ALIGNMENT OF SEQUENCES

AMIR ABBOUD

STANFORD

VIRGINIA VASSILEVSKA WILLIAMS

STANFORD

OREN WEIMANN

UNIVERSITY OF HAIFA

Thursday, July 10th, 2014

FASTER ALGORITHMS?

Some classic problems on sequences have $\tilde{O}(n)$ algorithms:

- ✓ Exact Pattern Matching
- ✓ Pattern Matching with don't cares
- ✓ Longest Common Substring

While other classic problems don't have $O(n^{2-\varepsilon})$ algorithms:

- Local Alignment
- Edit Distance
- Longest Common Subsequence (LCS)

Isn't quadratic time efficient enough?

LOCAL ALIGNMENT

 $O(n^2)$ is not that efficient...

Input: Two (DNA) sequences of length n.

AGCCCGTCTACGTGCAACCGGGGAAAGTATA
AAACGTGACGAGAGAGAGAACCCATTACGAA

Output: The optimal alignment of two substrings.

	Α	С	G	Т	
Α	+1	-1.4	-1.8	-0.7	-1
С	-1.4	+1	-0.5	-1	-1
G	-1.8	-0.5	+1	-1.9	-1
Т	-0.7	-1	-1.9	+1	-1
-	-1	-1	-1	-1	-∞

Solved daily on huge sequences: $n = 3 \cdot 10^9$ for the human genome.

Algorithms:

Smith-Waterman dynamic programming $\mathcal{O}(n^2)$.

Compression tricks $O\left(\frac{n^2}{\log n}\right)$.

LOCAL ALIGNMENT

When $n = 3 \cdot 10^9$, $O(n^2/\log n)$ is too slow! In practice? Heuristics.

Most cited paper in the 90s:

BLAST: Basic Local Alignment Search Tool A heuristic algorithm for Local Alignment.

Can we find an $O(n \log n)$ algorithm?? (that would probably be efficient...)

How about $O(n^{1.5})$ or even $O(n^{1.8})$?

Today: Theoretical evidence that the answer is "no"!

HARDNESS FOR EASY PROBLEMS

How can we prove that a problem requires $\sim n^2$ time?

Prove NP-Hardness?

 $O(n^4)$ vs $O(n \log n)$?

Unconditional Lower bounds?

No superlinear bounds

Lower bounds for classes of algorithms?

Not a complete answer.

IDEA: REDUCTIONS

Theorem: Problem X is NP-hard

X is in P

Every NP-complete problem is in P

Conclusion: X is probably not in P...

OUR APPROACH

A surprising algorithm for problem Y

Unexpected breakthroughs in different areas

Conclusion: Such algorithm is unlikely...

A refined version of NP-hardness...

MAIN RESULT

"Theorem":

If Local Alignment can be solved in $n^{1.99}$ time, then:

- \triangleright 3-SUM can be solved in $n^{1.99}$ time! Refuting the 3-SUM conjecture
- \triangleright CNF-SAT can be solved in 1.99^n time!

ightharpoonup Max-4-Clique can be solved in $n^{3.99}$ time!

3SUM

Most famous example of this approach

<u>Input</u>: A list of n numbers

Output: Are there 3 numbers that sum to 0?

Trivial: $O(n^3)$, Simple: $O(n^2)$, Best: $O(n^2/\log^2 n)$

[STOC 10': Patrascu] The 3SUM Conjecture:

3SUM cannot be solved in $O(n^{2-\varepsilon})$ time for any $\varepsilon > 0$.

[Gajentaan - Overmars 95'] and many others:

➤ A long list of *3SUM-hard* problems.

3SUM-HARD PROBLEMS

The 3SUM Conjecture:

3SUM cannot be solved in $O(n^{2-\epsilon})$ time for any $\epsilon > 0$.

The 3SUM conjecture implies the following lower bounds:

[C.G. 95': Gajentaan -- Oevrmars]

> 3-Points-On-A-Line requires $n^{2-o(1)}$ time.

Computational Geometry

[SODA 01': Barequet - Har Peled]

 \triangleright Polygon Containment requires $n^{2-o(1)}$ time.

[STOC 10': Patrascu] and [STOC 09': Vassilevska - Williams]

 \triangleright Zero-Triangle requires $n^{3-o(1)}$ time.

Graph

Algorithms

[ICALP 13': A. -- Lewi]

 \triangleright Zero-4-Path requires $n^{3-o(1)}$ time.

[ICALP 14': Amir - Chan -- Lewenstein - Lewenstein]

A lower bound for Jumbled Pattern Matching.

Stringology

MAIN RESULT

"Theorem":

If Local Alignment can be solved in $n^{1.99}$ time, then:

- \triangleright 3-SUM can be solved in $n^{1.99}$ time! Refuting the 3-SUM conjecture
- CNF-SAT can be solved in 1.99ⁿ time!

 Refuting the Strong Exponential Time Hypothesis (SETH)
- \blacktriangleright Max-4-Clique can be solved in $n^{3.99}$ time!

THE STRONG EXPONENTIAL TIME HYPOTHESIS

Very useful for proving lower bounds...

<u>CNF-SAT</u>: Given a CNF formula on n variables and m clauses, is it satisfiable?

[01': Impagliazzo - Paturi - Zane]

The Strong Exponential Time Hypothesis (SETH):

"CNF-SAT cannot be solved in $(2 - \varepsilon)^n poly(m)$ time."

There are faster algorithms for k-SAT but they become $\sim 2^n$ as k grows.

SETH HARDNESS

The Strong Exponential Time Hypothesis (SETH):

"CNF-SAT cannot be solved in $2^{(1-\varepsilon)n}$ poly(m) time."

<u>Theorem(s)</u>: The SETH implies the following lower bounds:

[SODA 10': Patrascu -- Williams]

 \triangleright k-Dominating-Set requires $n^{k-o(1)}$ time.

[STOC 13': Roditty - Vassilevska Williams]

ightharpoonup A $\left(\frac{3}{2} - \varepsilon\right)$ -approximation for the diameter requires $(mn)^{1-o(1)}$ time.

[FOCS 14': A. - Vassilevska Williams]

ightharpoonup Dynamic Reachability requires $m^{1-o(1)}$ amortized update time.

[FOCS 14': Bringmann]

 \triangleright Computing the Frechet distance requires $n^{2-o(1)}$ time.

MAIN RESULT

"Theorem":

If Local Alignment can be solved in $n^{1.99}$ time, then:

- \triangleright 3-SUM can be solved in $n^{1.99}$ time! Refuting the 3-SUM conjecture
- \triangleright CNF-SAT can be solved in 1.99^n time!

 Refuting the Strong Exponential Time Hypothesis (SETH)
- ho Max-4-Clique can be solved in $n^{3.99}$ time! A longstanding open problem

Computational Geometry

Satisfiability Algorithms

Graph Algorithms

Bottom line: Local Alignment probably requires $\sim n^2$ to solve optimally, and we should settle for heuristics in practice...

PLAN

- Motivation
- Main Results
- Other Results
- Proof examples:
 - CNF-SAT to LCS*
 - Sketch: 3-SUM to Local Alignment
- Open problems

MORE RESULTS

The conjectures imply tight lower bounds for:

- > Edit Distance with gap penalties
- ➤ Normalized LCS
- > Multiple Local Alignment
- > Partial Match

> LCS*

The simplest problem that requires $n^{2-o(1)}$ time?

LCS*

The Longest Common Substring with don't cares problem (LCS*)

Input: Two string of length n, containing don't care characters *.

Output: The longest common substring.

Theorem: The SETH implies that LCS* on **binary** strings requires $n^{2-o(1)}$ time!

CNF-SAT TO LCS*

Theorem: The SETH implies that LCS* on **binary** strings requires $n^{2-o(1)}$ time!

Proof:
$$O(n^{2-\varepsilon})$$
 alg for LCS* => $2^{\left(1-\frac{\varepsilon}{2}\right)n}$ alg for CNF-SAT

Given a CNF formula with m clauses

$$\varphi(x_1, \dots, x_n) = (\neg x_1 \lor x_{17} \lor \dots \lor x_{10}) \land \dots \land (x_2 \lor x_5 \lor x_{21})$$

$$C_1 \qquad \qquad C_m$$

Split the variables and enumerate over partial assignments

$$U_{1} = \{x_{1}, \dots, x_{n/2}\}$$

$$U_{2} = \{x_{n/2+1}, \dots, x_{n}\}$$

$$\alpha = \begin{pmatrix} x_{1} = T \\ x_{2} = F \\ \vdots \\ x_{n/2} = T \end{pmatrix}$$

$$\beta = \begin{pmatrix} x_{n/2+1} = F \\ x_{n/2+2} = F \\ \vdots \\ x_{n} = T \end{pmatrix}$$

There are $N=2^{n/2}$ such α 's and β 's Goal of alg: find a pair such that $(\alpha \cdot \beta)$ sat φ .

CNF-SAT TO LCS*

Theorem: The SETH implies that LCS* on **binary** strings requires $n^{2-o(1)}$ time!

Proof:
$$O(n^{2-\varepsilon})$$
 alg for LCS* => $2^{\left(1-\frac{\varepsilon}{2}\right)n}$ alg for CNF-SAT φ is satisfiable $\Leftrightarrow \exists \alpha, \beta : \forall C_i : (\alpha \cdot \beta) \text{ sat } C_i$

Idea: construct strings S, T of length $\sim (2^{n/2}m)$ such that $LCS^*(S, T) = m \Leftrightarrow \exists \alpha, \beta : \forall C_i : (\alpha \cdot \beta) \text{ sat } C_i$

Done: we get a
$$\left(2^{n/2}m\right)^{2-\varepsilon}=2^{\left(1-\frac{\varepsilon}{2}\right)n}poly(m)$$
 alg for CNF-SAT

CNF-SAT TO LCS*

Theorem: The SETH implies that LCS* on **binary** strings requires $n^{2-o(1)}$ time!

<u>Proof:</u> Construct strings S, T of length $O(2^{n/2}m)$ such that

$$LCS^*(S,T) = m \iff \exists \alpha, \beta : \forall C_i : (\alpha \cdot \beta) \text{ sat } C_i$$

Define strings of length m:

$$T_{\alpha} = \begin{bmatrix} 0 & * & * & 0 & * & \cdots & 0 \end{bmatrix}$$
 $T_{\alpha}[i] = \begin{cases} * & \alpha \text{ sat } C_i \\ 0 & \text{otherwise} \end{cases}$

$$S_{\beta} = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & \cdots & 0 \end{bmatrix}$$

$$S_{\beta}[i] = \begin{cases} 0 & \beta \text{ sat } C_i \\ 1 & \text{otherwise} \end{cases}$$

Then:
$$T_{\alpha} \equiv S_{\beta} \iff \forall C_i : (\alpha \cdot \beta) \text{ sat } C_i$$

Construct S,T in $O(2^{n/2} m)$ time:

$$T = [\cdots T_{\alpha 1} \cdots] \$ [\cdots T_{\alpha 2} \cdots] \$ \cdots \$ [\cdots T_{\alpha N} \cdots]$$

$$S = [\cdots S_{\beta 1} \cdots] \# [\cdots S_{\beta 2} \cdots] \# \cdots \# [\cdots S_{\beta N} \cdots]$$

3-SUM TO LOCAL ALIGNMENT

3-SUM on n numbers

-15 -6 33
$$x \in [\pm n^3]$$
 -30 7 ... 107

$$|\Sigma| \sim n^3$$
?

 $n^{o(1)}$ instances of 3-Vector-SUM on n vectors

$$v_x = (x_1, \dots, x_d)$$
 ...

$$|\Sigma| \sim \log n$$

$$x_i \in [\pm \log n] \text{ and } d = O\left(\frac{\log n}{\log \log n}\right)$$

$$\exists v_a, v_b, v_c : v_a + v_b + v_c = (0, ..., 0)$$
?

$$|\Sigma| \sim n^{\varepsilon} \log n$$

Define substrings of length d:

$$S_x = [\dots, '(h(x), x_i)', \dots]$$

$$\Sigma$$
 contains pairs $(h(x), x_i)$

3-SUM TO LOCAL ALIGNMENT

Define substrings of length d: $S_x = [..., '(h(x), x_i)', ...]$

 Σ contains pairs $(h(x), x_i)$

Our scoring matrix enforces that:

 $(h(x), x_i)$ and $(h(y), y_i)$ will "match" iff:

 $x_i + y_i + z_i = 0$ where z is determined by h(x), h(y)

CONCLUSION

The reductions explain the lack of progress and prove that new ideas are required for faster algorithms

"An **opportunity** to solve many famous open problems while working on your favorite problem!"

- Subquadratic Edit Distance?
- Subquadratic LCS?
- Subcubic Protein Folding?
- Subcubic Tree Edit Distance?

Thank You!
Questions?