
Binary Jumbled Pattern Matching

on Trees and Tree-Like Structures

T. Gagie, D. Hermelin, G.M. Landau, O. Weimann

Regular vs. Jumbled Pattern Matching

 (Regular) Pattern Matching:

MISSISIPICITSISIS Large text T (length n):

 Small pattern P (length m): SISI

 Report whether P occurs in T (or find all occurrences).

SISI SISI

 Indexing variant:

 Preprocess T to answer query patterns fast.

Regular vs. Jumbled Pattern Matching

 Jumbled Pattern Matching:

MISSISIPICITSISIS Large text T (length n):

 Small pattern P (length m): SISI

 Report whether some permutation of P occurs in T.

 Indexing variant:

 Same as regular pattern matching.

ISSI SISI

Regular vs. Jumbled Pattern Matching

Pattern Matching Indexing

Regular

Several classical (non-

trivial) O(n + m)

solutions:

• KnuthMorrisPratt

• BoyerMoore

• KarpRabin

• …

O(n) construction

time and space, Õ(m)

query time:

• Suffix Trees

• Suffix arrays

• …

Jumbled

Trivial schoolbook

“sliding window”

solution gives O(n+m).

???

Indices for Binary Jumbled PM

 O(n2) construction time, O(n) space, O(1) query time

[CicaleseFiciLipták ‘09].

 O(n2/lg n) construction time, O(n) space, O(1) query time

[BursciCicaleseFiciLipták ‘10] and [MoosaRahman ’10].

 O(n2/lg2 n) construction time, O(n) space, O(1) query time

[MoosaRahman ’12].

 Better bounds only known for approximate indices ...

Jumbled Pattern Matching on Graphs

 Text: vertex-labeled graph on n vertices.

 Pattern: multiset of labels of size m.

 Question: Is there a connected subgraph whose label

multiset matches the pattern ?

P = T =

Jumbled Pattern Matching on Graphs

 Also known as the Graph Motif problem.

 Several work done on this (and variants):

 [Lacroix, Fernandes, and Sagot ‘06]

 [Fellows, Fertin, H., Vialette ‘07]

 An nO(cw) algorithm for graphs with treewidth ≤ w and #labels ≤ c.

 [Bruckner, Karp, Shamir, and Sharan ‘09]

 [Dondi, Fertin, Vialette ’07+’09+’11]

 [Guillemot and Sikora ‘10]

 Several others . . .

 Trees ??

Our Results

 Index for trees: O(n2/lg2 n) construction time, O(n) bits,

O(1) query time.

 Matches the performance of the best known index for strings.

 Index for grammars: O(g2/3n4/3 /lg4/3 n) construction time,

O(n) bits, O(1) query time.

 Time-bound is O(n2/lg2 n) even when the string is incompressible.

 Bounded treewidth graphs: f(w) ∙ nO(c) algorithm.

 Beats previous nO(cw) algorithm.

O(n)-space index for trees in O(n2) time

 Some conventions:

 The tree T is rooted and complete binary (for ease of presentation).

 Binary alphabet = tree nodes are colored either white or black.

 Query (i,j) = A connected subgraph on exactly i nodes with exactly j

black nodes.

Observation: If (i,j1) and (i,j2) both occur in T, then (i,j) also

occurs in T for all j1 ≤ j ≤ j2.

O(n)-space index for trees in O(n2) time

Observation: If (i,j1) and (i,j2) both occur in T, then (i,j) also

occurs in T for all j1 ≤ j ≤ j2.

j1

j2

Each time we move on this path,

the number of black nodes

changes by at most 1.

O(n)-space index for trees in O(n2) time

Observation: If (i,j1) and (i,j2) both occur in T, then (i,j) also

occurs in T for all j1 ≤ j ≤ j2.

 For each i, store only two values:

 imin= minimum j such that (i,j) occurs in T.

 imax= maximum j such that (i,j) occurs in T.

 On query (i,j) report yes iff imin≤ j ≤ imax.

 O(n) space.

 We show how all imax values O(n2) time.

 imin analogous.

Tv

O(n)-space index for trees in O(n2) time

 For each node v and each i define

 Av[i] = Maximum number of black nodes in a connected subgraph

of size i in Tv which includes v.

v

O(n)-space index for trees in O(n2) time

 Simple top-down recursion:

 Av[i] = maxk Au[k] + Aw[i-1-k] + col(v).

v

u w

 Looks like O(n3) time, but its actually O(n2) time.

Succinct O(n)-bits index

 Thus, we can store the binary difference vectors instead:

 Bv[i] = Av[i] - Av[i-1].

 Since Av[i] = ∑1≤k≤i Bv[k], we can retrieve Av[i] from Bv in

O(1) time using rank queries.

 rank[i] = #1’s in Bv[1…i].

Observation: Either Av[i] = Av[i-1] or Av[i] = Av[i-1]+1.

From trees to strings

Bu = 1 1 0 0 0 0

#1 = Au[4]

Bw = 0 0 1 1 1 0

#1 = Aw[3]

#1 = Au[4] + Aw[3] + col(v)

0 0 0 0 1 1 0 0 1 1 1 0 col(v) Sv =

From trees to strings

 Recall: Av[i] = maxk Au[k] + Aw[i-1-k] + col(v).

 Hence, Av[i] = max #1’s in a window of size i in Sv

containing the col(v) position.

0 0 0 0 1 1 0 0 1 1 1 0 col(v) Sv =

.

 .

 .

Xv Yv

Shaving off log-factors

 Using the algorithm for strings, we can compute Av in

O(|Sv|2/lg2 n) time.

 But in order to get O(n2/lg2 n) overall we need:

 O(|Xv| ∙ |Yv| / lg2 n), and not …

 O((|Xv| + |Yv|) 2 / lg2 n).

 To get O(|Xv| ∙ |Yv| / lg n) is relatively easy.

 Use lookup tables of size s ≈ lg n.

 Run sliding windows of sizes which are multiples of s.

 In total, O(n/lg n) sliding windows.

as is done in

MoosaRahaman

Shaving off log-factors

 To get O(|Xv| ∙ |Yv| / lg2 n) is problematic:

 In strings, Moosa and Rahaman use additional lookup tables to

slide the window in jumps of size s ≈ lg n.

 Here we can also do this in most cases.

 But what happens when, e.g., |Xv| < s ?

 Since we only consider sliding windows which include the col(v) position,

we cannot jump !

 In this case, we get a running-time of O(|Yv| / lg n) = O(n / lg n).

 Solution: Use micro-macro decomposition to ensure that the

computations above happen only O(n / lg n) times.

Micro-macro decomposition

 Decompose the tree into a macro-tree of disjoint

connected subgraphs, aka micro-trees.

 Each micro-tree has size ≤ lg n.

 # micro-trees = O(n/ lg n).

1. Compute (essentially) Av arrays for each

micro-tree. Requires O(lg2n ∙ n/ lg n) =

O(n lg n) time.

2. In bottom-up fashion, merge micro arrays

to macro arrays using string speedups.

Requires O(n / lg n ∙ n / lg n) = O(n2 / lg2 n)

time.

Closing Remarks

 We can also find a node of an occurrence in O(lg n) time,

assuming (i,j) occurs in T.

 Our algorithm can be made into a pattern matching

algorithm running in O(nm/lg2 n) time, when the pattern is

of size m.

 Can this be improved to near-linear (recall the string case) ?

 Bigger alphabets ?

 A reasonable index for strings ?

Thank you

for

your attention

