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Regular vs. Jumbled Pattern Matching 

 (Regular) Pattern Matching: 

MISSISIPICITSISIS  Large text T (length n): 

 Small pattern P (length m): SISI 

 Report whether P occurs in T (or find all occurrences). 

SISI SISI 

 Indexing variant: 

 Preprocess T to answer query patterns fast. 



Regular vs. Jumbled Pattern Matching 

 Jumbled Pattern Matching: 

MISSISIPICITSISIS  Large text T (length n): 

 Small pattern P (length m): SISI 

 Report whether some permutation of P occurs in T. 

 Indexing variant: 

 Same as regular pattern matching. 

ISSI SISI 



Regular vs. Jumbled Pattern Matching 

Pattern Matching Indexing 

 

 

 

Regular 

Several classical (non-

trivial) O(n + m) 

solutions: 

 

• KnuthMorrisPratt 

• BoyerMoore 

• KarpRabin 

• … 

O(n) construction 

time and space, Õ(m) 

query time: 

 

• Suffix Trees 

• Suffix arrays 

• … 

 

Jumbled 

Trivial schoolbook 

“sliding window”  

solution gives O(n+m).  

 

??? 



Indices for Binary Jumbled PM 

 O(n2) construction time, O(n) space, O(1) query time 

[CicaleseFiciLipták ‘09]. 

 O(n2/lg n) construction time, O(n) space, O(1) query time 

[BursciCicaleseFiciLipták ‘10] and [MoosaRahman ’10]. 

 O(n2/lg2 n) construction time, O(n) space, O(1) query time 

[MoosaRahman ’12]. 

 Better bounds only known for approximate indices ...  

 

 

 

 

 

 



Jumbled Pattern Matching on Graphs 

 Text:  vertex-labeled graph on n vertices. 

 Pattern: multiset of labels of size m. 

 Question: Is there a connected subgraph whose label 

multiset matches the pattern ? 

P = T = 



Jumbled Pattern Matching on Graphs 

 Also known as the Graph Motif problem. 

 Several work done on this (and variants): 

 [Lacroix, Fernandes, and Sagot ‘06] 

 [Fellows, Fertin, H., Vialette ‘07] 

 An nO(cw) algorithm for graphs with treewidth ≤ w and #labels ≤ c. 

 [Bruckner,  Karp,  Shamir,  and Sharan ‘09] 

 [Dondi, Fertin, Vialette ’07+’09+’11] 

 [Guillemot and Sikora ‘10] 

 Several others . . . 

 Trees ??  



Our Results 

 Index for trees:  O(n2/lg2 n) construction time, O(n) bits, 

O(1) query time.  

 Matches the performance of the best known index for strings.  

 

 Index for grammars:  O(g2/3n4/3 /lg4/3 n) construction time, 

O(n) bits, O(1) query time.  

 Time-bound is O(n2/lg2 n) even when the string is incompressible.  

 

 Bounded treewidth graphs:  f(w) ∙ nO(c) algorithm.  

 Beats previous nO(cw) algorithm.  

  



O(n)-space index for trees in O(n2) time 

 Some conventions: 

 The tree T is rooted and complete binary (for ease of presentation). 

 Binary alphabet = tree nodes are colored either white or black.  

 Query (i,j) = A connected subgraph on exactly i nodes with exactly j 

black nodes.   

Observation: If (i,j1) and (i,j2) both occur in T, then (i,j) also 

occurs in T for all j1 ≤ j ≤ j2. 



O(n)-space index for trees in O(n2) time 

Observation: If (i,j1) and (i,j2) both occur in T, then (i,j) also 

occurs in T for all j1 ≤ j ≤ j2. 

j1 

j2 

Each time we move on this path, 

the number of black nodes 

changes by at most 1. 



O(n)-space index for trees in O(n2) time 

Observation: If (i,j1) and (i,j2) both occur in T, then (i,j) also 

occurs in T for all j1 ≤ j ≤ j2. 

 For each i, store only two values: 

 imin= minimum j such that (i,j) occurs in T.  

 imax= maximum j such that (i,j) occurs in T. 

 On query (i,j) report yes iff imin≤ j ≤ imax. 

 O(n) space. 

 We show how all imax values O(n2) time. 

 imin analogous. 



Tv 

O(n)-space index for trees in O(n2) time 

 For each node v and each i define  

 Av[i] = Maximum number of black nodes in a connected subgraph 

of size i in Tv which includes v.  

v 



O(n)-space index for trees in O(n2) time 

 Simple top-down recursion: 

 Av[i] = maxk  Au[k] + Aw[i-1-k] + col(v).  

v 

u w 

 Looks like O(n3) time, but its actually O(n2) time.   



Succinct O(n)-bits index 

 Thus, we can store the binary difference vectors instead: 

 Bv[i] = Av[i] - Av[i-1]. 

 Since Av[i] = ∑1≤k≤i Bv[k], we can retrieve Av[i] from Bv in 

O(1) time using rank queries.   

 rank[i] = #1’s in Bv[1…i]. 

 

Observation: Either Av[i] = Av[i-1] or Av[i] = Av[i-1]+1. 



From trees to strings 

Bu  =  1 1 0 0 0 0 

#1 = Au[4] 

Bw  =  0 0 1 1 1 0 

#1 = Aw[3] 

#1 = Au[4] + Aw[3] + col(v) 

0 0 0 0 1 1 0 0 1 1 1 0 col(v) Sv  =  



From trees to strings 

 Recall:  Av[i] = maxk  Au[k] + Aw[i-1-k] + col(v). 

 Hence, Av[i] = max #1’s in a window of size i in Sv 

containing the col(v) position.  

 

0 0 0 0 1 1 0 0 1 1 1 0 col(v) Sv  =  

. 

   . 

      . 

Xv Yv 



Shaving off log-factors  

 Using the algorithm for strings, we can compute Av in 

O(|Sv|2/lg2 n) time. 

 But in order to get O(n2/lg2 n) overall we need: 

  O(|Xv| ∙ |Yv| / lg2 n), and not … 

  O((|Xv| + |Yv|) 2 / lg2 n). 

 To get O(|Xv| ∙ |Yv| / lg n) is relatively easy. 

 Use lookup tables of size s ≈  lg n.   

 Run sliding windows of sizes which are multiples of s. 

 In total, O(n/lg n) sliding windows. 

 

 

as is done in  

MoosaRahaman 



Shaving off log-factors  

 To get O(|Xv| ∙ |Yv| / lg2 n) is problematic: 

 In strings, Moosa and Rahaman use additional lookup tables to 

slide the window in jumps of size s ≈  lg n. 

 Here we can also do this in most cases. 

 But what happens when, e.g., |Xv| < s ? 

 Since we only consider sliding windows which include the col(v) position, 

we cannot jump ! 

 In this case, we get a running-time of O(|Yv| / lg n) = O(n / lg n). 

 Solution: Use micro-macro decomposition to ensure that the 

computations above happen only O(n / lg n) times. 

 

 



Micro-macro decomposition 

 Decompose the tree into a macro-tree of disjoint 

connected subgraphs, aka micro-trees. 

 Each micro-tree has size ≤ lg n. 

 # micro-trees = O(n/ lg n). 

1. Compute (essentially) Av arrays for each 

micro-tree. Requires O(lg2n ∙ n/ lg n) = 

O(n lg n) time. 

2. In bottom-up fashion, merge micro arrays 

to macro arrays using string speedups. 

Requires O(n / lg n ∙ n / lg n) = O(n2 / lg2 n) 

time.  

 



Closing Remarks 

 We can also find a node of an occurrence in O(lg n) time, 

assuming (i,j) occurs in T. 

 Our algorithm can be made into a pattern matching 

algorithm running in O(nm/lg2 n) time, when the pattern is 

of size m.  

 Can this be improved to near-linear (recall the string case) ? 

 Bigger alphabets ?  

 A reasonable index for strings ? 



Thank you  

for  

your attention 


