part of T2 of size O(s), where s is the
number of cross-edges with one endpoint in f . Then:

1 We find the cheapest e′ ∈ T2 for O(1) edges e ∈ T1 by
considering all O(s) edges in the compressed representation.

2 We partition the remaining into O(1) fragments f1, f2,
3 For every fi , we extract a compressed representation of its

relevant part of T2 from the current compressed representation in
O(s) time, and recurse.

We make sure that the depth of the recursion is O(log n), and then the
whole running time becomes O(m log n).

There are some technicalities, in particular we actually maintain two
separate compressed representations, please see the paper.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 20 / 21

Recursion

In every recursive call we have a fragment f of T1 and a compressed
representation of the relevant part of T2 of size O(s), where s is the
number of cross-edges with one endpoint in f . Then:

1 We find the cheapest e′ ∈ T2 for O(1) edges e ∈ T1 by
considering all O(s) edges in the compressed representation.

2 We partition the remaining into O(1) fragments f1, f2,
3 For every fi , we extract a compressed representation of its

relevant part of T2 from the current compressed representation in
O(s) time, and recurse.

We make sure that the depth of the recursion is O(log n), and then the
whole running time becomes O(m log n).

There are some technicalities, in particular we actually maintain two
separate compressed representations, please see the paper.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 20 / 21

Recursion

In every recursive call we have a fragment f of T1 and a compressed
representation of the relevant part of T2 of size O(s), where s is the
number of cross-edges with one endpoint in f . Then:

1 We find the cheapest e′ ∈ T2 for O(1) edges e ∈ T1 by
considering all O(s) edges in the compressed representation.

2 We partition the remaining into O(1) fragments f1, f2,
3 For every fi , we extract a compressed representation of its

relevant part of T2 from the current compressed representation in
O(s) time, and recurse.

We make sure that the depth of the recursion is O(log n), and then the
whole running time becomes O(m log n).

There are some technicalities, in particular we actually maintain two
separate compressed representations, please see the paper.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 20 / 21

Recursion

In every recursive call we have a fragment f of T1 and a compressed
representation of the relevant part of T2 of size O(s), where s is the
number of cross-edges with one endpoint in f . Then:

1 We find the cheapest e′ ∈ T2 for O(1) edges e ∈ T1 by
considering all O(s) edges in the compressed representation.

2 We partition the remaining into O(1) fragments f1, f2,
3 For every fi , we extract a compressed representation of its

relevant part of T2 from the current compressed representation in
O(s) time, and recurse.

We make sure that the depth of the recursion is O(log n), and then the
whole running time becomes O(m log n).

There are some technicalities, in particular we actually maintain two
separate compressed representations, please see the paper.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 20 / 21

Recursion

In every recursive call we have a fragment f of T1 and a compressed
representation of the relevant part of T2 of size O(s), where s is the
number of cross-edges with one endpoint in f . Then:

1 We find the cheapest e′ ∈ T2 for O(1) edges e ∈ T1 by
considering all O(s) edges in the compressed representation.

2 We partition the remaining into O(1) fragments f1, f2,
3 For every fi , we extract a compressed representation of its

relevant part of T2 from the current compressed representation in
O(s) time, and recurse.

We make sure that the depth of the recursion is O(log n), and then the
whole running time becomes O(m log n).

There are some technicalities, in particular we actually maintain two
separate compressed representations, please see the paper.

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 20 / 21

Summary

Minimum cut can be solved in O(m log2 n) time w.h.p.

1 Is there a faster algorithm?
2 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 21 / 21

Summary

Minimum cut can be solved in O(m log2 n) time w.h.p.

1 Is there a faster algorithm?
2 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 21 / 21

Summary

Minimum cut can be solved in O(m log2 n) time w.h.p.

1 Is there a faster algorithm?
2 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 21 / 21

Summary

Minimum cut can be solved in O(m log2 n) time w.h.p.

1 Is there a faster algorithm?
2 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 21 / 21

Summary

Minimum cut can be solved in O(m log2 n) time w.h.p.

1 Is there a faster algorithm?
2 Is there a near-linear time deterministic algorithm?

Thank you!

Paweł Gawrychowski (University of Wrocław, Poland, The Interdisciplinary Center Herzliya, Israel, University of Haifa, Israel)Minimum Cut in O(m log2 n) Time 21 / 21

