Binary Jumbled Pattern Matching on Trees and Tree-Like Structures

T. Gagie, D. Hermelin, G.M. Landau, O. Weimann

Regular vs. Jumbled Pattern Matching

- (Regular) Pattern Matching:
- Large text T (length n): MISSISIPICITSISIS
- Small pattern P (length m): SISI
- Report whether P occurs in T (or find all occurrences).
- Indexing variant:
- Preprocess T to answer query patterns fast.

Regular vs. Jumbled Pattern Matching

- Jumbled Pattern Matching:
- Large text ${ }^{T}$ (length n): MISSISIPICITSISIS
- Small pattern P (length m): SISI
- Report whether some permutation of P occurs in T .
- Indexing variant:
- Same as regular pattern matching.

Regular vs. Jumbled Pattern Matching

	Pattern Matching	Indexing
Regular	Several classical (nontrivial) $O(n+m)$ solutions: - KnuthMorrisPratt - BoyerMoore - KarpRabin	$\mathrm{O}(\mathrm{n})$ construction time and space, $\tilde{O}(\mathrm{~m})$ query time: - Suffix Trees - Suffix arrays - ...
Jumbled	Trivial schoolbook "sliding window" solution gives $\mathrm{O}(\mathrm{n}+\mathrm{m})$	$? ? ?$

Indices for Binary Jumbled PM

- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ construction time, $\mathrm{O}(\mathrm{n})$ space, $\mathrm{O}(1)$ query time [CicaleseFiciLipták '09].
- $O\left(n^{2} / \lg n\right)$ construction time, $O(n)$ space, $O(1)$ query time [BursciCicaleseFiciLipták '10] and [MoosaRahman '10].
- $\mathrm{O}\left(\mathrm{n}^{2} / \mathrm{lg}^{2} \mathrm{n}\right)$ construction time, $\mathrm{O}(\mathrm{n})$ space, $\mathrm{O}(1)$ query time [MoosaRahman '12].
- Better bounds only known for approximate indices ...

Jumbled Pattern Matching on Graphs

- Text: vertex-labeled graph on n vertices.
- Pattern: multiset of labels of size m.
- Question: Is there a connected subgraph whose label multiset matches the pattern ?

$$
P=\bigcirc \bigcirc \bigcirc
$$

Jumbled Pattern Matching on Graphs

- Also known as the Graph Motif problem.
- Several work done on this (and variants):
- [Lacroix, Fernandes, and Sagot '06]
- [Fellows, Fertin, H., Vialette ‘07]
- An $\mathrm{n}^{\mathrm{O}(\mathrm{cw})}$ algorithm for graphs with treewidth $\leq \mathrm{w}$ and \#labels $\leq \mathrm{c}$.
- [Bruckner, Karp, Shamir, and Sharan '09]
- [Dondi, Fertin, Vialette '07+'09+'11]
- [Guillemot and Sikora '10]
- Several others . . .
- Trees ??

Our Results

- Index for trees: $\mathrm{O}\left(\mathrm{n}^{2} / \mathrm{lg}^{2} \mathrm{n}\right)$ construction time, $\mathrm{O}(\mathrm{n})$ bits, $\mathrm{O}(1)$ query time.

Matches the performance of the best known index for strings.

- Index for grammars: $\mathrm{O}\left(\mathrm{g}^{2 / 3} \mathrm{n}^{4 / 3} / \mathrm{lg}^{4 / 3} \mathrm{n}\right)$ construction time, $\mathrm{O}(\mathrm{n})$ bits, $\mathrm{O}(1)$ query time.
- Time-bound is $\mathrm{O}\left(\mathrm{n}^{2} / / \mathrm{g}^{2} \mathrm{n}\right)$ even when the string is incompressible.
- Bounded treewidth graphs: $\mathrm{f}(\mathrm{w}) \cdot \mathrm{n}^{\mathrm{O}(\mathrm{c})}$ algorithm.
- Beats previous $\mathrm{n}^{\mathrm{O}(\mathrm{cw})}$ algorithm.

$\mathrm{O}(\mathrm{n})$-space index for trees in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

- Some conventions:
- The tree T is rooted and complete binary (for ease of presentation).
- Binary alphabet $=$ tree nodes are colored either white or black.
- Query (i,j) = A connected subgraph on exactly i nodes with exactly j black nodes.

Observation: If $\left(i, j_{1}\right)$ and $\left(i, j_{2}\right)$ both occur in T, then (i, j) also occurs in Tfor all $j_{1} \leq j \leq j_{2}$.

$\mathrm{O}(\mathrm{n})$-space index for trees in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

Observation: If $\left(i, j_{1}\right)$ and $\left(i, j_{2}\right)$ both occur in T, then (i, j) also occurs in T for all $j_{1} \leq j \leq j_{2}$.

Each time we move on this path, the number of black nodes changes by at most 1 .

$\mathrm{O}(\mathrm{n})$-space index for trees in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

Observation: If $\left(i, j_{1}\right)$ and $\left(i, j_{2}\right)$ both occur in T, then (i, j) also occurs in T for all $j_{1} \leq j \leq j_{2}$.

- For each i, store only two values:
- $\mathrm{i}_{\text {min }}=$ minimum j such that (i, j) occurs in T .
- $i_{\max }=$ maximum j such that (i, j) occurs in T.
- On query (i, j) report yes iff $i_{\text {min }} \leq j \leq i_{\text {max }}$.
- O(n) space.
- We show how all $i_{\max }$ values $O\left(n^{2}\right)$ time.
- $\mathrm{I}_{\text {min }}$ analogous.

$\mathrm{O}(\mathrm{n})$-space index for trees in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

- For each node v and each i define
- $\mathrm{A} \vee[\mathrm{i}]=$ Maximum number of black nodes in a connected subgraph of size i in Tv which includes v .

$\mathrm{O}(\mathrm{n})$-space index for trees in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

- Simple top-down recursion:

$$
\mathrm{Av}[\mathrm{i}]=\max _{k} A u[k]+\mathrm{Aw}[\mathrm{i}-1-\mathrm{k}]+\operatorname{col}(\mathrm{v}) .
$$

- Looks like $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time, but its actually $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.

Succinct O(n)-bits index

Observation: Either $A \vee[i]=A v[i-1]$ or $A v[i]=A v[i-1]+1$.

- Thus, we can store the binary difference vectors instead:
- $\operatorname{Bv}[i]=A v[i]-A v[i-1]$.
- Since $A \vee[i]=\sum_{1 \leq k s i} B \vee[k]$, we can retrieve $A \vee[i]$ from $B \vee$ in $O(1)$ time using rank queries.
- $\operatorname{rank}[i]=\# 1$'s in $B \vee[1 \ldots i]$.

From trees to strings

$$
\begin{aligned}
& B u=\underbrace{110000} \\
& \text { \#1 = Au[4] } \\
& \mathrm{Bw}=\underbrace{001110} \\
& \text { \#1 = Aw[3] } \\
& S v=000011 \quad \operatorname{col}(v) \quad 001110 \\
& \# 1=\operatorname{Au}[4]+\operatorname{Aw}[3]+\operatorname{col}(v)
\end{aligned}
$$

From trees to strings

- Recall: $A v[i]=\max _{k} A u[k]+A w[i-1-k]+\operatorname{col}(v)$.
- Hence, $A v[i]=\max \# 1$'s in a window of size i in $S v$ containing the col(v) position.

Shaving off log-factors

- Using the algorithm for strings, we can compute $A \vee$ in $\mathrm{O}\left(|\mathrm{Sv}|^{2} / \mathrm{lg}^{2} \mathrm{n}\right)$ time.
- But in order to get $O\left(n^{2} / g^{2} n\right)$ overall we need:
- $\mathrm{O}\left(|\mathrm{XV}| \cdot|\mathrm{Yv}| / \mathrm{Ig}^{2} \mathrm{n}\right)$, and not \ldots
- $O\left((|X v|+|Y v|)^{2} / \lg ^{2} n\right)$.
- To get $O(|X v| \cdot|Y v| / \lg n)$ is relatively easy.
- Use lookup tables of size $s \approx \lg n$.
- Run sliding windows of sizes which are multiples of s.
- In total, $\mathrm{O}(\mathrm{n} / \lg \mathrm{n})$ sliding windows.

Shaving off log-factors

- To get $\mathrm{O}\left(|\mathrm{Xv}| \cdot|\mathrm{Yv}| / \lg ^{2} \mathrm{n}\right)$ is problematic:
- In strings, Moosa and Rahaman use additional lookup tables to slide the window in jumps of size $s \approx \lg n$.
- Here we can also do this in most cases.
- But what happens when, e.g., $|\mathrm{Xv}|<\mathrm{s}$?
- Since we only consider sliding windows which include the col(v) position, we cannot jump !
- In this case, we get a running-time of $\mathrm{O}(|\mathrm{Y} v| / \lg n)=\mathrm{O}(\mathrm{n} / \lg \mathrm{n})$.
- Solution: Use micro-macro decomposition to ensure that the computations above happen only $\mathrm{O}(\mathrm{n} / \lg \mathrm{n})$ times.

Micro-macro decomposition

- Decompose the tree into a macro-tree of disjoint connected subgraphs, aka micro-trees.
- Each micro-tree has size $\leq \lg \mathrm{n}$.
- \# micro-trees = O(n/ lg n).

1. Compute (essentially) $\mathrm{A} v$ arrays for each micro-tree. Requires $O\left(\lg ^{2} n \cdot n / \lg n\right)=$ $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ time.
2. In bottom-up fashion, merge micro arrays to macro arrays using string speedups.
Requires $\mathrm{O}(\mathrm{n} / \lg \mathrm{n} \cdot \mathrm{n} / \lg \mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2} / \lg ^{2} \mathrm{n}\right)$ time.

Closing Remarks

- We can also find a node of an occurrence in $O(\lg n)$ time, assuming (i,j) occurs in T.
- Our algorithm can be made into a pattern matching algorithm running in $\mathrm{O}\left(\mathrm{nm} / \mathrm{lg}^{2} \mathrm{n}\right)$ time, when the pattern is of size m .
- Can this be improved to near-linear (recall the string case) ?
- Bigger alphabets?
- A reasonable index for strings?

