A Faster FPTAS for #Knapsack

Paweł Gawrychowski ¹ Liran Markin ² Oren Weimann ²

¹University of Wrocław, Poland

²University of Haifa, Israel

ICALP 2018

Slides by Liran Markin

Counting Knapsack Solutions

capacity C

Counting Knapsack Solutions

Counting Knapsack Solutions

Given a set $W = \{w_1, w_2, ..., w_n\}$ of *n* non-negative integers and a capacity *C*, count the number of subsets of *W* with total sum of at most *C*.

Gawrychowski, Markin, Weimann

Recurse on the last item.

Recurse on the last item. A solution from the set W and capacity C can be obtained by

Recurse on the last item. A solution from the set W and capacity C can be obtained by

leaving the last element w_n, and taking a solution from W/{w_n} and capacity C.

Recurse on the last item. A solution from the set W and capacity C can be obtained by

- leaving the last element w_n, and taking a solution from W/{w_n} and capacity C.
- taking the last element w_n , and taking the rest of the elements from $W/\{w_n\}$ such that the capacity is $C w_n$.

Recurse on the last item. A solution from the set W and capacity C can be obtained by

- leaving the last element w_n, and taking a solution from W/{w_n} and capacity C.
- taking the last element w_n , and taking the rest of the elements from $W/\{w_n\}$ such that the capacity is $C w_n$.

 $f(n, C) = f(n - 1, C) + f(n - 1, C - w_n)$

Recurse on the last item. A solution from the set W and capacity C can be obtained by

- leaving the last element w_n, and taking a solution from W/{w_n} and capacity C.
- taking the last element w_n , and taking the rest of the elements from $W/\{w_n\}$ such that the capacity is $C w_n$.

$$f(n, C) = f(n - 1, C) + f(n - 1, C - w_n)$$

O(nC) time but C is large!

Fully Polynomial Time Approximation Scheme (FPTAS)

Definition

Given $\varepsilon > 0$, estimate the number of solutions with ratio $(1 \pm \varepsilon)$, and run in polynomial time in the size of the input and in $1/\varepsilon$.

Fully Polynomial Time Approximation Scheme (FPTAS)

Definition

Given $\varepsilon > 0$, estimate the number of solutions with ratio $(1 \pm \varepsilon)$, and run in polynomial time in the size of the input and in $1/\varepsilon$.

Deterministic FPTAS $O(n^3 \epsilon^{-1} \log(n \epsilon^{-1}))$ [Štefankovič et al. 2012], [Gopalan et al. 2011]. Best deterministic FPTAS $O(n^3 \epsilon^{-1} \log \epsilon^{-1} / \log n)$ [Rizzi, Tomescu 2014].

Best randomized FPTAS $O(n^{2.5}\sqrt{\log(n\epsilon^{-1})} + \epsilon^{-2}n^2)$ [Dyer 2003].

Fully Polynomial Time Approximation Scheme (FPTAS)

Definition

Given $\varepsilon > 0$, estimate the number of solutions with ratio $(1 \pm \varepsilon)$, and run in polynomial time in the size of the input and in $1/\varepsilon$.

Deterministic FPTAS $O(n^3 \epsilon^{-1} \log(n \epsilon^{-1}))$ [Štefankovič et al. 2012], [Gopalan et al. 2011]. Best deterministic FPTAS $O(n^3 \epsilon^{-1} \log \epsilon^{-1} / \log n)$ [Rizzi, Tomescu 2014].

Best randomized FPTAS $O(n^{2.5}\sqrt{\log(n\epsilon^{-1})} + \epsilon^{-2}n^2)$ [Dyer 2003].

This work

A deterministic FPTAS running in $O(n^{2.5}\varepsilon^{-1.5}\log(n\varepsilon^{-1})\log(n\varepsilon))$ time and $O(n^{1.5}\varepsilon^{-1.5})$ space.

Sum Approximation

Same idea as K-approximation sets [Halman 2009].

Sum Approximation

Same idea as K-approximation sets [Halman 2009].

For a function $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ (number of solutions by capacity): Let $f^{\leq}(x) = \sum_{0 \leq y \leq x} f(y)$ be the partial sum of f.

Sum Approximation

Same idea as K-approximation sets [Halman 2009].

For a function $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ (number of solutions by capacity): Let $f^{\leq}(x) = \sum_{0 \leq y \leq x} f(y)$ be the partial sum of f.

Definition

A function F is a $(1 + \epsilon)$ -sum approximation of f if for every x,

$$f^{\leq}(x) \leq F^{\leq}(x) \leq (1+\epsilon)f^{\leq}(x)$$

f(x)

wider circle \rightarrow larger value $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14$

Gawrychowski, Markin, Weimann

Gawrychowski, Markin, Weimann

Gawrychowski, Markin, Weimann

Gawrychowski, Markin, Weimann

Gawrychowski, Markin, Weimann

Gawrychowski, Markin, Weimann

A Faster FPTAS for #Knapsack

ICALP 2018 6 / 13

$$F^{\leq}(x) = \tilde{f^{\leq}}(x) \leq (1+\epsilon)f^{\leq}(x)$$

Gawrychowski, Markin, Weimann

A Faster FPTAS for #Knapsack

ICALP 2018 6 / 13

Claim

The size of F is
$$|F| = |r| = \log_{(1+\epsilon)} M$$
.

Where M is the sum of all values of f.

Claim

The size of F is
$$|F| = |r| = \log_{(1+\epsilon)} M$$
.

Where M is the sum of all values of f.

For #Knapsack: $M \leq$ #subsets of $W = 2^n$

Claim

The size of *F* is $|F| = n/\epsilon$

Lemma Let F, G be $(1 + \epsilon)$ -sum approximation of f, g. Approximation: $A (1 + \epsilon')$ -sum approximation of F is a $(1 + \epsilon')(1 + \epsilon)$ -sum approximation of f. Summation: (F + G) is a $(1 + \epsilon)$ -sum approximation of (f + g). Shifting: F(x - w) is a $(1 + \epsilon)$ -sum approximation of f(x - w) for any w > 0.

Lemma Let F, G be $(1 + \epsilon)$ -sum approximation of f, g. Approximation: $A (1 + \epsilon')$ -sum approximation of F is a $(1 + \epsilon')(1 + \epsilon)$ -sum approximation of f. Summation: (F + G) is a $(1 + \epsilon)$ -sum approximation of (f + g). Shifting: F(x - w) is a $(1 + \epsilon)$ -sum approximation of f(x - w) for any w > 0.

Convolution: (F * G) is a $(1 + \varepsilon)^2$ -sum approximation of (f * g).

Back to #Knapsack

Definition

Let $k_S(x)$ be a function that equals to the number of subsets of the set *S* with a total weight of **exactly** *x*.

The answer to the #Knapsack instance is $k_W^{\leq}(C)$.

Back to #Knapsack

Definition

Let $k_S(x)$ be a function that equals to the number of subsets of the set *S* with a total weight of **exactly** *x*.

The answer to the #Knapsack instance is $k_W^{\leq}(C)$.

 K_S is the sum-approximation of k_S .

As in the naive algorithm

$$k_{\mathcal{S}\cup\{w\}}(x) = k_{\mathcal{S}}(x) + k_{\mathcal{S}}(x-w)$$

As in the naive algorithm

$$k_{\mathcal{S}\cup\{w\}}(x) = k_{\mathcal{S}}(x) + k_{\mathcal{S}}(x-w)$$

For every item *w* in *W*:

As in the naive algorithm

$$k_{\mathcal{S}\cup\{w\}}(x) = k_{\mathcal{S}}(x) + k_{\mathcal{S}}(x-w)$$

For every item w in W:

• Shift K_S by w.

As in the naive algorithm

$$k_{\mathcal{S}\cup\{w\}}(x) = k_{\mathcal{S}}(x) + k_{\mathcal{S}}(x-w)$$

For every item *w* in *W*:

- Shift K_S by w.
- Sum K_S with $K_S(x w)$.

The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

$$k_{\mathcal{S}\cup\{w\}}(x) = k_{\mathcal{S}}(x) + k_{\mathcal{S}}(x-w)$$

For every item *w* in *W*:

- Shift K_S by w.
- Sum K_S with $K_S(x w)$.
- Sparsify with parameter $(1 + \epsilon)^{1/n}$.

The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

$$k_{\mathcal{S}\cup\{w\}}(x) = k_{\mathcal{S}}(x) + k_{\mathcal{S}}(x-w)$$

For every item *w* in *W*:

- Shift K_S by w.
- Sum K_S with $K_S(x w)$.
- Sparsify with parameter $(1 + \epsilon)^{1/n}$.

n steps $|K_S|$ time

The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

$$k_{\mathcal{S}\cup\{w\}}(x) = k_{\mathcal{S}}(x) + k_{\mathcal{S}}(x-w)$$

For every item *w* in *W*:

- Shift K_S by w.
- Sum K_S with $K_S(x w)$.

• Sparsify with parameter $(1 + \epsilon)^{1/n}$.

n steps $\cdot |K_S|$ time $\Rightarrow O(n^3/\epsilon)$

Key observation:

$$k_{\mathcal{S}\cup\mathcal{T}}(x) = \sum_{y \leq x} k_{\mathcal{S}}(y) k_{\mathcal{T}}(x-y)$$

Key observation:

$$k_{\mathcal{S}\cup\mathcal{T}}(x) = \sum_{y \leq x} k_{\mathcal{S}}(y) k_{\mathcal{T}}(x-y) = (k_{\mathcal{S}} * k_{\mathcal{T}})(x)$$

Key observation:

$$k_{\mathcal{S}\cup\mathcal{T}}(x) = \sum_{y \leq x} k_{\mathcal{S}}(y) k_{\mathcal{T}}(x-y) = (k_{\mathcal{S}} * k_{\mathcal{T}})(x)$$

The algorithm:

• If the size of *W* is less than \sqrt{n} , use the previous algorithm.

Key observation:

$$k_{\mathcal{S}\cup\mathcal{T}}(x) = \sum_{y \leq x} k_{\mathcal{S}}(y) k_{\mathcal{T}}(x-y) = (k_{\mathcal{S}} * k_{\mathcal{T}})(x)$$

The algorithm:

- If the size of *W* is less than \sqrt{n} , use the previous algorithm.
- Split the set *W* into two halves *S* and *T*.

Key observation:

$$k_{\mathcal{S}\cup\mathcal{T}}(x) = \sum_{y \leq x} k_{\mathcal{S}}(y) k_{\mathcal{T}}(x-y) = (k_{\mathcal{S}} * k_{\mathcal{T}})(x)$$

The algorithm:

- If the size of *W* is less than \sqrt{n} , use the previous algorithm.
- Split the set W into two halves S and T.
- Compute the sum-approximations K_S and K_T recursively.

Key observation:

$$k_{\mathcal{S}\cup\mathcal{T}}(x) = \sum_{y \leq x} k_{\mathcal{S}}(y) k_{\mathcal{T}}(x-y) = (k_{\mathcal{S}} * k_{\mathcal{T}})(x)$$

The algorithm:

- If the size of *W* is less than \sqrt{n} , use the previous algorithm.
- Split the set W into two halves S and T.
- Compute the sum-approximations K_S and K_T recursively.
- Compute $K_W = K_{S \cup T}$ by convolution of K_S and K_T , then sparsify to keep size small.

Key observation:

$$k_{\mathcal{S}\cup\mathcal{T}}(x) = \sum_{y \leq x} k_{\mathcal{S}}(y) k_{\mathcal{T}}(x-y) = (k_{\mathcal{S}} * k_{\mathcal{T}})(x)$$

The algorithm:

- If the size of *W* is less than \sqrt{n} , use the previous algorithm.
- Split the set W into two halves S and T.
- Compute the sum-approximations K_S and K_T recursively.
- Compute $K_W = K_{S \cup T}$ by convolution of K_S and K_T , then sparsify to keep size small.

$$O(n^{2.5}\varepsilon^{-1.5}\log(n\varepsilon^{-1})\log(n\varepsilon))$$
 time and $O(n^{1.5}\varepsilon^{-1.5})$ space.

Sparsification parameter should be adjusted for every level of the recursion. See the paper.

Gawrychowski, Markin, Weimann

A Faster FPTAS for #Knapsack

Counting Integer Knapsack Solutions

Counting Integer Knapsack Solutions

Best FPTAS $O(n^3 \epsilon^{-1} \log(n \epsilon^{-1} \log U) \log^2 U)$ [Halman 2016].

Gawrychowski, Markin, Weimann

Counting Integer Knapsack Solutions

Best FPTAS $O(n^3 \epsilon^{-1} \log(n \epsilon^{-1} \log U) \log^2 U)$ [Halman 2016].

There is a FPTAS running in $O(n^{2.5}\varepsilon^{-1.5}\log(n\varepsilon^{-1}\log U)\log(n\varepsilon)\log^2 U)$ time and $O(n^{1.5}\varepsilon^{-1.5}\log U)$ space.

Gawrychowski, Markin, Weimann

Open Problems

- Ignore the dependency on *ε* (constant), is there an algorithm with running time of Õ(n^{2.5-α}) ?
- Deterministic FPTAS with running time of $\tilde{O}(n^{2.5}\epsilon^{-1.5+\alpha})$?

Open Problems

- Ignore the dependency on *ε* (constant), is there an algorithm with running time of Õ(n^{2.5-α}) ?
- Deterministic FPTAS with running time of $\tilde{O}(n^{2.5}\epsilon^{-1.5+\alpha})$?

Thank You!

Questions?