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Counting Knapsack Solutions

capacity C

w1 w2 w3 w4 w5

Given a set W = {w1,w2, . . . ,wn} of n non-negative integers and a
capacity C, count the number of subsets of W with total sum of at
most C.

Gawrychowski, Markin, Weimann ( University of Wrocław, Poland, University of Haifa, Israel)A Faster FPTAS for #Knapsack ICALP 2018 2 / 13



Counting Knapsack Solutions

capacity C

w1 w2 w3 w4 w5

Given a set W = {w1,w2, . . . ,wn} of n non-negative integers and a
capacity C, count the number of subsets of W with total sum of at
most C.

Gawrychowski, Markin, Weimann ( University of Wrocław, Poland, University of Haifa, Israel)A Faster FPTAS for #Knapsack ICALP 2018 2 / 13



Counting Knapsack Solutions

capacity C

w1 w2 w3 w4 w5

Given a set W = {w1,w2, . . . ,wn} of n non-negative integers and a
capacity C, count the number of subsets of W with total sum of at
most C.
Gawrychowski, Markin, Weimann ( University of Wrocław, Poland, University of Haifa, Israel)A Faster FPTAS for #Knapsack ICALP 2018 2 / 13



Naïve Algorithm

Recurse on the last item.

A solution from the set W and capacity C
can be obtained by

leaving the last element wn, and taking a solution from W/{wn}
and capacity C.
taking the last element wn, and taking the rest of the elements
from W/{wn} such that the capacity is C − wn.

f (n,C) = f (n − 1,C) + f (n − 1,C − wn)

O(nC) time but C is large!
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Fully Polynomial Time Approximation Scheme
(FPTAS)

Definition
Given ε > 0, estimate the number of solutions with ratio (1± ε), and
run in polynomial time in the size of the input and in 1/ε.

Deterministic FPTAS O(n3ε−1 log(nε−1)) [Štefankovič et al. 2012],
[Gopalan et al. 2011].
Best deterministic FPTAS O(n3ε−1 log ε−1/ log n) [Rizzi, Tomescu
2014].
Best randomized FPTAS O(n2.5

√
log(nε−1) + ε−2n2) [Dyer 2003].

This work
A deterministic FPTAS running in O(n2.5ε−1.5 log(nε−1) log(nε)) time
and O(n1.5ε−1.5) space.
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Sum Approximation

Same idea as K-approximation sets [Halman 2009].

For a function f : Z+ → Z+ (number of solutions by capacity):
Let f≤(x) =

∑
0≤y≤x

f (y) be the partial sum of f .

Definition
A function F is a (1 + ε)-sum approximation of f if for every x ,

f≤(x) ≤ F≤(x) ≤ (1 + ε)f≤(x)
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Sum Approximation - Sparsification

x

f (x)
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Sum Approximation - Properties

Claim
The size of F is |F | = |r | = log(1+ε) M.

Where M is the sum of all values of f .

For #Knapsack:
M ≤ #subsets of W = 2n

Claim
The size of F is |F | = n/ε
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Sum Approximation - Properties

Lemma
Let F , G be (1 + ε)-sum approximation of f , g.
Approximation: A (1 + ε′)-sum approximation of F is a

(1 + ε′)(1 + ε)-sum approximation of f .
Summation: (F + G) is a (1 + ε)-sum approximation of (f + g).

Shifting: F (x − w) is a (1 + ε)-sum approximation of f (x − w) for
any w > 0.

Convolution: (F ∗G) is a (1 + ε)2-sum approximation of (f ∗ g).
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Back to #Knapsack

Definition
Let kS(x) be a function that equals to the number of subsets of the set
S with a total weight of exactly x .

The answer to the #Knapsack instance is k≤W (C).

KS is the sum-approximation of kS.
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The Previous Best Algorithm [Štefankovič et al. 2012],
[Halman 2016]

As in the naive algorithm

kS∪{w}(x) = kS(x) + kS(x − w)

For every item w in W :
Shift KS by w .
Sum KS with KS(x − w).
Sparsify with parameter (1 + ε)1/n.

n steps ·|KS| time⇒ O(n3/ε)
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Our Algorithm
Key observation:

kS∪T (x) =
∑
y≤x

kS(y)kT (x − y)

= (kS ∗ kT )(x)

The algorithm:
If the size of W is less than

√
n, use the previous algorithm.

Split the set W into two halves S and T .
Compute the sum-approximations KS and KT recursively.
Compute KW = KS∪T by convolution of KS and KT , then sparsify
to keep size small.

O(n2.5ε−1.5 log(nε−1) log(nε)) time and O(n1.5ε−1.5) space.

Sparsification parameter should be adjusted for every level of the
recursion. See the paper.
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kS(y)kT (x − y) = (kS ∗ kT )(x)

The algorithm:
If the size of W is less than

√
n, use the previous algorithm.

Split the set W into two halves S and T .
Compute the sum-approximations KS and KT recursively.
Compute KW = KS∪T by convolution of KS and KT , then sparsify
to keep size small.

O(n2.5ε−1.5 log(nε−1) log(nε)) time and O(n1.5ε−1.5) space.

Sparsification parameter should be adjusted for every level of the
recursion. See the paper.

Gawrychowski, Markin, Weimann ( University of Wrocław, Poland, University of Haifa, Israel)A Faster FPTAS for #Knapsack ICALP 2018 11 / 13



Counting Integer Knapsack Solutions

w1,u1 w2,u2 capacity C

Best FPTAS O(n3ε−1 log(nε−1 log U) log2 U) [Halman 2016].

There is a FPTAS running in O(n2.5ε−1.5 log(nε−1 log U) log(nε) log2 U)
time and O(n1.5ε−1.5 log U)space.
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Open Problems

Ignore the dependency on ε (constant), is there an algorithm with
running time of Õ(n2.5−α) ?
Deterministic FPTAS with running time of Õ(n2.5ε−1.5+α) ?

Thank You!
Questions?
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