
A Faster FPTAS for #Knapsack
Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland
gawry@cs.uni.wroc.pl

Liran Markin1

University of Haifa, Israel
liran.markin@gmail.com

Oren Weimann2

University of Haifa, Israel
oren@cs.haifa.ac.il

Abstract
Given a setW = {w1, . . . , wn} of non-negative integer weights and an integer C, the #Knapsack
problem asks to count the number of distinct subsets of W whose total weight is at most C. In
the more general integer version of the problem, the subsets are multisets. That is, we are also
given a set {u1, . . . , un} and we are allowed to take up to ui items of weight wi.

We present a deterministic FPTAS for #Knapsack running inO(n2.5ε−1.5 log(nε−1) log(nε))
time. The previous best deterministic algorithm [FOCS 2011] runs in O(n3ε−1 log(nε−1)) time
(see also [ESA 2014] for a logarithmic factor improvement). The previous best randomized
algorithm [STOC 2003] runs in O(n2.5

√
log(nε−1) + ε−2n2) time. Therefore, for the case of con-

stant ε, we close the gap between the Õ(n2.5) randomized algorithm and the Õ(n3) deterministic
algorithm.

For the integer version with U = maxi {ui}, we present a deterministic FPTAS running in
O(n2.5ε−1.5 log(nε−1 logU) log(nε) log2 U) time. The previous best deterministic algorithm [TCS
2016] runs in O(n3ε−1 log(nε−1 logU) log2 U) time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases knapsack, approximate counting, K-approximating sets and functions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.106

1 Introduction

Given a setW = {w1, . . . , wn} of non-negative integer weights and an integer C, the #Knap-
sack problem asks to count the number of distinct subsets of W whose total weight is at
most C. This problem is the counting version of the well known Knapsack problem and
is #P-hard. While there are many, celebrated, randomized polynomial-time algorithms for
approximately counting #P-hard problems, the #Knapsack problem is one of the few ex-
amples where there is also a deterministic approximation algorithm (other notable examples
are [1, 8, 14]).

From a geometric view, the #Knapsack problem is equivalent to finding the number
of vertices of the n-dimensional hypercube that lie on one side of a given n-dimensional
hyperplane. The problem is also related to pseudorandom generators for halfspaces (see

1 Supported in part by Israel Science Foundation grant 592/17
2 Supported in part by Israel Science Foundation grant 592/17

EA
T

C
S

© Paweł Gawrychowski, Liran Markin, and Oren Weimann;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Daniel Marx, and Don Sannella; Article No. 106;
pp. 106:1–106:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gawry@cs.uni.wroc.pl
mailto:liran.markin@gmail.com
mailto:oren@cs.haifa.ac.il
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.106
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

106:2 A Faster FPTAS for #Knapsack

e.g. [2, 9, 11]) as these imply deterministic (though not polynomial-time) approximation
schemes for #Knapsack by enumerating over all input seeds to the generator.

Approximately counting knapsack solutions. The #Knapsack problem can be solved
with the following simple recursion: S(i, j) = S(i − 1, j) + S(i − 1, j − wi) where S(i, j)
is the number of subsets of {w1, ..., wi} whose weight sums to at most j. This recurrence
immediately implies a pseudo-polynomial O(nC) time algorithm. More interestingly, this
recurrence is the basis of all existing fully polynomial-time approximation schemes (FPTAS).
That is, algorithms that for any ε > 0 estimate the number of solutions to within relative
error (1± ε) in time polynomial in n and in 1/ε.

Dyer et al. [4] were the first to show how to approximate this recurrence with random
sampling. They gave a randomized sub-exponential 2O(

√
n log2.5 n))ε−2 time algorithm. Us-

ing a more complicated random sampling (with a rapidly mixing Markov chain), Morris and
Sinclair [10] obtained the first FPRAS (fully-polynomial randomized approximation scheme)
running in O(n4.5+ε + ε−2n2) time. Dyer [3] further improved this to O(n2.5

√
log(nε−1) +

ε−2n2) by using a surprisingly simple sampling procedure (combined with randomized round-
ing). This to date is the fastest known randomized solution. As for deterministic solutions,
the fastest solution to date is by Rizzi and Tomescu [12] and runs in O(n3ε−1 log ε−1/ logn)
time. It is a logarithmic factor improvement (obtained by discretizing the recursion S(i, j)
with floating-point arithmetic) over the previous fastest O(n3ε−1 log(nε−1)) time solutions
of Gopalan et al. [6] (who used read-once branching programs inspired by related work on
pseudorandom generators for halfspaces [9]) and of Štefankovič et al. [13] (who approxim-
ated a “dual” recursion S∗(i, j) defined as the smallest capacity c such that there exist at
least j subsets of {w1, . . . , wi} with weight c).

Approximately counting integer knapsack solutions. In the more general integer version
of #Knapsack, the subsets are multisets. That is, in addition to W = {w1, . . . , wn} we
are also given a set {u1, . . . , un} and we are allowed to take up to ui items of weight wi.

The first (randomized) FPRAS for counting integer knapsack solution was given by
Dyer [3] who presented a strongly polynomial O(n5 + n4ε−2) time algorithm. A (determin-
istic) FPTAS for this problem was then given by Gopalan et al. [6] with a running time of
O(n5ε−2 log2 U logw) (see also [5]) where U = maxi {ui} and w =

∑
i wiui+C. The fastest

solution to date is by Halman [7] with a running time of O(n3ε−1 log(nε−1 logU) log2 U).

Our results. In this paper we present improved algorithms for both #Knapsack and
its integer version. Our algorithms improve the previous best algorithms by polynomial
factors. For constant ε, we close the gap between the Õ(n2.5) randomized and the Õ(n3)
deterministic running times. More formally, with the standard assumption of constant time
arithmetics on the input numbers, we prove the following two theorems:

I Theorem 1. There is a FPTAS running in O(n2.5ε−1.5 log(nε−1) log(nε)) time and O(n1.5ε−1.5)
space for counting knapsack solutions.

I Theorem 2. There is a FPTAS running in O(n2.5ε−1.5 log(nε−1 logU) log(nε) log2 U)
time and O(n1.5ε−1.5 logU) space for counting integer knapsack solutions.

Our algorithm is the first algorithm to deviate from the standard recursion. In particular,
on large enough sets, instead of recursing on all but the last item, we recurse in the middle
and use convolution to merge the two sub-solutions. This requires extending the recent
technique of K-approximation sets and functions used by Halman [7] and introduced in [8].

P. Gawrychowski, L. Markin, and O. Weimann 106:3

Our extended technique (which we call sum approximations) is simple to state and leads to a
surprisingly simple solution to #Knapsack with an improved running time. In a nutshell,
for any function f : Z+ → Z+ (think of f(x) = the number of subsets with total weight
exactly x) let f≤ denote the function f≤(x) =

∑
y≤x f(y) (hence f≤(x) = the number of

subsets with total weight at most x). Then, in order to approximate the function f≤ it is
enough to find any function F such that F≤ approximates f≤.

We examine the properties of such sum approximations F in Section 2, and introduce a
number of useful computational primitives on sum approximations. With these primitives
in hand, we give a simplified version of Halman’s algorithm for #Knapsack in Section 3.
Then, in Section 4 we present an improved divide and conquer algorithm based on convo-
lutions of sum approximations. Finally, in Section 5 we adapt our algorithm to the integer
version, where every item has a corresponding multiplicity. Instead of the binding constraints
approach used by Halman [7], we show that it is enough to perform a single scan of a sum
approximation using nothing more than a standard binary search tree.

2 Approximation of a Function

Consider the following two functions: f(x) = the number of subsets with total weight exactly
x, and f≤(x) = the number of subsets with total weight at most x. More generally:

I Definition 3. Given a function f : Z+ → Z+ we define the function f≤(x) as

f≤(x) =
∑
y≤x

f(y).

Our goal is to approximate f≤(C) but we will actually approximate the entire function
f≤(x) for all x. We now describe what it means to approximate a function and present some
properties of such approximations.

I Definition 4 ((1 + ε)-approximation of a function). Given a function f : Z+ → Z+ and a
parameter ε > 0, a function F : Z+ → Z+ is a (1 + ε)-approximation of f if for every x,

f(x) ≤ F (x) ≤ (1 + ε)f(x).

The above definition is similar to the definition of K-approximation sets [7] for K = (1 + ε).

I Definition 5 ((1 + ε)-sum approximation of a function). Given a function f : Z+ → Z+

and a parameter ε > 0, a function F : Z+ → Z+ is a (1 + ε)-sum approximation of f if F≤
is a (1 + ε)-approximation of f≤.

We next examine some useful properties of sum approximations. For a function f : Z+ → Z+

define its shift by w as follows:

f |w(x) =
{
f(x− w), x ≥ w,
0 x < w,

and for two functions f, g : Z+ → Z+ define their convolution to be:

(f ∗ g)(w) =
∑

x+y=w
f(x)g(y).

The following lemma describes four operations on sum approximations. The first three
are similar to the ones used in [7, Property 2.1]. The fourth operation (convolution) is novel.

ICALP 2018

106:4 A Faster FPTAS for #Knapsack

I Lemma 6 (operations on sum approximations). Let F be a (1 + ε)-sum approximation of
f and G be a (1 + ε)-sum approximation of g, then the following properties hold:

Approximation: A (1 + δ)-sum approximation of F is a (1 + δ)(1 + ε)-sum approximation of f .
Summation: (F +G) is a (1 + ε)-sum approximation of (f + g).
Shifting: F |w is a (1 + ε)-sum approximation of f |w for any w > 0.
Convolution: (F ∗G) is a (1 + ε)2-sum approximation of (f ∗ g).

Proof.

Approximation: Let F ′ be a (1 + δ)-approximation of F . For every x, f≤(x) ≤ F≤(x) ≤
(1 + ε)f≤(x) and F≤(x) ≤ F ′≤(x) ≤ (1 + δ)F≤(x). We therefore have that f≤(x) ≤
F ′≤(x) ≤ (1 + δ)(1 + ε)f≤(x).

Summation: For every x we have that f≤(x) ≤ F≤(x) ≤ (1+ε)f≤(x) and g≤(x) ≤ G≤(x) ≤
(1+ε)g≤(x), adding these two equations we get (f+g)≤(x) ≤ (F +G)≤(x) ≤ (1+ε)(f+
g)≤(x).

Shifting: For x < w, f |w(x) = 0 = F |w(x). For x ≥ w let y = x− w. Since y ≥ 0 we have
that f≤(y) ≤ F≤(y) ≤ (1 + ε)f≤(y) and therefore f |≤w(x) ≤ F |≤w(x) ≤ (1 + ε)f |≤w(x).

Convolution: We first prove that (F ∗G)≤(w) ≥ (f ∗ g)≤(w):

(F ∗G)≤(w) =
∑

x+y≤w
F (x)G(y) =

∑
x≤w

∑
y≤w−x

F (x)G(y) =
∑
x≤w

F (x)
∑

y≤w−x

G(y)

=
∑
x≤w

F (x)G≤(w − x) ≥
∑
x≤w

F (x)g≤(w − x) =
∑
x≤w

F (x)
∑

y≤w−x

g(y)

=
∑

x+y≤w
F (x)g(y) =

∑
y≤w

∑
x≤w−y

F (x)g(y) =
∑
y≤w

g(y)
∑

x≤w−y

F (x)

=
∑
y≤w

g(y)F≤(w − y) ≥
∑
y≤w

g(y)f≤(w − y) =
∑
y≤w

g(y)
∑

x≤w−y

f(x)

=
∑

x+y≤w
f(x)g(y) = (f ∗ g)≤(w).

Next we prove that (F ∗G)≤(w) ≤ (1 + ε)2(f ∗ g)≤(w):

(F ∗G)≤(w) =
∑

x+y≤w
F (x)G(y) =

∑
x≤w

∑
y≤w−x

F (x)G(y) =
∑
x≤w

F (x)
∑

y≤w−x

G(y)

=
∑
x≤w

F (x)G≤(w − x) ≤
∑
x≤w

F (x)(1 + ε)g≤(w − x) =

= (1 + ε)
∑
x≤w

F (x)
∑

y≤w−x

g(y) = (1 + ε)
∑

x+y≤w
F (x)g(y)

= (1 + ε)
∑
≤w

∑
x≤w−y

F (x)g(y) = (1 + ε)
∑
y≤w

g(y)
∑

x≤w−y

F (x)

= (1 + ε)

∑
y≤w

g(y)F≤(w − y) ≤ (1 + ε)
∑
y≤w

g(y)(1 + ε)f≤(w − y) =

= (1 + ε)2
∑
y≤w

g(y)
∑

x≤w−y

f(x) = (1 + ε)2
∑

x+y≤w
f(x)g(y)

= (1 + ε)2(f ∗ g)≤(w). J

P. Gawrychowski, L. Markin, and O. Weimann 106:5

f≤(x)

x

f≤(x)

x
r1
r2
r3

r4

r5

r6

x1 x2
x3

x4 x5 x6

Figure 1 On the left, f≤(x) compared to f(x). The red point at position x is wider as f(x) is
larger. On the right, the blue points are the first entries that have value of at least ri

We next describe the way that we represent functions.

I Definition 7 (a function representation). Given a function f : Z+ → Z+, the representation
of f is defined to be a list of all the pairs (x, f(x)) where f(x) > 0. The list is kept sorted
by the x value. The size of f (denoted by |f |) is the number of pairs in the representation of
f . To simplify our presentation, we allow the representation to include multiple pairs with
the same value of x. This can be easily fixed with a single scan over the representation.

In the following paragraphs we show how to efficiently implement the following operations
on functions: sparsification, summation, shifting, convolution, and query. The output of each
operation is a sum approximation.

Sparsification. Sparsification is the operation of constructing a (1 + δ)-sum approximation
of f (see Definition 5). The input is a function f : Z+ → Z+ and a sparsification parameter
δ > 0, the output is a function F : Z+ → Z+ that is a (1 + δ)-sum approximation of f . The
goal is to construct a function F that has a compact representation (i.e. a small number of
points with non-zero values). The general idea is based on the one in [7] (function Compress)
but tailored towards our particular application. We partition the values of f≤ into segments
with elements belonging to [ri, ri+1) (see Figure 1), where:

r0 = 0,
ri+1 = max{ri + 1, b(1 + δ)ric}.

We call xi = minx
{
f≤(x) ≥ ri

}
the i-th breakpoint. For any x, let succ(x) be the strict

successor of x among {xi}, i.e. succ(x) = mini {xi > x} We define the function f̃≤ (see
Figure 2) as:

f̃≤(x) = f≤(succ(x)− 1),

where f̃≤(x) = limx→inf f
≤(x) if succ(x) =∞.

I Lemma 8. f̃≤ is a (1 + δ)-approximation of f≤.

Proof. First observe that f≤(x) ≤ f̃≤(x) (since succ(x) > x and f≤ is monotone). Consider
any x and let i be the unique index such that ri ≤ f≤(x) < ri+1. If succ(x) = ∞ then
f̃≤(x) = limx→inf f

≤(x) < ri+1. Otherwise, xi+1 > x and f̃≤(x) = f≤(xi+1 − 1) < ri+1.
We need to consider two cases: If ri+1 ≤ (1 + δ)ri, then f̃≤(x) < ri+1 ≤ (1 + δ)f≤(x). If

ICALP 2018

106:6 A Faster FPTAS for #Knapsack

f̃≤(x)

x
x1 x2

x3
x4 x5 x6

f̃≤(x)

x
x1 x2

x3
x4 x5 x6

Figure 2 On the left, f̃≤ (in blue) is defined from f≤ and has the same value in any segment
[xi, xi+1). On the right, the construction of F (x). The blue points are only at positions xi and are
wider as F (xi) is larger.

ri+1 = ri+ 1 and because the values of f̃≤(x) are integer, f̃≤(x) ≤ ri+1−1 = ri. So in both
cases f̃≤(x) ≤ (1 + δ)f≤(x). J

We can now define the function F (the (1 + δ)-sum approximation of f). Observe that
by Lemma 8, every F such that F≤ = f̃≤ is a (1 + δ)-sum approximation. We define F as
the discrete derivative of f̃≤. That is,

F (x) =
{
f̃≤(x)− f̃≤(x− 1) x > 0,
f̃≤(x) x = 0.

It is easy to see that F≤ = f̃≤. It is also easy to construct the representation of F in
linear time with a single scan over the representation of f (see Algorithm 1). Let M be
the maximum value of f≤. Notice that f̃≤ can have at most |{xi}| = |{ri}| = log1+δM

different values. This means that |F | is at most log1+δM . The total running time is therefore
O(|f |+ log1+δM).

Summation. Given two (1+ε)-sum approximations F and G of functions f and g respect-
ively, we wish to construct the function F +G (that is a (1 + ε)-sum approximation of f + g

by Lemma 6). We construct F + G naively by setting (F + G)(x) = F (x) + G(x). The
sorted list of F +G can be obtained in linear time given two sorted lists of F and of G. The
total space and time is therefore O(|F |+ |G|).

Shifting. Given a (1 + ε)-sum approximation F of f , the function shifted by w, F |w is a
(1 + ε)-sum approximation of f |w by Lemma 6. In order to create F |w, we take every pair
in the representation of F , namely (x, y = F (x)) and change it to (x+w, y). F |w(x) will be
the sum of all the pairs where the first coordinate is x. The total space and time is O(|F |).

Convolution. The convolution F ∗G contains all the combinations of taking some x value
from F and some y value from G. For every pair x, y such that F (x) 6= 0 and G(x) 6= 0 we
add the value F (x)G(y) to the value of F ∗G at point x+ y.

We sort these pairs in order to get the representation of F ∗G. For a certain y we have
all the points (x + y, F (x)) sorted already, those are |G| sorted sequences that we have to

P. Gawrychowski, L. Markin, and O. Weimann 106:7

Algorithm 1 Sparsify(f, δ)
Input: a function f represented by a sorted list of all pairs (x, f(x)) where f(x) > 0 and a

sparsification parameter δ > 0.
Output: a function F that is a (1 + δ)-sum approximation of f and is represented by a

sorted list of at most log1+δM pairs (where M is the maximum value of f≤).
1: initialize r = accum = prevaccum = prevx = 0
2: for every pair (x, f(x)) in sorted order do
3: r ← max{r + 1, b(1 + δ)rc}
4: while accum < r do
5: accum← accum+ f(x)
6: get the next pair (x, f(x)) in the list
7: end while
8: add the pair (prevx, accum− f(x)− prevaccum) to F
9: prevaccum← accum− f(x)
10: prevx← x

11: end for

merge. The total space of the output F ∗ G is at most the number of such pairs x, y, that
is |F | · |G|. But it is possible to obtain a stream of the sorted pairs with their value using
less space, by using a heap to merge the lists. Assuming without loss of generality that
|G| ≤ |F |, each list is a value y and a pointer to a point in F , and the heap extracts the
minimum value of the sum of y and the value in the pointer. The total time to create F ∗G
is therefore O(|F | · |G| · log(min{|F |, |G|})) and the space O(|F |+ |G|).

Query. Given a (1 + ε)-sum approximation F of f and a point x, we can query the value
F≤(x) that satisfies f≤(x) ≤ F≤(x) ≤ (1 + ε)f≤(x) in time O(|F |). This is because
computing the function F≤(x) =

∑
y≤x F (y) takes O(|F |) time by considering every y.

Moreover, if we store the representation of F in a balanced binary search tree T then a
query can be done in O(log |F |) time with a prefix sum query on T .

3 The Algorithm of Halman [7] (Simplified)

In this section we present a simplified version of the algorithm of Halman [7] for #Knapsack
using sum approximations. The running time of this simple deterministic algorithm is
O(n3ε−1) and the space is O(n2ε−1).

For a set of weights S, let kS(x) denote the number of subsets of S with total weight
exactly x. The output of the algorithm is the function KW that is a (1 + ε)-sum approx-
imation of kW . The desired answer, K≤W (C), can then be easily obtained using the query
operation.

Recall that kS |w(x) = kS(x − w) if x ≥ w and 0 otherwise. The algorithm is based on
the following observation:

I Lemma 9. Let S be a set of integer weights and w be an additional integer weight, then:

kS∪{w} = kS + kS |w

Proof. Any subset of S∪{w} with weight x either includes w (the number of such solutions
is kS(x − w)) or does not include w (the number of such solutions is kS(x)). Since these
options are disjoint, we have that kS∪{w}(x) = kS(x) + kS |w(x). J

ICALP 2018

106:8 A Faster FPTAS for #Knapsack

The algorithm. The algorithm uses the above lemma to construct the set S by inserting
one element at a time (until S = W), keeping KS updated. The algorithm starts by
setting K∅(0) = 1 and K∅(x) = 0 for any x 6= 0. In the i-th step, we compute the function
K{w1,...,wi} fromK{w1,...,wi−1}. ComputingK{w1,...,wi} can be done with one shifting and one
summation operation: K{w1,...,wi} = K{w1,...,wi−1} + K{w1,...,wi−1}|wi

. Notice that the size
|K{w1,...,wi}| = 2|K{w1,...,wi−1}| doubles from the summation operation. To overcome this
blowup, at the end of each step of the algorithm, we sparsify with parameter δ = (1+ε) 1

n −1.

Correctness. From Lemmas 6 and 9, it follows that if KS is a (1 + α)-sum approxima-
tion of kS , then KS + KS |w is a (1 + α)-sum approximation of kS∪{w}. Furthermore, the
approximation factor of K{w1,...,wi} after the sparsification is the approximation factor of
K{w1,...,wi−1} multiplied by (1 + δ). We get that KW is a ((1 + ε) 1

n)n-sum approximation of
kW , as required.

Time complexity. The size of K{w1,...,wi} after the sparsification is bounded by log1+δ 2i.
The time complexity is therefore:

n∑
i=1

O
(
log1+δ 2i

)
= O

(
n∑
i=1

i

log(1 + δ)

)
= O

(
1

1
n log(1 + ε)

n∑
i=1

i

)
= O

(
n3ε−1) .

Space complexity. The space is O(|KW |) = O(log1+δ 2n) = O
(

n
log(1+δ)

)
= O

(
n2

log(1+ε)

)
=

O(n2ε−1), where we have used that ln(1 + ε) ≥ ε/2 for ε ∈ (0, 1).

4 The Algorithm for Counting Knapsack Solutions

In this section we present a deterministic O(n2.5ε−1.5 log(nε−1) log(nε)) time O(n1.5ε−1.5)
space algorithm for counting knapsack solutions. The algorithm is based upon a similar
observation to the one in Lemma 9:

I Lemma 10. Let S and T be two sets of integer weights, then:

kS∪T = kS ∗ kT

Proof. A subset of S∪T of weight w must be obtained by taking a subset of weight wS from
S and a subset of weight wT from T where wS+wT = w. Thus, kS(wS) subsets of S of weight
wS and kT (wT) subsets of T weight wT generate kS(wS)kT (wT) subsets of S ∪ T of weight
wS + wT . Overall, we get that kS∪T (w) =

∑
wS+wT =w

kS(wS)kT (wT) = (kS ∗ kT)(w). J

The algorithm. As in Section 3, our algorithm computes a (1+ε)-sum approximation KW

of kW recursively. This time however, we do two things differently: (1) The value of the
approximation factor is different for each recursion depth. In a recursive call of depth i, we
are given a set S and we compute a (1 + εi)-sum approximation KS of kS for some εi to be
chosen later. (2) Given a set S we recurse differently depending on the size of S:

1. If |S| >
√
n/ε, then we partition the set S into two sets A and B each of size |S|/2 = n/2i

and make two recursive calls: One computes a (1 + εi+1)-sum approximation KA of kA
and the other computes a (1 + εi+1)-sum approximation KB of kB . We then find KS by
computing the convolution KA ∗KB and sparsifying with parameter

δi = ε3/4

2c · 2i/2 · n1/4 ,

P. Gawrychowski, L. Markin, and O. Weimann 106:9

where ε is the original approximation parameter and c =
√

2√
2−1 .

2. If |S| ≤
√
n/ε, then we apply the algorithm from Section 3 on the set S with para-

meter δlog(
√
nε) = Ω(

√
ε/n). Observe that in such a case the recursion depth is at least

log(
√
nε).

Correctness. From Lemmas 6 and 10, it follows that if KA is a (1 + εi+1)-sum approxima-
tion of kA andKB is a (1+εi+1)-sum approximation of kB , thenKS is a (1+εi+1)2(1+δi)-sum
approximation of kS . This means that εi satisfies the following relation:

(1 + εi) = (1 + εi+1)2(1 + δi)

From the above equation and since on the bottom of the recursion with δi = δlog(
√
nε), the

final approximation factor of KW is:

(1 + ε0) = (1 + δlog(
√
nε))

√
nε

log(
√
nε)−1∏

i=0
(1 + δi)2i

=
log(
√
nε)∏

i=0
(1 + δi)2i

We need to prove that the above product is not larger than (1 + ε). Since
x∑
i=0

2i/2 <

√
2√

2−1 · 2
x/2 = c · 2x/2 and (1 + δi)2i = (1 + δi)1/δi·2iδi ≤ e2iδi = e

ε3/4
2c n−1/42i/2 we obtain:

log(
√
nε)∏

i=0
(1 + δi)2i

≤ e
ε3/4

2c n−1/2
∑log(

√
nε)

i=0
2i/2

< e
ε3/4

2 n−1/42log(
√

nε)/2
= e

ε
2 ≤ (1 + ε),

where the last inequality follows from ln(1 + ε) ≥ ε/2 for ε ∈ (0, 1). Moreover, since
the recursion changes at depth log(

√
nε) we further need to assume that ε ≥ 1/n. These

assumptions are without loss of generality since for ε > 1 we could simply use ε = 1 and for
ε < 1/n the previous algorithms are faster.

Time complexity. We analyze the time complexity of every recursion depth i. For depth
i = log(

√
nε), we apply the simple algorithm from Section 3 b

√
nεc times on sets of size

Θ(
√
n/ε) with δlog(

√
nε) = Ω(

√
ε/n), the running time is therefore O(n2.5ε−1.5).

For depth i < log(
√
nε), we apply 2i convolutions and sparsifications. The time of the

convolutions is dominant. The total running time is therefore:
(log
√
nε)−1∑

i=0
2i
(

n

2i+1 · δi+1

)2
log
(

n

2i+1 · δi+1

)
≤ 1

2

log
√
nε∑

i=1
2i
(

n

2i · δi

)2
log(nε−1)

= O

log
√
nε∑

i=1

n2.5

ε1.5 log(nε−1)

= O(n2.5ε−1.5 log(nε−1) log(nε)).

Space complexity. Since each recursive call makes at most two recursive calls, we do
not need to keep more than two representation of sum approximations on every level of
the recursion. We have seen in Section 2 that it is possible to construct sparsification of
convolution in linear space. The space complexity of all recursive calls of depth i < log(

√
nε)

is therefore:
log(
√
nε)∑

i=0

(
2 · n

2i · δi

)
= O

log(
√
nε)∑

i=0

n1.25

2i/2 · ε0.75

 = O
(
n1.25ε−0.75)

ICALP 2018

106:10 A Faster FPTAS for #Knapsack

One call to the algorithm from Section 3 uses O
((√

n/ε
)2

δlog(
√

nε)

)
= O

((√
n/ε
)2

√
ε/n

)
= O(n1.5ε−1.5)

space, and therefore the total space complexity is O(n1.5ε−1.5) .

5 The Algorithm for Counting Integer Knapsack Solutions

In this section we show how to generalize the algorithms of Sections 3 and 4 to the integer
version of counting knapsack solutions.

5.1 Generalizing the algorithm of Section 3
In Section 3 we showed how to insert into a set S a single item with weight w. We now
need to show how to insert a single item with weight w and multiplicity u. The proof of the
following lemma is similar to that of Lemma 9.

I Lemma 11. Let S be a set of integer pairs representing weights and multiplicity of items,
and let (w, u) be the weight and multiplicity of an additional item, then:

kS∪{(w,u)} = kS + kS |w + kS |2w + . . .+ kS |u·w

We will describe a new operation on sum approximations that creates the sparsification
of G = (KS + KS |w + KS |2w + . . . + KS |u·w) without actually computing G, i.e. without
actually computing all the points with non-zero value.

Events. Observe that a point (x, y) with non-zero value y = KS(x) implies u+ 1 points in
the above sum: (x, y), (x+w, y), (x+2w, y), . . . , (x+u ·w, y). We call the first point (x, y) a
start event (with position x and value y) and the last point (x+u ·w, y) an end event (with
position x + u · w and value y). Overall, for every x with non-zero value y = KS(x) there
are two events, a total of 2|KS | events. It is possible to sort in linear time the sequence of
events by their positions {x}i ∪ {x+ u ·w}i because KS is given sorted. We call the sorted
list of events the event list.

Similarly to Algorithm 1, we could construct the sparsification of G = (KS + KS |w +
KS |2w+. . .+KS |u·w) by scanning all points in G. This however would be too costly. Instead,
we next present a new operation that constructs the sparsification of G while only scanning
the O(|KS |) events in the event list.

InsertAndSparsify. While scanning the event list, when we see a start event (x, y) then
we say that this event is an active event and that all the points (x, y), (x + w, y), (x +
2w, y), . . . , (x + u · w, y) are active points. These points will become inactive when we will
see the end event (x+ u · w, y). As in Algorithm 1, we would like to accumulate the values
of all points seen so far. When the accumulator is larger than r, we introduce a new
breakpoint (i.e., output a new point to the sparsification of G) and set the new r to be
max{r + 1, b(1 + δ)rc}. During the scan, apart from the accumulator, we also maintain a
value Y = the sum of values of all currently active events.

When we scan a start event (x, y), we add the value y to both the accumulator and to Y .
This is not enough. We also need to add to the accumulator the values of all active points
whose position is x. These are precisely the points whose start events were at positions
x−w, x−2w, . . . , x−u ·w. Notice that all these points have the same start position modulo
w. For this reason, we maintain a balanced binary search tree T that stores all active events
keyed by their start position modulo w. Each node v in T with key r ∈ {0, . . . , w−1} stores

P. Gawrychowski, L. Markin, and O. Weimann 106:11

a field Yv = the sum of values of all active points whose start position is x such that x = r

(mod w). When we see a start event (x, y), we search in T for the node v with key x mod w
(or create one if no such node exists), we increase the node’s Yv field by y, and increase the
accumulator by y. If (x, y) is an end event we subtract y from Yv and from Y .

After processing event (x, y) as explained above, we want to process the next event
(x′, y′) in the event list. Before doing so, we need to: (1) increase the accumulator by the
total value of all points in the segment [x, x′), and (2) if the updated accumulator is larger
than r, find and output the (possibly many) new breakpoints whose positions are between
x and x′.

(1) We partition the segment [x, x′) into three segments: [x, k1w), [k1w, k2w), [k2w, x
′) such

that the lengths of the first and last segments are smaller than w, and the length of the
middle segment is a multiple of w. Notice that every segment of length w contains an active
point from every active event exactly once. Therefore, to obtain the total value of points
in the segment [x, x′) we query T for the total value in segment [x, k1w) (with a suffix sum
query on the Yv values) and in segment [k2w, x

′) (with a prefix sum query on the Yv values),
and add to it Y · (k2 − k1) (the total value in segment [k1w, k2w)).

(2) After increasing the accumulator by the above total value, if the accumulator becomes
larger than r, then we will find all the new breakpoints in [x, x′) in O(log |KS |) time per
breakpoint. Suppose the accumulated value at x was prevaccum. To find the first break-
point in the segment [x, k1w) we query T for the the first node after x mod w such that the
sum of Yv values between x mod w and that node is at least r − prevaccum (we call this a
succeeding sum query on T , and we symmetrically define a preceding sum query in which we
seek the first node before x mod w rather than after). We then output this breakpoint, set
prevaccum to be the accumulated value in this breakpoint, set r = max{r + 1, b(1 + δ)rc},
and continue in the same way to find the next breakpoint in the segment [x, k1w). Next, we
find the breakpoints in the segment [k1w, k2w). Since this segment is composed of (k2− k1)
subsegments of length w, and since each of these subsegments contributes exactly Y to the
accumulator, it is easy (in O(1) time) to find which subsegment contains the next break-
point. On this subsegment we proceed similarly as on [x, k1w). Finally, we need to find the
breakpoints in segment [k2w, x

′), again similarly as in [x, k1w). See Algorithm 2.

Time and space complexity. Each operation on the binary search tree T takes O(log |KS |)
time thus the total time for InsertAndSparsify is O

(
(|KS∪{(w,u)}|+ |KS |) · log |KS |

)
. If

S = {w1, . . . , wi} then |KS | = log1+δ U
i and |KS∪{(w,u)}| = O

(
log1+δ U

i
)
. The total time

complexity of the algorithm is therefore:

n∑
i=1

O
(
log1+δ U

i · log(log1+δ U
i
)
) = O

(
n∑
i=1

i logU
log(1 + δ) · log

(
i logU

log(1 + δ)

))

= O

(
logU

1
n log(1 + ε)

· log
(

n logU
1
n log(1 + ε)

) n∑
i=1

i

)
= O

(
n3ε−1 logU log

(
nε−1 logU

))
.

The space complexity is O(|KW |) = O
(
log1+δ U

n
)

= O
(
n logU

log(1+δ)

)
= O(n2ε−1 logU).

ICALP 2018

106:12 A Faster FPTAS for #Knapsack

Algorithm 2 InsertAndSparsify(KS , w, u, δ)
Input: a sum approximation KS of kS , a new item with weight of w and multiplicity u,

and a sparsification parameter δ.
Output: a function G that is a (1 + δ)-sum approximation of kS∪(w,u).
1: initialize T as an empty binary search tree of pairs (x, y) indexed by (x mod w)
2: initialize Y = x = accum = prevaccum = 0, and r = 1
3: for every event (x′, y′) in sorted order do
4: k1 ← d xw e, k2 ← bx

′

w c
5: while accum+ T.suffixSum(x) + Y · (k2 − k1) + T.prefixSum(x′ − 1) ≥ r do
6: if accum+ T.suffixSum(x) ≥ r then
7: bp← T.succeedingSum(x, r − accum)
8: accum← accum+ T.suffixSum(x)− T.suffixSum(bp)
9: else

10: k3 ← k1 + b(r − accum− T.suffixSum(x))/Y c
11: bp← T.precedingSum(x′, r − (accum+ T.suffixSum(x) + Y · (k3 − k1)))
12: accum← accum+ T.suffixSum(x) + Y · (k3 − k1) + T.prefixSum(bp− 1)
13: end if
14: add the pair (x′, accum− prevaccum− T [bp mod w]) to G
15: prevaccum← accum, x← bp, k1 ← d xw e, r ← max{r + 1, b(1 + δ)rc}
16: end while
17: if (x′, y′) is a start event then
18: Y ← Y + y′, T [x′ mod w]← T [x′ mod w] + y′

19: else
20: Y ← Y − y′, T [x′ mod w]← T [x′ mod w]− y′
21: end if
22: accum← accum+ T.suffixSum(x) + Y · (k2 − k1) + T.prefixSum(x′ − 1)
23: x← x′

24: end for

5.2 Generalizing the algorithm of Section 4
The only change to the algorithm of Section 4 is that when the set size is small (i.e. when we
call the algorithm of Section 3) we use InsertAndSparsify as in the previous subsection.

Time and space complexity. We observe that the size of the representation of a (1 + ε)-
sum approximation has been changed to |KS | = log1+δ U

|S| = |S| logU
δ . As in Section 4, we

calculate the total time complexity for depth log(
√
nε):

O

(√
nε ·

((√
n/ε
)3 (√

ε/n
)−1

logU log
(√

nε
(√

ε/n
)−1

logU
)))

which is O
(
n2.5ε−1.5 logU log(nε−1 logU)

)
. The total time for depths i < log(

√
nε) is:

(log
√
nε)−1∑

i=0
2i
(

n logU
2i+1 · δi+1

)2
log
(

n logU
2i+1 · δi+1

)
≤ 1

2

log
√
nε∑

i=1
2i
(
n logU
2i · δi

)2
log(nε−1 logU)

= O

log
√
nε∑

i=1

n2.5 log2 U

ε1.5 log(nε−1 logU)

= O(n2.5ε−1.5 log(nε−1 logU) log(nε) log2 U).

P. Gawrychowski, L. Markin, and O. Weimann 106:13

The space complexity is dominated by the space used for InsertAndSparsify on a set
of size

√
n/ε and δ =

√
ε/n, that is O(n1.5ε−1.5 logU).

References
1 Mohsen Bayati, David Gamarnik, Dimitriy Katz, Chandra Nair, and Prasad Tetali. Simple

deterministic approximation algorithms for counting matchings. In STOC, pages 122–127,
2007.

2 Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and Emanuele
Viola. Bounded independence fools halfspaces. In FOCS, pages 171–180, 2009.

3 Martin Dyer. Approximate counting by dynamic programming. In STOC, pages 693–699,
2003.

4 Martin Dyer, Alan Frieze, Ravi Kannan, Ajai Kapoor, Ljubomir Perkovic, and Umesh
Vazirani. A mildly exponential time algorithm for approximating the number of solutions to
a multidimensional knapsack problem. Combinatorics, Probability and Computing, 2:271–
284, 1993.

5 Parikshit Gopalan, Adam Klivans, and Raghu Meka. Polynomial-time approximation
schemes for knapsack and related counting problems using branching programs. arXiv
1008.3187, 2010.

6 Parikshit Gopalan, Adam Klivans, Raghu Meka, Daniel Štefankovic, Santosh Vempala, and
Eric Vigoda. An FPTAS for #Knapsack and related counting problems. In FOCS, pages
817–826, 2011.

7 Nir Halman. A deterministic fully polynomial time approximation scheme for counting
integer knapsack solutions made easy. Theoretical Computer Science, 645:41–47, 2016.

8 Nir Halman, Diego Klabjan, Mohamed Mostagir, Jim Orlin, and David Simchi-Levi. A
fully polynomial-time approximation scheme for single-item stochastic inventory control
with discrete demand. Mathematics of Operations Research, 34(3):674–685, 2009.

9 Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold
functions. In STOC, pages 427–436, 2010.

10 Ben Morris and Alistair Sinclair. Random walks on truncated cubes and sampling 0-1
knapsack solutions. SIAM journal on computing, 34(1):195–226, 2004. Preliminary version
in FOCS 1999.

11 Yuval Rabani and Amir Shpilka. Explicit construction of a small epsilon-net for linear
threshold functions. In STOC, pages 649–658, 2009.

12 Romeo Rizzi and Alexandru I. Tomescu. Faster FPTASes for counting and random gener-
ation of knapsack solutions. In ESA, pages 762–773, 2014.

13 Daniel Štefankovič, Santosh Vempala, and Eric Vigoda. A deterministic polynomial-time
approximation scheme for counting knapsack solutions. SIAM Journal on Computing,
41(2):356–366, 2012.

14 Dror Weitz. Counting independent sets up to the tree threshold. In STOC, pages 140–149,
2006.

ICALP 2018

	Introduction
	Approximation of a Function
	The Algorithm of Halman (Simplified)
	The Algorithm for Counting Knapsack Solutions
	The Algorithm for Counting Integer Knapsack Solutions
	Generalizing the algorithm of Section 3
	Generalizing the algorithm of Section 4

