A Faster FPTAS for #Knapsack

Paweł Gawrychowski 1 Liran Markin 2 Oren Weimann 2

1University of Wrocław, Poland

2University of Haifa, Israel

ICALP 2018

Slides by Liran Markin
Counting Knapsack Solutions

given a set $W = \{w_1, w_2, ..., w_n\}$ of n non-negative integers and a capacity C, count the number of subsets of W with total sum of at most C.

Gawrychowski, Markin, Weimann (University of Wrocław, Poland, University of Haifa, Israel)

A Faster FPTAS for #Knapsack

ICALP 2018
Counting Knapsack Solutions

Given a set \(W = \{w_1, w_2, \ldots, w_n\} \) of \(n \) non-negative integers and a capacity \(C \), count the number of subsets of \(W \) with total sum of at most \(C \).
Given a set \(W = \{w_1, w_2, \ldots, w_n\} \) of \(n \) non-negative integers and a capacity \(C \), count the number of subsets of \(W \) with total sum of at most \(C \).
Naïve Algorithm

Recurse on the last item.
Naïve Algorithm

Recurse on the last item. A solution from the set W and capacity C can be obtained by
Naïve Algorithm

Recurse on the last item. A solution from the set W and capacity C can be obtained by

- leaving the last element w_n, and taking a solution from $W/\{w_n\}$ and capacity C.
Naïve Algorithm

Recurse on the last item. A solution from the set W and capacity C can be obtained by

- leaving the last element w_n, and taking a solution from $W/\{w_n\}$ and capacity C.
- taking the last element w_n, and taking the rest of the elements from $W/\{w_n\}$ such that the capacity is $C - w_n$.

$$\text{f}(n, C) = \text{f}(n-1, C) + \text{f}(n-1, C - w_n)$$

$O(nC)$ time but C is large!
Naïve Algorithm

Recurse on the last item. A solution from the set W and capacity C can be obtained by

- leaving the last element w_n, and taking a solution from $W/\{w_n\}$ and capacity C.
- taking the last element w_n, and taking the rest of the elements from $W/\{w_n\}$ such that the capacity is $C - w_n$.

$$f(n, C) = f(n - 1, C) + f(n - 1, C - w_n)$$
Naïve Algorithm

Recurse on the last item. A solution from the set W and capacity C can be obtained by

- leaving the last element w_n, and taking a solution from $W/\{w_n\}$ and capacity C.
- taking the last element w_n, and taking the rest of the elements from $W/\{w_n\}$ such that the capacity is $C - w_n$.

$$f(n, C) = f(n - 1, C) + f(n - 1, C - w_n)$$

$O(nC)$ time but C is large!
Fully Polynomial Time Approximation Scheme (FPTAS)

Definition

Given $\varepsilon > 0$, estimate the number of solutions with ratio $(1 \pm \varepsilon)$, and run in polynomial time in the size of the input and in $1/\varepsilon$.

Deterministic FPTAS

$O(n^{3\varepsilon - 1}\log(n\varepsilon^{-1}))/\varepsilon$

[Štefanković et al. 2012], [Gopalan et al. 2011].

Best deterministic FPTAS

$O(n^{3\varepsilon - 1}\log(\varepsilon^{-1}/\log n))$

[Rizzi, Tomescu 2014].

Best randomized FPTAS

$O(n^{2.5\sqrt{\log(n\varepsilon^{-1})} + \varepsilon^{-2}})$

[Dyer 2003].

This work

A deterministic FPTAS running in $O(n^{2.5\varepsilon - 1.5\log(n\varepsilon^{-1})})$ time and $O(n^{1.5\varepsilon - 1.5})$ space.
Fully Polynomial Time Approximation Scheme (FPTAS)

Definition
Given $\varepsilon > 0$, estimate the number of solutions with ratio $(1 \pm \varepsilon)$, and run in polynomial time in the size of the input and in $1/\varepsilon$.

Deterministic FPTAS $O(n^3\varepsilon^{-1} \log(n\varepsilon^{-1}))$ [Štefankovič et al. 2012], [Gopalan et al. 2011].
Best deterministic FPTAS $O(n^3\varepsilon^{-1} \log \varepsilon^{-1} / \log n)$ [Rizzi, Tomescu 2014].
Best randomized FPTAS $O(n^{2.5} \sqrt{\log(n\varepsilon^{-1})} + \varepsilon^{-2} n^2)$ [Dyer 2003].
Fully Polynomial Time Approximation Scheme (FPTAS)

Definition

Given $\varepsilon > 0$, estimate the number of solutions with ratio $(1 \pm \varepsilon)$, and run in polynomial time in the size of the input and in $1/\varepsilon$.

Deterministic FPTAS $O(n^3 \varepsilon^{-1} \log(n \varepsilon^{-1}))$ [Štefankovič et al. 2012], [Gopalan et al. 2011].

Best deterministic FPTAS $O(n^3 \varepsilon^{-1} \log \varepsilon^{-1} / \log n)$ [Rizzi, Tomescu 2014].

Best randomized FPTAS $O(n^{2.5} \sqrt{\log(n \varepsilon^{-1})} + \varepsilon^{-2} n^2)$ [Dyer 2003].

This work

A deterministic FPTAS running in $O(n^{2.5} \varepsilon^{-1.5} \log(n \varepsilon^{-1}) \log(n \varepsilon))$ time and $O(n^{1.5} \varepsilon^{-1.5})$ space.
Sum Approximation

Same idea as K-approximation sets [Halman 2009].
Sum Approximation

Same idea as K-approximation sets [Halman 2009].

For a function $f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ (number of solutions by capacity):
Let $f^\leq(x) = \sum_{0 \leq y \leq x} f(y)$ be the partial sum of f.
Sum Approximation

Same idea as K-approximation sets [Halman 2009].

For a function $f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ (number of solutions by capacity):
Let $f^\leq(x) = \sum_{0 \leq y \leq x} f(y)$ be the partial sum of f.

Definition

A function F is a $(1 + \epsilon)$-sum approximation of f if for every x,

$$f^\leq(x) \leq F^\leq(x) \leq (1 + \epsilon)f^\leq(x)$$

Gawrychowski, Markin, Weimann
A Faster FPTAS for #Knapsack
ICALP 2018 5 / 13
Sum Approximation - Sparsification

\[f(x) \]

Gawrychowski, Markin, Weimann

A Faster FPTAS for #Knapsack
Sum Approximation - Sparsification

\[f(x) \]

wider circle → larger value
Sum Approximation - Sparsification

\[f^\leq(x) \]
Sum Approximation - Sparsification

\[f(x) \leq (1 + \epsilon) r_i \]

\[r_{i+1} = (1 + \epsilon) r_i \]

Gawrychowski, Markin, Weimann (University of Wrocław, Poland, University of Haifa, Israel)
A Faster FPTAS for #Knapsack
ICALP 2018 6 / 13
Sum Approximation - Sparsification

\[f_{\leq}(x) \]

\[r_{i+1} = (1 + \epsilon)r_i \]

Gawrychowski, Markin, Weimann (University of Wrocław, Poland, University of Haifa, Israel)

A Faster FPTAS for #Knapsack

ICALP 2018 6 / 13
Sum Approximation - Sparsification

\[f \leq x \]

\[r_{i+1} = (1 + \epsilon)r_i \]
$f^{\leq}(x)$
Sum Approximation - Sparsification

\[\tilde{f}(x) \]

\[x_1 \xrightarrow{\epsilon} x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow x_6 \rightarrow x \]
Sum Approximation - Sparsification

\[F(x) \]

\[
\sum_{i=1}^{n} x_i = (1 + \epsilon) \sum_{i=1}^{n} r_i
\]
Sum Approximation - Sparsification

\[F^\leq(x) = \tilde{f}^\leq(x) \leq (1 + \epsilon)f^\leq(x) \]
Claim

The size of F is $|F| = |r| = \log_{1+\epsilon}(M).

Where M is the sum of all values of f.
Claim
The size of F is $|F| = |r| = \log_{1+\epsilon} M$.

Where M is the sum of all values of f.

For #Knapsack:
$M \leq \#\text{subsets of } W = 2^n$

Claim
The size of F is $|F| = n/\epsilon$
Lemma

Let F, G be $(1 + \epsilon)$-sum approximation of f, g.

Approximation: A $(1 + \epsilon')$-sum approximation of F is a $(1 + \epsilon')(1 + \epsilon)$-sum approximation of f.

Summation: $(F + G)$ is a $(1 + \epsilon)$-sum approximation of $(f + g)$.

Shifting: $F(x - w)$ is a $(1 + \epsilon)$-sum approximation of $f(x - w)$ for any $w > 0$.
Lemma

Let F, G be $(1 + \epsilon)$-sum approximation of f, g.

Approximation: A $(1 + \epsilon')$-sum approximation of F is a $(1 + \epsilon')(1 + \epsilon)$-sum approximation of f.

Summation: $(F + G)$ is a $(1 + \epsilon)$-sum approximation of $(f + g)$.

Shifting: $F(x - w)$ is a $(1 + \epsilon)$-sum approximation of $f(x - w)$ for any $w > 0$.

Convolution: $(F \ast G)$ is a $(1 + \epsilon)^2$-sum approximation of $(f \ast g)$.
Definition

Let $k_S(x)$ be a function that equals to the number of subsets of the set S with a total weight of \textbf{exactly} x.

The answer to the \#Knapsack instance is $k_{\leq W}^*(C)$.
Let $k_S(x)$ be a function that equals to the number of subsets of the set S with a total weight of *exactly* x.

The answer to the #Knapsack instance is $k_{\leq W}(C)$.

K_S is the sum-approximation of k_S.
The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

\[k_{S \cup \{w\}}(x) = k_S(x) + k_S(x - w) \]
The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

\[k_{S \cup \{w\}}(x) = k_S(x) + k_S(x - w) \]

For every item \(w \) in \(W \):
The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

\[k_{S \cup \{w\}}(x) = k_S(x) + k_S(x - w) \]

For every item \(w \) in \(W \):

- Shift \(K_S \) by \(w \).
The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

\[k_{S \cup \{w\}}(x) = k_S(x) + k_S(x - w) \]

For every item \(w \) in \(W \):
- Shift \(K_S \) by \(w \).
- Sum \(K_S \) with \(K_S(x - w) \).
The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

\[k_{S \cup \{w\}}(x) = k_S(x) + k_S(x - w) \]

For every item \(w \) in \(W \):
- Shift \(K_S \) by \(w \).
- Sum \(K_S \) with \(K_S(x - w) \).
- Sparsify with parameter \((1 + \epsilon)^{1/n} \).
The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

\[k_{S \cup \{w\}}(x) = k_S(x) + k_S(x - w) \]

For every item \(w \) in \(W \):

- Shift \(K_S \) by \(w \).
- Sum \(K_S \) with \(K_S(x - w) \).
- Sparsify with parameter \((1 + \epsilon)^{1/n}\).

\(n \) steps \(\cdot |K_S| \) time
The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

\[k_{S \cup \{w\}}(x) = k_S(x) + k_S(x - w) \]

For every item \(w \) in \(W \):

- Shift \(K_S \) by \(w \).
- Sum \(K_S \) with \(K_S(x - w) \).
- Sparsify with parameter \((1 + \epsilon)^{1/n}\).

\(n \) steps \(\cdot |K_S| \) time \(\Rightarrow O(n^3/\epsilon) \)
Our Algorithm

Key observation:

\[k_{S\cup T}(x) = \sum_{y \leq x} k_S(y)k_T(x - y) \]
Our Algorithm

Key observation:

\[
k_{S \cup T}(x) = \sum_{y \leq x} k_S(y)k_T(x - y) = (k_S \ast k_T)(x)
\]
Our Algorithm

Key observation:

\[k_{S \cup T}(x) = \sum_{y \leq x} k_S(y)k_T(x - y) = (k_S \ast k_T)(x) \]

The algorithm:

- If the size of \(W \) is less than \(\sqrt{n} \), use the previous algorithm.
Our Algorithm

Key observation:

\[k_{S \cup T}(x) = \sum_{y \leq x} k_S(y)k_T(x - y) = (k_S \ast k_T)(x) \]

The algorithm:

- If the size of \(W \) is less than \(\sqrt{n} \), use the previous algorithm.
- Split the set \(W \) into two halves \(S \) and \(T \).
Our Algorithm

Key observation:

\[k_{S \cup T}(x) = \sum_{y \leq x} k_S(y)k_T(x - y) = (k_S \ast k_T)(x) \]

The algorithm:
- If the size of \(W \) is less than \(\sqrt{n} \), use the previous algorithm.
- Split the set \(W \) into two halves \(S \) and \(T \).
- Compute the sum-approximations \(K_S \) and \(K_T \) recursively.
Our Algorithm

Key observation:

\[k_{S \cup T}(x) = \sum_{y \leq x} k_S(y)k_T(x - y) = (k_S * k_T)(x) \]

The algorithm:

- If the size of \(W \) is less than \(\sqrt{n} \), use the previous algorithm.
- Split the set \(W \) into two halves \(S \) and \(T \).
- Compute the sum-approximations \(K_S \) and \(K_T \) recursively.
- Compute \(K_W = K_{S \cup T} \) by convolution of \(K_S \) and \(K_T \), then sparsify to keep size small.
Our Algorithm

Key observation:

\[k_{S \cup T}(x) = \sum_{y \leq x} k_S(y) k_T(x - y) = (k_S \ast k_T)(x) \]

The algorithm:

- If the size of \(W \) is less than \(\sqrt{n} \), use the previous algorithm.
- Split the set \(W \) into two halves \(S \) and \(T \).
- Compute the sum-approximations \(K_S \) and \(K_T \) recursively.
- Compute \(K_W = K_{S \cup T} \) by convolution of \(K_S \) and \(K_T \), then sparsify to keep size small.

\[O(n^{2.5} \varepsilon^{-1.5} \log(n\varepsilon^{-1}) \log(n\varepsilon)) \text{ time and } O(n^{1.5} \varepsilon^{-1.5}) \text{ space.} \]

Sparsification parameter should be adjusted for every level of the recursion. See the paper.
Counting Integer Knapsack Solutions

w_1, u_1

w_2, u_2

capacity C

There is a FPTAS running in $O\left(n^{2.5\epsilon - 1.5\log \left(n\epsilon - 1\log U\right)\log \left(n\epsilon\right)\log 2U}\right)$ time and $O\left(n^{1.5\epsilon - 1.5\log U}\right)$ space.
Counting Integer Knapsack Solutions

\[w_1, u_1 \quad w_2, u_2 \quad \text{capacity } C \]

Best FPTAS \(O(n^3\epsilon^{-1} \log(n\epsilon^{-1} \log U) \log^2 U) \) [Halman 2016].
Counting Integer Knapsack Solutions

\[w_1, u_1 \quad w_2, u_2 \quad \text{capacity } C \]

Best FPTAS \(O(n^3 \epsilon^{-1} \log(n \epsilon^{-1} \log U) \log^2 U) \) [Halman 2016].

There is a FPTAS running in \(O(n^{2.5} \epsilon^{-1.5} \log(n \epsilon^{-1} \log U) \log(n \epsilon) \log^2 U) \) time and \(O(n^{1.5} \epsilon^{-1.5} \log U) \) space.
Open Problems

- Ignore the dependency on ϵ (constant), is there an algorithm with running time of $\tilde{O}(n^{2.5-\alpha})$?
- Deterministic FPTAS with running time of $\tilde{O}(n^{2.5\epsilon^{-1.5+\alpha}})$?
Open Problems

- Ignore the dependency on ϵ (constant), is there an algorithm with running time of $\tilde{O}(n^{2.5-\alpha})$?
- Deterministic FPTAS with running time of $\tilde{O}(n^{2.5}\epsilon^{-1.5+\alpha})$?

Thank You!

Questions?