A Faster FPTAS for #Knapsack

Pawet Gawrychowski ! Liran Markin2 Oren Weimann 2

TUniversity of Wroctaw, Poland

2University of Haifa, Israel

ICALP 2018

Slides by Liran Markin

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 1/13

Oren Weimann
Slides by Liran Markin

Counting Knapsack Solutions

[

capacity C

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Counting Knapsack Solutions

ip
® s 8 ¢

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 2/13

Counting Knapsack Solutions

£

capacity C
Wy Wo ws Wy Ws
Given aset W = {wy, ws, ..., wp} of n non-negative integers and a
capacity C, count the number of subsets of W with total sum of at J
most C.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 2/13

Naive Algorithm

Recurse on the last item.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Naive Algorithm

Recurse on the last item. A solution from the set W and capacity C
can be obtained by

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 3/13

Naive Algorithm

Recurse on the last item. A solution from the set W and capacity C
can be obtained by

@ leaving the last element wj,, and taking a solution from W /{w,}
and capacity C.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 3/13

Naive Algorithm

Recurse on the last item. A solution from the set W and capacity C
can be obtained by

@ leaving the last element wj,, and taking a solution from W /{w,}
and capacity C.

@ taking the last element w,, and taking the rest of the elements
from W/{w,} such that the capacity is C — w,.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 3/13

Naive Algorithm

Recurse on the last item. A solution from the set W and capacity C
can be obtained by

@ leaving the last element wj,, and taking a solution from W /{w,}
and capacity C.

@ taking the last element w,, and taking the rest of the elements
from W/{w,} such that the capacity is C — w,.

f(n,C) = f(n—1,C) + f(n—1,C — w,) J

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 3/13

Naive Algorithm

Recurse on the last item. A solution from the set W and capacity C
can be obtained by

@ leaving the last element wj,, and taking a solution from W /{w,}
and capacity C.

@ taking the last element w,, and taking the rest of the elements
from W/{w,} such that the capacity is C — w,.

f(n,C) = f(n—1,C) + f(n—1,C — w,) J

O(nC) time but C is large!

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 3/13

Fully Polynomial Time Approximation Scheme
(FPTAS)

Definition
Given € > 0, estimate the number of solutions with ratio (1 £ ¢), and
run in polynomial time in the size of the input and in 1/¢.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 4/13

Fully Polynomial Time Approximation Scheme
(FPTAS)

Definition
Given € > 0, estimate the number of solutions with ratio (1 £ ¢), and
run in polynomial time in the size of the input and in 1/¢.

Deterministic FPTAS O(nPe " log(ne~)) [Stefankovié et al. 2012,
[Gopalan et al. 2011].

Best deterministic FPTAS O(n®¢~"log e~/ log n) [Rizzi, Tomescu
2014].

Best randomized FPTAS O(n?°./log(ne=1) 4+ ¢~2n?) [Dyer 2003].

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 4/13

Fully Polynomial Time Approximation Scheme
(FPTAS)

Definition
Given € > 0, estimate the number of solutions with ratio (1 £ ¢), and
run in polynomial time in the size of the input and in 1/¢.

Deterministic FPTAS O(nPe " log(ne~)) [Stefankovié et al. 2012,
[Gopalan et al. 2011].

Best deterministic FPTAS O(n®¢~"log e~/ log n) [Rizzi, Tomescu
2014].

Best randomized FPTAS O(n?°./log(ne=1) 4+ ¢~2n?) [Dyer 2003].

This work

A deterministic FPTAS running in O(n?5¢~1%log(n=") log(ne)) time
and O(n'5¢="9) space.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 4/13

Sum Approximation

Same idea as K-approximation sets [Halman 2009].

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Sum Approximation

Same idea as K-approximation sets [Halman 2009].

For a function f : Z* — Z™ (number of solutions by capacity):
Let f<(x) = >_ f(y) be the partial sum of f.

0<y<x

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 5/13

Sum Approximation

Same idea as K-approximation sets [Halman 2009].

For a function f : Z* — Z™ (number of solutions by capacity):
Let f<(x) = >_ f(y) be the partial sum of f.

0<y<x
Definition
A function F is a (1 + €)-sum approximation of f if for every x,

fS(X) < FS(x) < (1 4+ 6)FfS(x)

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 5/13

Sum Approximation - Sparsification

3 1 3 1 6 1 3
. > X

1
| t t t t t t t t
0o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Sum Approximation - Sparsification

wider circle — larger value

o———@ ..:....:..—»X
o 1 2 5 6 7 8 9 10 11 12 13 14

Mo

3

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Sum Approximation - Sparsification

f=(x)
A
° O o (—o . o @ > X

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Sum Approximation - Sparsification

pr-------—----—--—-—-—---

F3f------ —
rpgpr------
rq :

@ > X

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Sum Approximation - Sparsification

f=(x)
A fipg =+
fg - mm e - *—
T 2
L 0
ryf----- -
rpgpr----- .
rye———
° O o (—o . o @ > X
Xq Xo X4 X5 Xe
X3

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Sum Approximation - Sparsification

—
[J
~—
—/~
®
~—
—~
®
~—
—/~
~

Xq Xo X4 X5 Xe

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Sum Approximation - Sparsification

f=(x)
A
—
|
¢
¢
1‘ :
¢
(e—H@® —HO— A o HO—>)xX
Xq Xo X4 X5 Xe
X3

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 6/13

Sum Approximation - Sparsification

f=(x)
A
(o—) I @ H@—»)x
Xq Xo X4 X5 Xe

X3

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 6/13

Sum Approximation - Sparsification

F(x)

° o o ‘ o> X

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Sum Approximation - Sparsification

FE(x) = f<(x) < (1 + &)f<(x)

° o @ ' o> x

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 6/13

Sum Approximation - Properties

Claim
The size of Fis |F| = |r| = log (1. M. J

Where M is the sum of all values of f.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Sum Approximation - Properties

Claim
The size of F is |F| = [r| = l0g 1, M. J

Where M is the sum of all values of f.

For #Knapsack:
M < #subsets of W = 2"

Claim
The size of Fis |F| = n/e J

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 7/13

Sum Approximation - Properties

Lemma
Let F, G be (1 + €)-sum approximation of f, g.

Approximation: A (1 + €')-sum approximation of F is a
(1 + €)(1 + €)-sum approximation of f.

Summation: (F + G) is a (1 + €)-sum approximation of (f + g).
Shifting: F(x — w) is a (1 + €)-sum approximation of f(x — w) for
any w > 0.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 8/13

Sum Approximation - Properties

Lemma
Let F, G be (1 + €)-sum approximation of f, g.

Approximation: A (1 + €')-sum approximation of F is a
(1 + €)(1 + €)-sum approximation of f.

Summation: (F + G) is a (1 + €)-sum approximation of (f + g).

Shifting: F(x — w) is a (1 + €)-sum approximation of f(x — w) for
any w > 0.

Convolution: (F * G) is a (1 + £)?-sum approximation of (f x g).

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 8/13

Back to #Knapsack

Definition
Let ks(x) be a function that equals to the number of subsets of the set
S with a total weight of exactly x.

The answer to the #Knapsack instance is kVSV(C).

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 9/13

Back to #Knapsack

Definition
Let ks(x) be a function that equals to the number of subsets of the set
S with a total weight of exactly x.

The answer to the #Knapsack instance is kVSV(C).

Ks is the sum-approximation of ks.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 9/13

The Previous Best Algorithm [Stefankovi¢ et al. 2012],
[Halman 2016]

As in the naive algorithm

ksugwy(X) = Ks(X) + Ks(x — w)

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 10/13

The Previous Best Algorithm [Stefankovi¢ et al. 2012],
[Halman 2016]

As in the naive algorithm

ksugwy(X) = Ks(X) + Ks(x — w)

For every item w in W:

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 10/13

The Previous Best Algorithm [Stefankovi¢ et al. 2012],
[Halman 2016]

As in the naive algorithm

ksugwy(X) = Ks(X) + Ks(x — w)

For every item w in W:
@ Shift Ks by w.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 10/13

The Previous Best Algorithm [Stefankovi¢ et al. 2012],
[Halman 2016]

As in the naive algorithm

ksugwy(X) = Ks(X) + Ks(x — w)

For every item w in W:
@ Shift Ks by w.
@ Sum Kg with Kg(x — w).

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 10/13

The Previous Best Algorithm [Stefankovi¢ et al. 2012],
[Halman 2016]

As in the naive algorithm

ksugwy(X) = Ks(X) + Ks(x — w)

For every item w in W:
@ Shift Ks by w.
@ Sum Kg with Kg(x — w).
@ Sparsify with parameter (1 + ¢)'/7.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 10/13

The Previous Best Algorithm [Stefankovi¢ et al. 2012],
[Halman 2016]

As in the naive algorithm

ksugwy(X) = Ks(X) + Ks(x — w)

For every item w in W:
@ Shift Ks by w.
@ Sum Kg with Kg(x — w).
@ Sparsify with parameter (1 + ¢)'/7.

n steps -|Ks| time J

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 10/13

The Previous Best Algorithm [Stefankovi¢ et al. 2012],
[Halman 2016]

As in the naive algorithm

ksugwy(X) = Ks(X) + Ks(x — w)

For every item w in W:
@ Shift Ks by w.
@ Sum Kg with Kg(x — w).
@ Sparsify with parameter (1 + ¢)'/7.

n steps -|Ks| time = O(n®/e)]

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 10/13

Our Algorithm

Key observation:

ksur(X) = ks(¥)kr(x - y)

y<x

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Our Algorithm

Key observation:

ksur(X) = ks(¥)kr(x — y) = (ks * kr)(x)

y<x

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack

Our Algorithm

Key observation:

ksur(X) = ks(¥)kr(x — y) = (ks * kr)(x)

y<x

The algorithm:
@ If the size of W is less than v/n, use the previous algorithm.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 11/13

Our Algorithm

Key observation:

ksur(X) = ks(¥)kr(x — y) = (ks * kr)(x)

y<x

The algorithm:
o If the size of W is less than /n, use the previous algorithm.
@ Split the set W into two halves Sand T.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 11/13

Our Algorithm
Key observation:
ksur(X) = ks(¥)kr(x — y) = (ks * kr)(x)
y<x

The algorithm:
o If the size of W is less than /n, use the previous algorithm.
@ Split the set W into two halves Sand T.
@ Compute the sum-approximations Ks and Kt recursively.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 11/13

Our Algorithm

Key observation:

ksur(X) = ks(¥)kr(x — y) = (ks * kr)(x)
y<x
The algorithm:
@ If the size of W is less than \/n, use the previous algorithm.
@ Split the set W into two halves Sand T.
@ Compute the sum-approximations Kg and K7 recursively.

@ Compute Ky = Ksyt by convolution of Ks and K7, then sparsify
to keep size small.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 11/13

Our Algorithm

Key observation:

ksur(X) = > _ ks(V)kr(x — y) = (ks = kr)(X)
y<X
The algorithm:
@ If the size of W is less than y/n, use the previous algorithm.
@ Split the set W into two halves Sand T.
@ Compute the sum-approximations Kg and K7 recursively.

@ Compute Ky = Ksyt by convolution of Ks and K7, then sparsify
to keep size small.

O(n?5<~"5log(ne~") log(ne)) time and O(n'-S~1%) space.)

Sparsification parameter should be adjusted for every level of the
recursion. See the paper.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 11/13

Counting Integer Knapsack Solutions

£

Wy, Uy Wo, Uo capacity C

é

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 12/13

Counting Integer Knapsack Solutions

£

Wi, Uy Wo, Uo capacity C

é

Best FPTAS O(nP¢"log(ne~'log U) log? U) [Halman 2016].

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 12/13

Counting Integer Knapsack Solutions

£

Wi, Uy Wo, Uo capacity C

é

Best FPTAS O(nP¢"log(ne~'log U) log? U) [Halman 2016].

There is a FPTAS running in O(n?%:~1%log(ne " log U) log(ne) log? U)
time and O(n'°c~1- log U)space.

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 12/13

Open Problems

@ Ignore the dependency on ¢ (constant), is there an algorithm with
running time of O(n?°-<) ?
@ Deterministic FPTAS with running time of O(n?3¢~15+2) ?

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 13/13

Open Problems

@ Ignore the dependency on ¢ (constant), is there an algorithm with
running time of O(n?°-<) ?
@ Deterministic FPTAS with running time of O(n?3¢~15+2) ?

Thank Youl!

Questions?

Gawrychowski, Markin, Weimann A Faster FPTAS for #Knapsack ICALP 2018 13/13

	Introduction
	Approximation
	Previous Algorithm
	Our Algorithm
	Integer Version

