A Faster FPTAS for \#Knapsack

Paweł Gawrychowski ${ }^{1}$ Liran Markin ${ }^{2}$ Oren Weimann ${ }^{2}$

${ }^{1}$ University of Wrocław, Poland
${ }^{2}$ University of Haifa, Israel

ICALP 2018

Slides by Liran Markin

Counting Knapsack Solutions

capacity C

Counting Knapsack Solutions

capacity C

w_{1}

W_{2}

W_{3}

W_{4}

w_{5}

Counting Knapsack Solutions

capacity C

Given a set $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ of n non-negative integers and a capacity C, count the number of subsets of W with total sum of at most C.

Naïve Algorithm

Recurse on the last item.

Naïve Algorithm

Recurse on the last item. A solution from the set W and capacity C can be obtained by

Naïve Algorithm

Recurse on the last item. A solution from the set W and capacity C can be obtained by

- leaving the last element w_{n}, and taking a solution from $W /\left\{w_{n}\right\}$ and capacity C.

Naïve Algorithm

Recurse on the last item. A solution from the set W and capacity C can be obtained by

- leaving the last element w_{n}, and taking a solution from $W /\left\{w_{n}\right\}$ and capacity C.
- taking the last element w_{n}, and taking the rest of the elements from $W /\left\{w_{n}\right\}$ such that the capacity is $C-w_{n}$.

Naïve Algorithm

Recurse on the last item. A solution from the set W and capacity C can be obtained by

- leaving the last element w_{n}, and taking a solution from $W /\left\{w_{n}\right\}$ and capacity C.
- taking the last element w_{n}, and taking the rest of the elements from $W /\left\{w_{n}\right\}$ such that the capacity is $C-w_{n}$.

$$
f(n, C)=f(n-1, C)+f\left(n-1, C-w_{n}\right)
$$

Naïve Algorithm

Recurse on the last item. A solution from the set W and capacity C can be obtained by

- leaving the last element w_{n}, and taking a solution from $W /\left\{w_{n}\right\}$ and capacity C.
- taking the last element w_{n}, and taking the rest of the elements from $W /\left\{w_{n}\right\}$ such that the capacity is $C-w_{n}$.
$f(n, C)=f(n-1, C)+f\left(n-1, C-w_{n}\right)$
$O(n C)$ time but C is large!

Fully Polynomial Time Approximation Scheme (FPTAS)

Definition

Given $\varepsilon>0$, estimate the number of solutions with ratio $(1 \pm \varepsilon)$, and run in polynomial time in the size of the input and in $1 / \varepsilon$.

Fully Polynomial Time Approximation Scheme (FPTAS)

Definition

Given $\varepsilon>0$, estimate the number of solutions with ratio ($1 \pm \varepsilon$), and run in polynomial time in the size of the input and in $1 / \varepsilon$.

Deterministic FPTAS $O\left(n^{3} \epsilon^{-1} \log \left(n \epsilon^{-1}\right)\right)$ [Štefankovič et al. 2012], [Gopalan et al. 2011].
Best deterministic FPTAS $O\left(n^{3} \epsilon^{-1} \log \epsilon^{-1} / \log n\right)$ [Rizzi, Tomescu 2014].
Best randomized FPTAS $O\left(n^{2.5} \sqrt{\log \left(n \epsilon^{-1}\right)}+\epsilon^{-2} n^{2}\right)$ [Dyer 2003].

Fully Polynomial Time Approximation Scheme (FPTAS)

Definition

Given $\varepsilon>0$, estimate the number of solutions with ratio ($1 \pm \varepsilon$), and run in polynomial time in the size of the input and in $1 / \varepsilon$.

Deterministic FPTAS $O\left(n^{3} \epsilon^{-1} \log \left(n \epsilon^{-1}\right)\right)$ [Štefankovič et al. 2012], [Gopalan et al. 2011].
Best deterministic FPTAS $O\left(n^{3} \epsilon^{-1} \log \epsilon^{-1} / \log n\right)$ [Rizzi, Tomescu 2014].
Best randomized FPTAS $O\left(n^{2.5} \sqrt{\log \left(n \epsilon^{-1}\right)}+\epsilon^{-2} n^{2}\right)$ [Dyer 2003].

This work

A deterministic FPTAS running in $O\left(n^{2.5} \varepsilon^{-1.5} \log \left(n \varepsilon^{-1}\right) \log (n \varepsilon)\right)$ time and $O\left(n^{1.5} \varepsilon^{-1.5}\right)$ space.

Sum Approximation

Same idea as K-approximation sets [Halman 2009].

Sum Approximation

Same idea as K-approximation sets [Halman 2009].
For a function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$(number of solutions by capacity):
Let $f \leq(x)=\sum_{0 \leq y \leq x} f(y)$ be the partial sum of f.

Sum Approximation

Same idea as K-approximation sets [Halman 2009].
For a function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$(number of solutions by capacity):
Let $f \leq(x)=\sum_{0 \leq y \leq x} f(y)$ be the partial sum of f.

Definition

A function F is a $(1+\epsilon)$-sum approximation of f if for every x,

$$
f \leq(x) \leq F^{\leq}(x) \leq(1+\epsilon) f^{\leq}(x)
$$

Sum Approximation - Sparsification

$$
f(x)
$$

Sum Approximation - Sparsification

$$
f(x)
$$

wider circle \rightarrow larger value

Sum Approximation - Sparsification

Sum Approximation - Sparsification

$$
F(x)
$$

Sum Approximation - Sparsification

$$
F \leq(x)=\tilde{f} \leq(x) \leq(1+\epsilon) f \leq(x)
$$

Sum Approximation - Properties

Claim

The size of F is $|F|=|r|=\log _{(1+\epsilon)} M$.
Where M is the sum of all values of f.

Sum Approximation - Properties

Claim

The size of F is $|F|=|r|=\log _{(1+\epsilon)} M$.
Where M is the sum of all values of f.
For \#Knapsack:
$M \leq$ \#subsets of $W=2^{n}$
Claim
The size of F is $|F|=n / \epsilon$

Sum Approximation - Properties

Lemma

Let F, G be $(1+\epsilon)$-sum approximation of f, g.
Approximation: $A\left(1+\epsilon^{\prime}\right)$-sum approximation of F is a
$\left(1+\epsilon^{\prime}\right)(1+\epsilon)$-sum approximation of f.
Summation: $(F+G)$ is a $(1+\epsilon)$-sum approximation of $(f+g)$.
Shifting: $F(x-w)$ is a $(1+\epsilon)$-sum approximation of $f(x-w)$ for any $w>0$.

Sum Approximation - Properties

Lemma

Let F, G be $(1+\epsilon)$-sum approximation of f, g.
Approximation: $A\left(1+\epsilon^{\prime}\right)$-sum approximation of F is a
$\left(1+\epsilon^{\prime}\right)(1+\epsilon)$-sum approximation of f.
Summation: $(F+G)$ is a $(1+\epsilon)$-sum approximation of $(f+g)$.
Shifting: $F(x-w)$ is a $(1+\epsilon)$-sum approximation of $f(x-w)$ for any $w>0$.
Convolution: $(F * G)$ is a $(1+\varepsilon)^{2}$-sum approximation of $(f * g)$.

Back to \#Knapsack

Definition

Let $k_{S}(x)$ be a function that equals to the number of subsets of the set S with a total weight of exactly x.

The answer to the \#Knapsack instance is $k_{\bar{W}}^{\leq}(C)$.

Back to \#Knapsack

Definition

Let $k_{S}(x)$ be a function that equals to the number of subsets of the set S with a total weight of exactly x.

The answer to the \#Knapsack instance is $k_{\bar{W}}^{\llcorner }(C)$.
K_{S} is the sum-approximation of k_{S}.

The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

$$
k_{S \cup\{w\}}(x)=k_{S}(x)+k_{S}(x-w)
$$

The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

$$
k_{S \cup\{w\}}(x)=k_{S}(x)+k_{S}(x-w)
$$

For every item w in W :

The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

$$
k_{S \cup\{w\}}(x)=k_{S}(x)+k_{S}(x-w)
$$

For every item win W :

- Shift K_{S} by w.

The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

$$
k_{S \cup\{w\}}(x)=k_{S}(x)+k_{S}(x-w)
$$

For every item win W :

- Shift K_{S} by w.
- Sum K_{S} with $K_{S}(x-w)$.

The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

$$
k_{S \cup\{w\}}(x)=k_{S}(x)+k_{S}(x-w)
$$

For every item win W :

- Shift K_{S} by w.
- Sum K_{S} with $K_{S}(x-w)$.
- Sparsify with parameter $(1+\epsilon)^{1 / n}$.

The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

$$
k_{S \cup\{w\}}(x)=k_{S}(x)+k_{S}(x-w)
$$

For every item win W :

- Shift K_{S} by w.
- Sum K_{S} with $K_{S}(x-w)$.
- Sparsify with parameter $(1+\epsilon)^{1 / n}$.

```
\(n\) steps \(\cdot\left|K_{S}\right|\) time
```

The Previous Best Algorithm [Štefankovič et al. 2012], [Halman 2016]

As in the naive algorithm

$$
k_{S \cup\{w\}}(x)=k_{S}(x)+k_{S}(x-w)
$$

For every item win W :

- Shift K_{S} by w.
- Sum K_{S} with $K_{S}(x-w)$.
- Sparsify with parameter $(1+\epsilon)^{1 / n}$.

```
n steps }\cdot|\mp@subsup{K}{S}{}|\mathrm{ time }=>O(\mp@subsup{n}{}{3}/\epsilon
```


Our Algorithm

Key observation:

$$
k_{S \cup T}(x)=\sum_{y \leq x} k_{S}(y) k_{T}(x-y)
$$

Our Algorithm

Key observation:

$$
k_{S \cup T}(x)=\sum_{y \leq x} k_{S}(y) k_{T}(x-y)=\left(k_{S} * k_{T}\right)(x)
$$

Our Algorithm

Key observation:

$$
k_{S \cup T}(x)=\sum_{y \leq x} k_{S}(y) k_{T}(x-y)=\left(k_{S} * k_{T}\right)(x)
$$

The algorithm:

- If the size of W is less than \sqrt{n}, use the previous algorithm.

Our Algorithm

Key observation:

$$
k_{S \cup T}(x)=\sum_{y \leq x} k_{S}(y) k_{T}(x-y)=\left(k_{S} * k_{T}\right)(x)
$$

The algorithm:

- If the size of W is less than \sqrt{n}, use the previous algorithm.
- Split the set W into two halves S and T.

Our Algorithm

Key observation:

$$
k_{S \cup T}(x)=\sum_{y \leq x} k_{S}(y) k_{T}(x-y)=\left(k_{S} * k_{T}\right)(x)
$$

The algorithm:

- If the size of W is less than \sqrt{n}, use the previous algorithm.
- Split the set W into two halves S and T.
- Compute the sum-approximations K_{S} and K_{T} recursively.

Our Algorithm

Key observation:

$$
k_{S \cup T}(x)=\sum_{y \leq x} k_{S}(y) k_{T}(x-y)=\left(k_{S} * k_{T}\right)(x)
$$

The algorithm:

- If the size of W is less than \sqrt{n}, use the previous algorithm.
- Split the set W into two halves S and T.
- Compute the sum-approximations K_{S} and K_{T} recursively.
- Compute $K_{W}=K_{S \cup T}$ by convolution of K_{S} and K_{T}, then sparsify to keep size small.

Our Algorithm

Key observation:

$$
k_{S \cup T}(x)=\sum_{y \leq x} k_{S}(y) k_{T}(x-y)=\left(k_{S} * k_{T}\right)(x)
$$

The algorithm:

- If the size of W is less than \sqrt{n}, use the previous algorithm.
- Split the set W into two halves S and T.
- Compute the sum-approximations K_{S} and K_{T} recursively.
- Compute $K_{W}=K_{S \cup T}$ by convolution of K_{S} and K_{T}, then sparsify to keep size small.

$$
O\left(n^{2.5} \varepsilon^{-1.5} \log \left(n \varepsilon^{-1}\right) \log (n \varepsilon)\right) \text { time and } O\left(n^{1.5} \varepsilon^{-1.5}\right) \text { space. }
$$

Sparsification parameter should be adjusted for every level of the recursion. See the paper.

Counting Integer Knapsack Solutions

w_{1}, u_{1}

W_{2}, U_{2}

capacity C

Counting Integer Knapsack Solutions

w_{1}, u_{1}

W_{2}, U_{2}

capacity C

Best FPTAS $O\left(n^{3} \epsilon^{-1} \log \left(n \epsilon^{-1} \log U\right) \log ^{2} U\right)$ [Halman 2016].

Counting Integer Knapsack Solutions

w_{1}, u_{1}

W_{2}, u_{2}

capacity C

Best FPTAS $O\left(n^{3} \epsilon^{-1} \log \left(n \epsilon^{-1} \log U\right) \log ^{2} U\right)$ [Halman 2016].
There is a FPTAS running in $O\left(n^{2.5} \varepsilon^{-1.5} \log \left(n \varepsilon^{-1} \log U\right) \log (n \varepsilon) \log ^{2} U\right)$ time and $O\left(n^{1.5} \varepsilon^{-1.5} \log U\right)$ space.

Open Problems

- Ignore the dependency on ϵ (constant), is there an algorithm with running time of $\tilde{O}\left(n^{2.5-\alpha}\right)$?
- Deterministic FPTAS with running time of $\tilde{O}\left(n^{2.5} \epsilon^{-1.5+\alpha}\right)$?

Open Problems

- Ignore the dependency on ϵ (constant), is there an algorithm with running time of $\tilde{O}\left(n^{2.5-\alpha}\right)$?
- Deterministic FPTAS with running time of $\tilde{O}\left(n^{2.5} \epsilon^{-1.5+\alpha}\right)$?

Thank You!

Questions?

