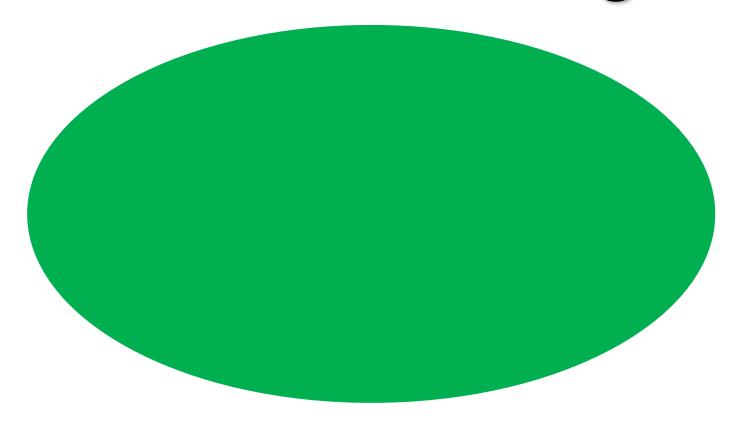
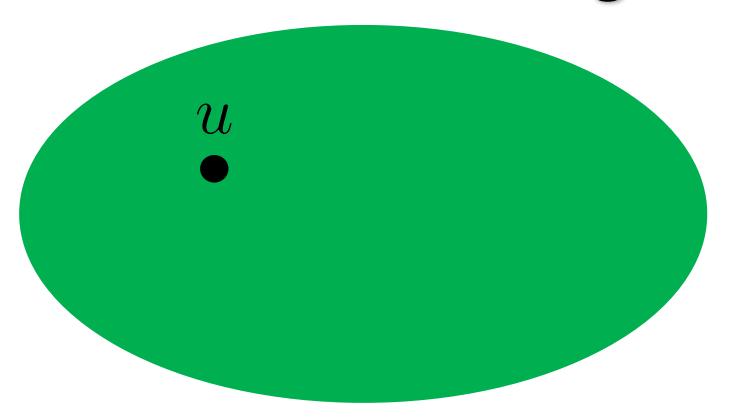
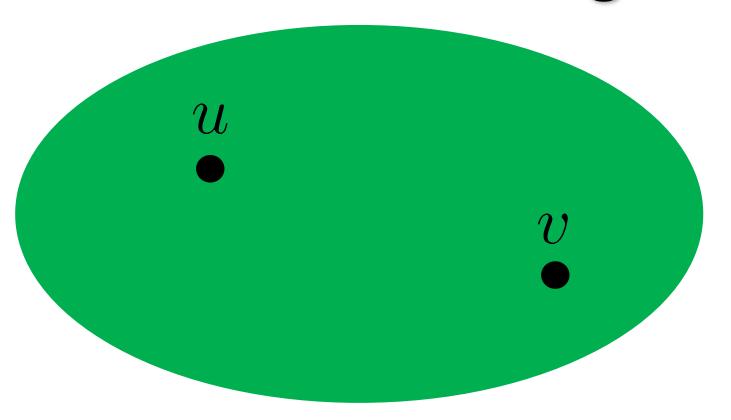
Fault-Tolerant Distance Labeling for Planar Graphs

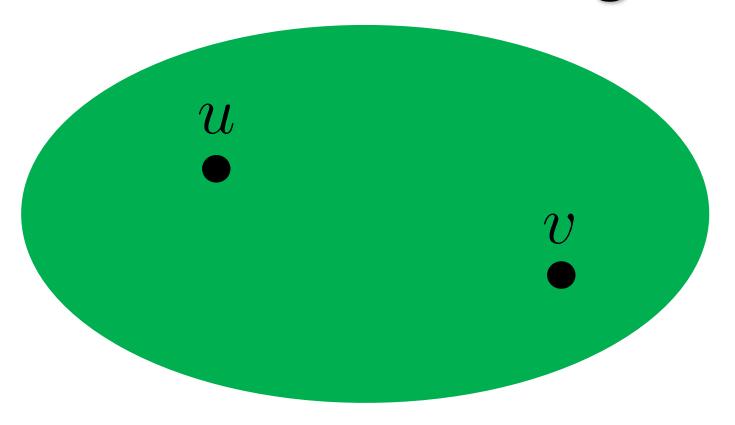
Aviv Bar-Natan,
Panagiotis Charalampopoulos,
Paweł Gawrychowski,
Shay Mozes,
Oren Weimann

Slides by Aviv Bar-Natan

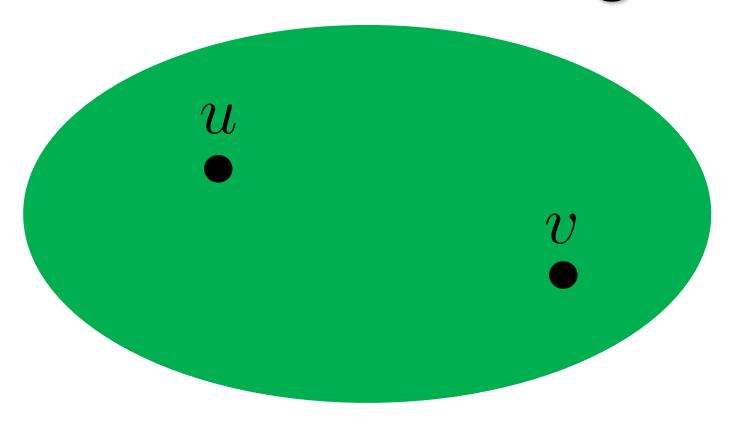


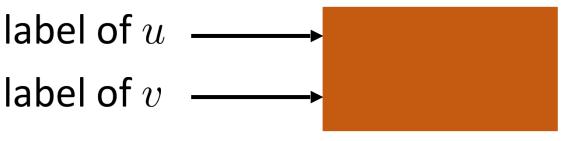


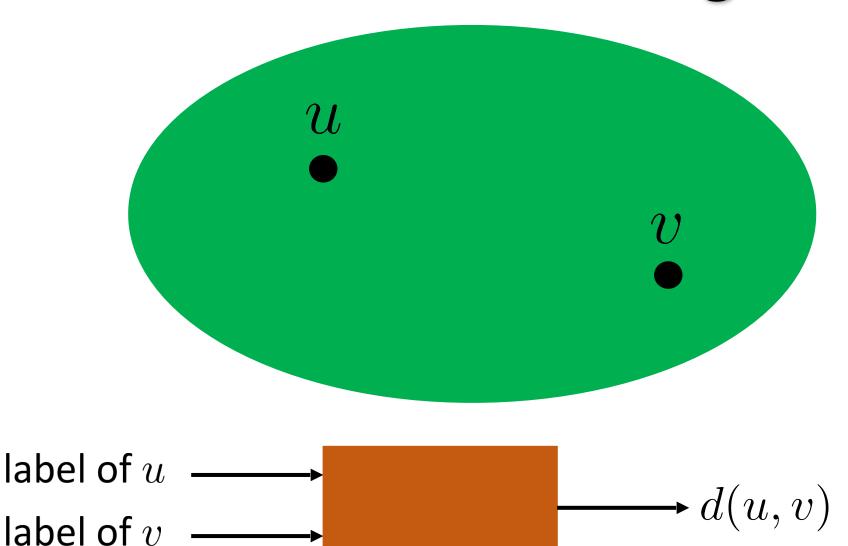


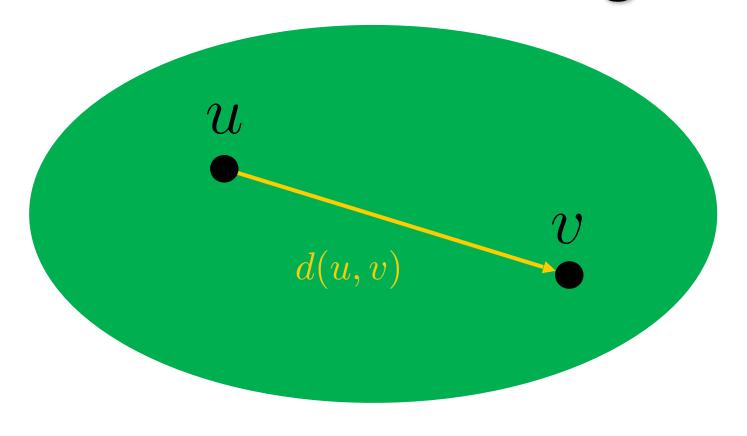


label of u label of v









• General graphs: $\tilde{\Theta}(n)$ [Gavoille et al. SODA '01]

• General graphs: $\tilde{\Theta}(n)$ [Gavoille et al. SODA '01]

• General graphs: $\tilde{\Theta}(n)$

[Gavoille et al. SODA '01]



• General graphs: $\tilde{\Theta}(n)$

$$L(v_1),...,L(v_n)$$

 $2^{\binom{n}{2}}$ different strings

• General graphs: $\tilde{\Theta}(n)$

$$L(v_1),...,L(v_n)$$

 $2^{\binom{n}{2}}$ different strings string size is $\log(2^{\binom{n}{2}}) = \Omega(n^2)$

• General graphs: $\tilde{\Theta}(n)$ [Gavoille et al. SODA '01]

- General graphs: $\tilde{\Theta}(n)$
- Planar graphs: $O(\sqrt{n} \cdot \log n)$ [Gavoille et al. SODA '01]

- General graphs: $\tilde{\Theta}(n)$
- Planar graphs: $O(\sqrt{n} \cdot \log n)$ Weighted: $\Omega(\sqrt{n})$ [Gavoille et al. SODA '01]

• General graphs: $\tilde{\Theta}(n)$

• Planar graphs: $O(\sqrt{n} \cdot \log n)$ Weighted: $\Omega(\sqrt{n})$

[Gavoille et al. SODA '01]

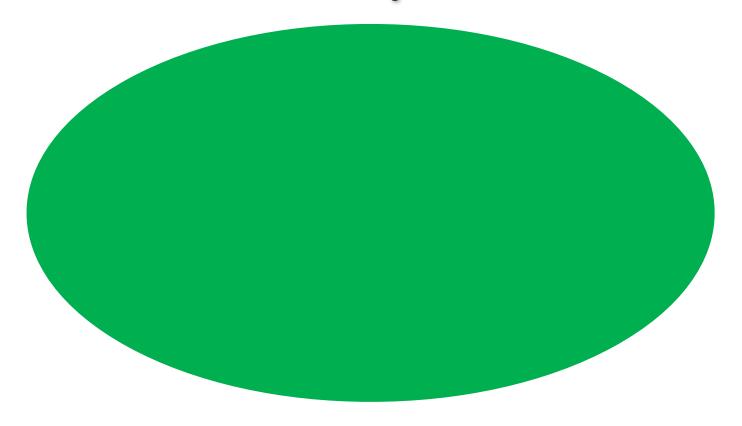
Unweighted: $\Omega(n^{1/3})$

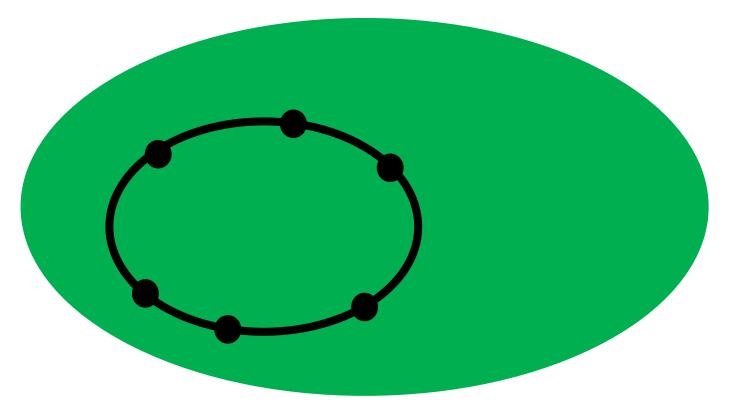
• General graphs: $\tilde{\Theta}(n)$

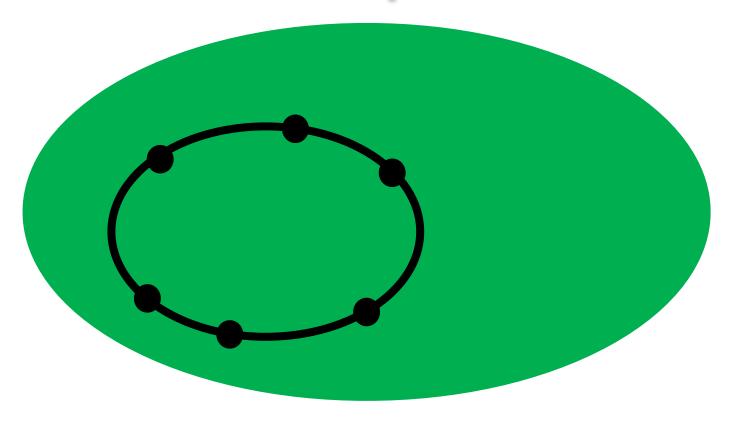
• Planar graphs: $O(\sqrt{n} \cdot \log n)$ Weighted: $\Omega(\sqrt{n})$ [Gavoille et al. SODA '01]

Unweighted: $\Omega(n^{1/3})$

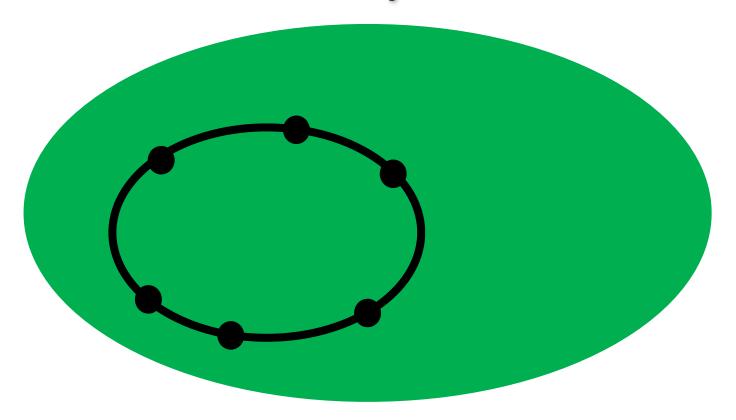
• Planar graphs $(1+\epsilon)$ -approximation: $O(\log n/\epsilon)$







Seperator size $O(\sqrt{n})$



Seperator size $O(\sqrt{n})$

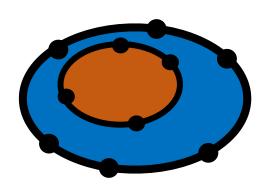
 $|green\ piece|, |blue\ piece| \le 2n/3$

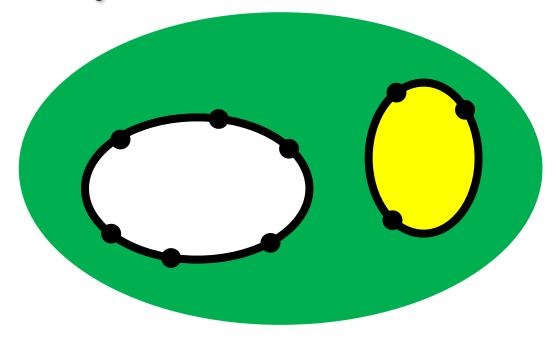
Recursion...

Seperator size $O(\sqrt{n})$

 $|green\ piece|, |blue\ piece| \le 2n/3$

Recursion...

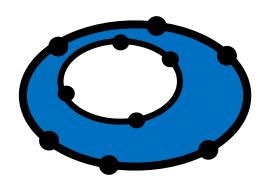


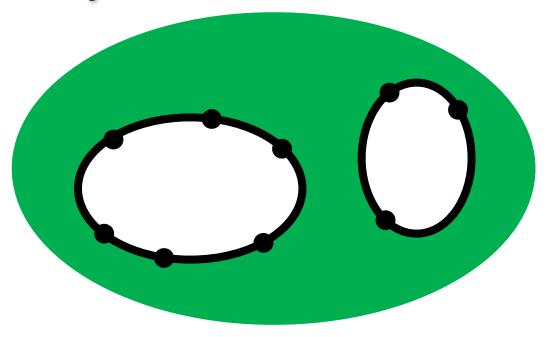


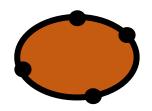
Seperator size $O(\sqrt{n})$

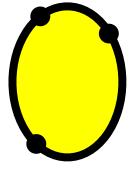
 $|green\ piece|, |blue\ piece| \le 2n/3$

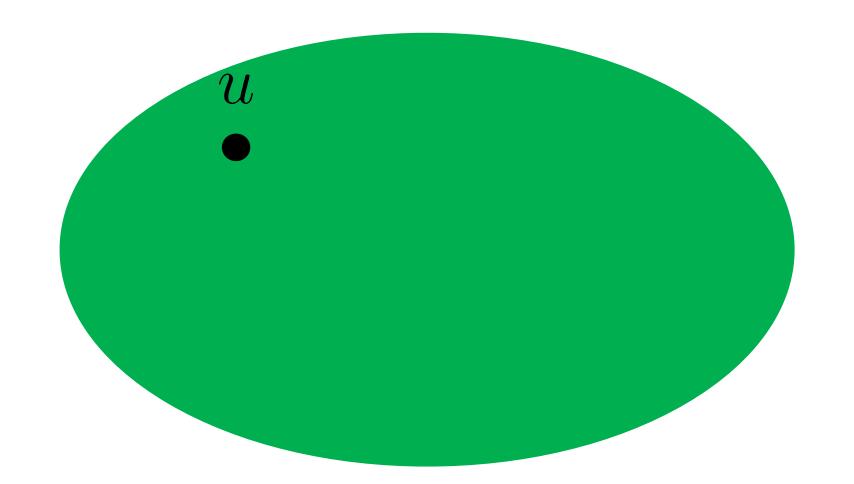
Recursion...

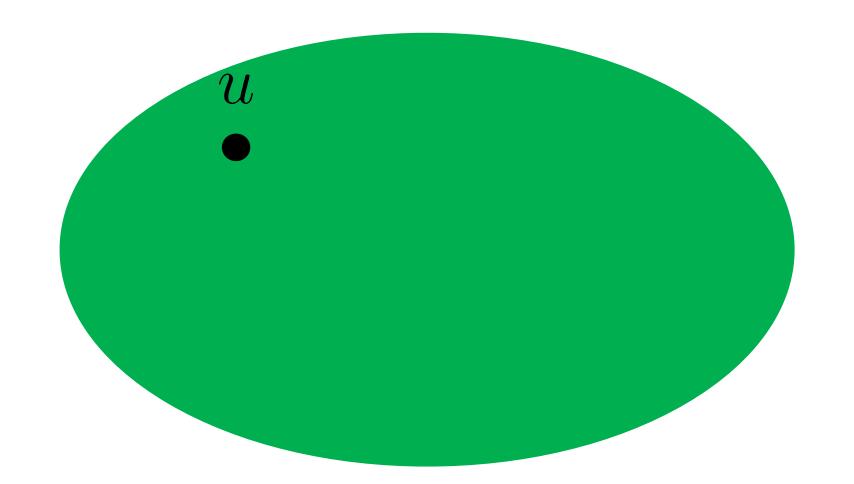


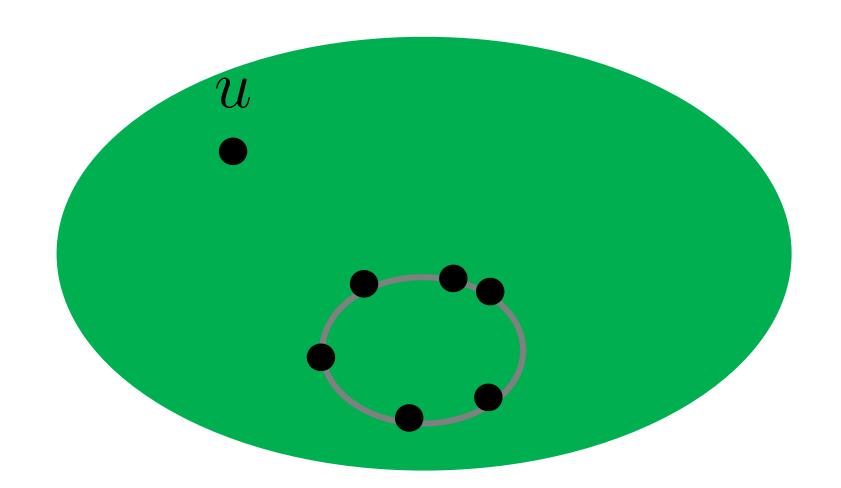


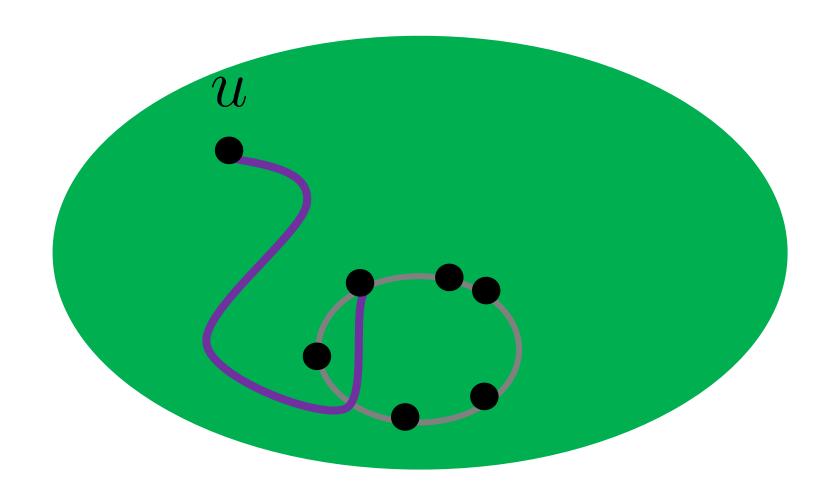


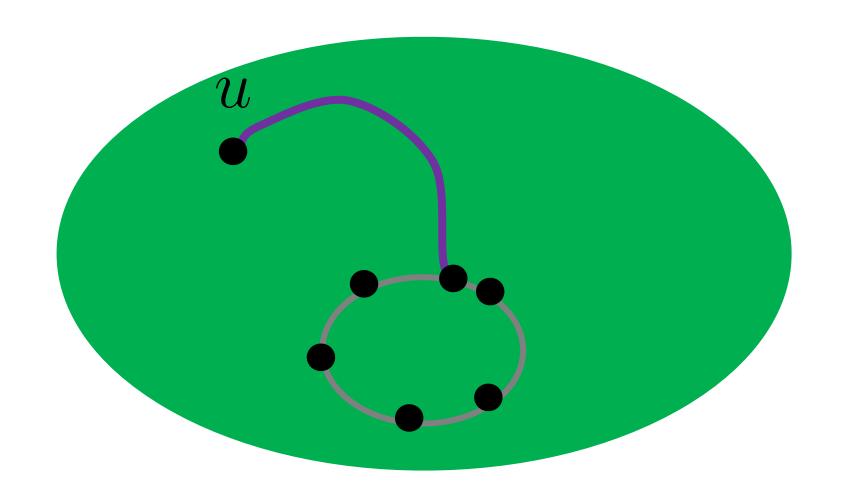


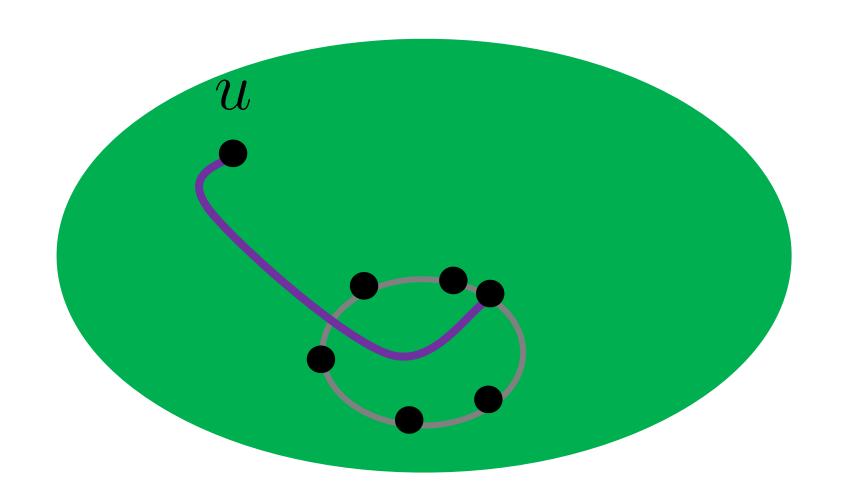


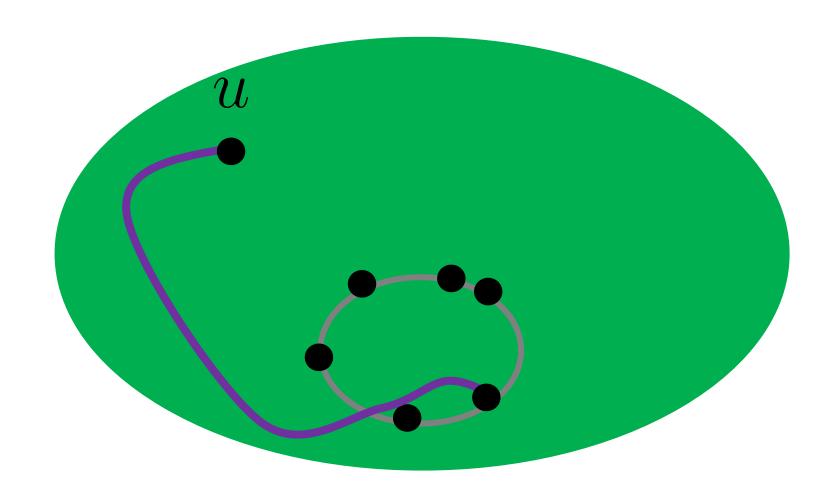


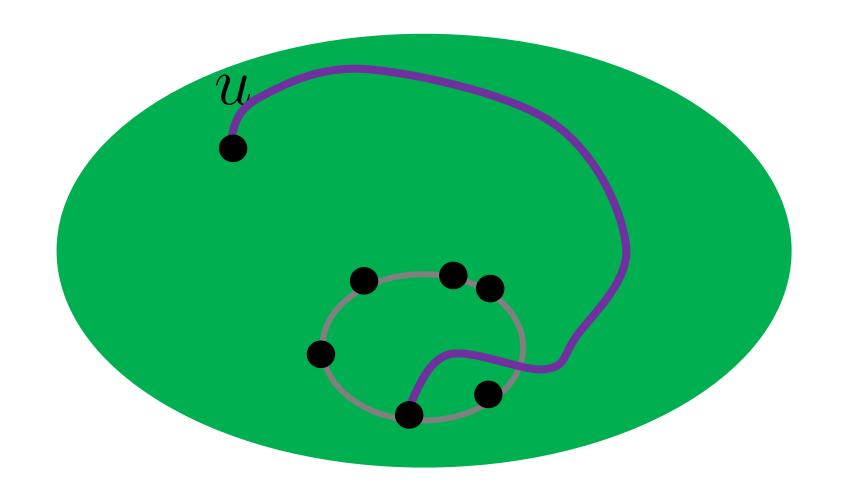


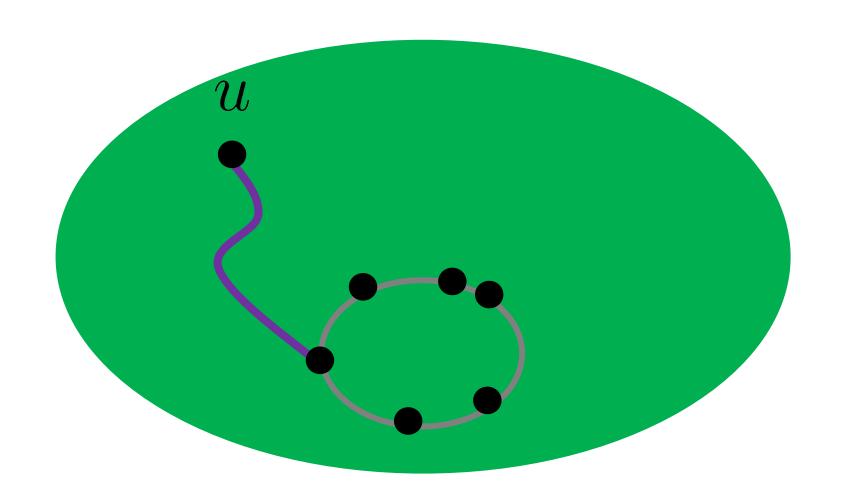






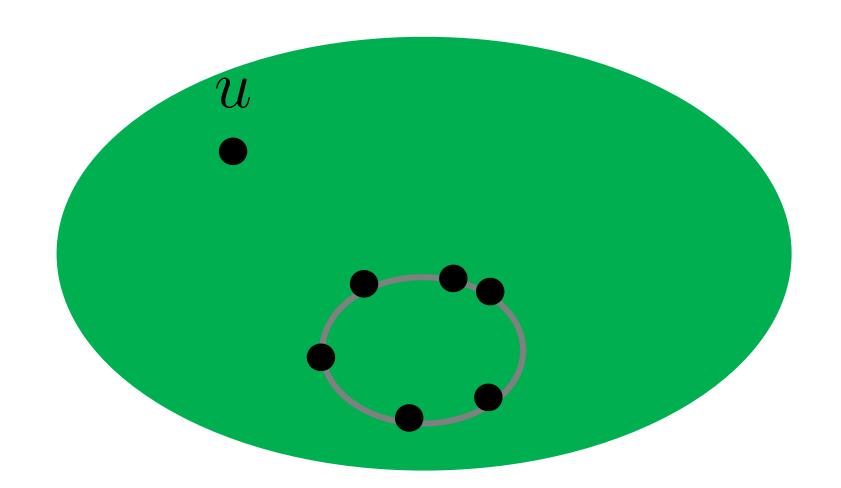




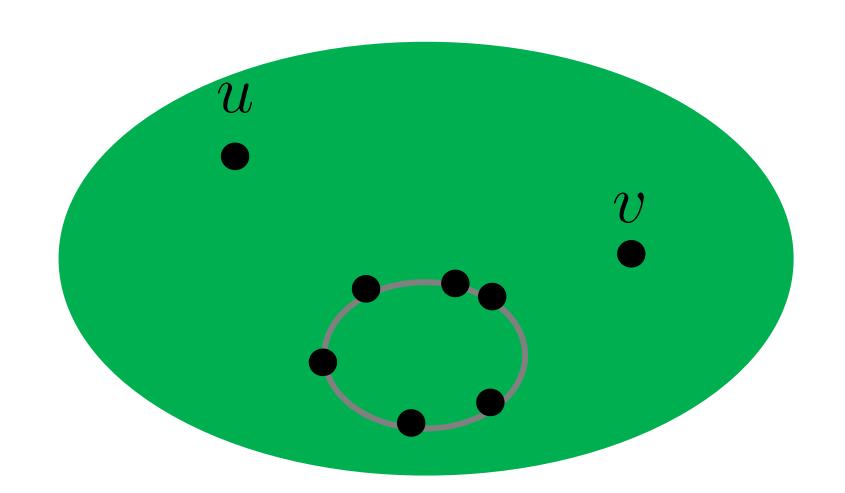


Example: $O(\sqrt{n} \cdot \log n)$ distance labeling

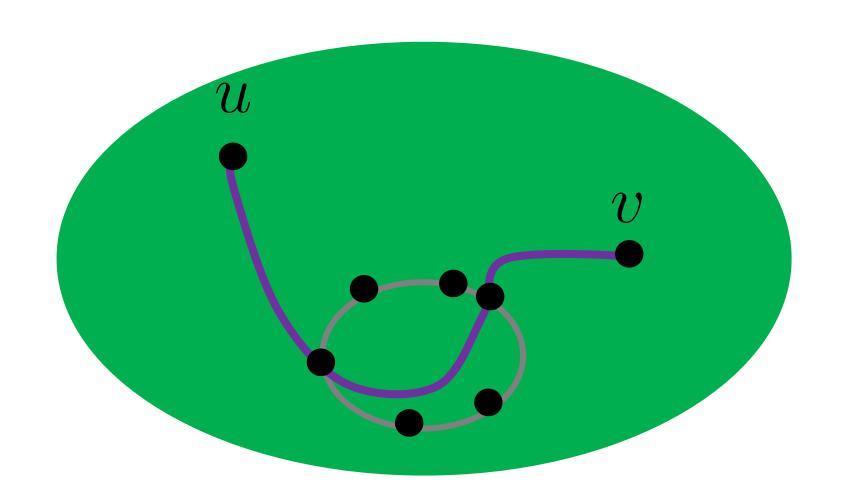
u's label:



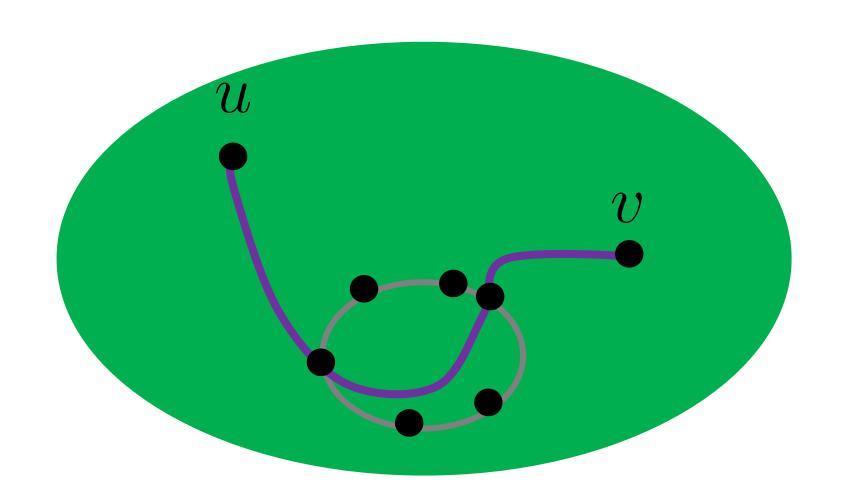
Example: $O(\sqrt{n} \cdot \log n)$ distance labeling



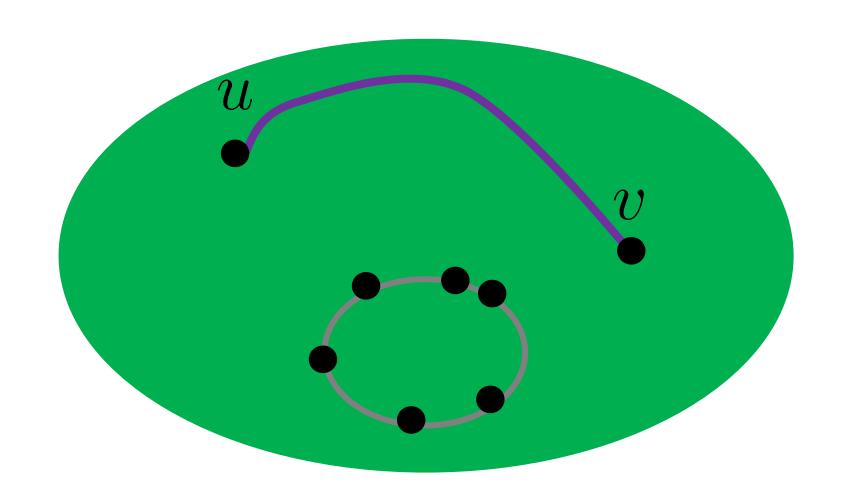
Example: $O(\sqrt{n} \cdot \log n)$ distance labeling

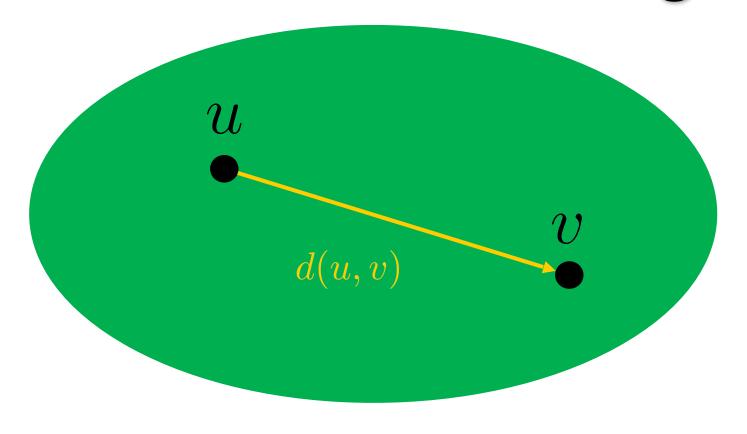


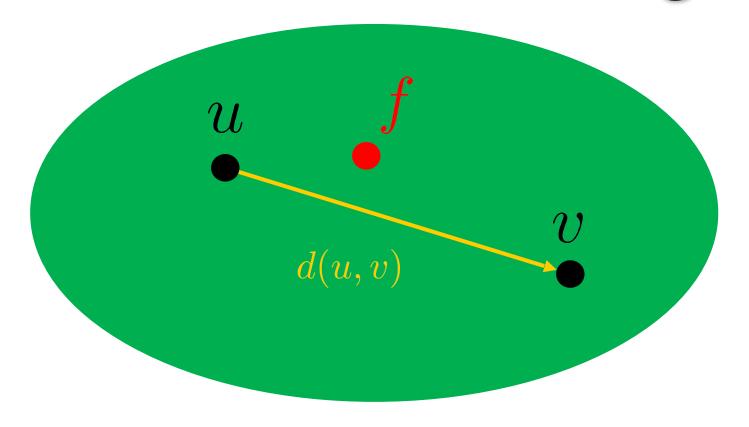
Example: $O(\sqrt{n} \cdot \log n)$ distance labeling

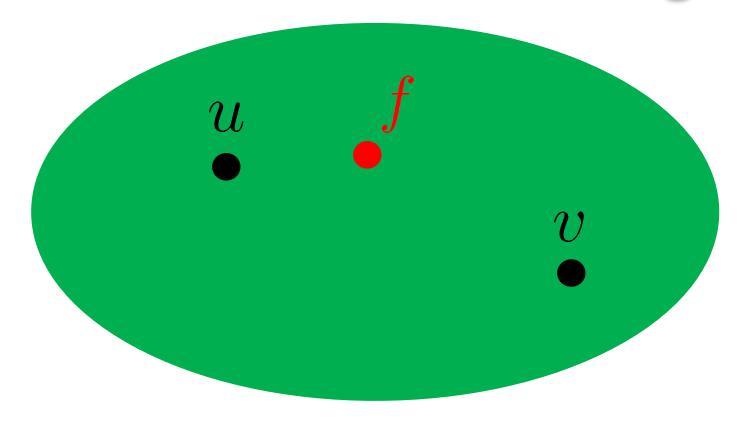


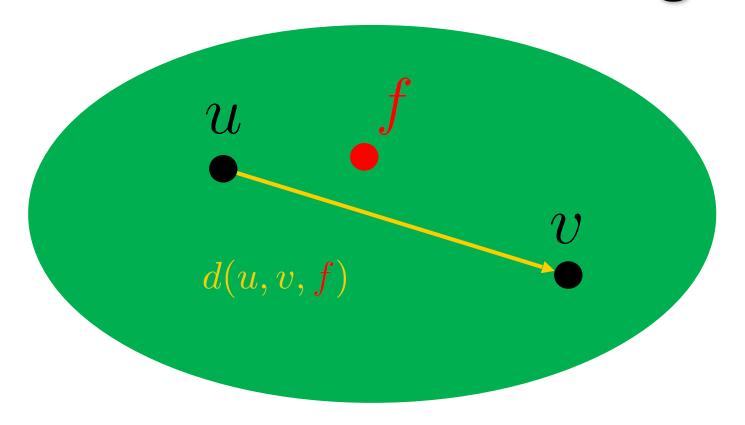
Example: $O(\sqrt{n} \cdot \log n)$ distance labeling

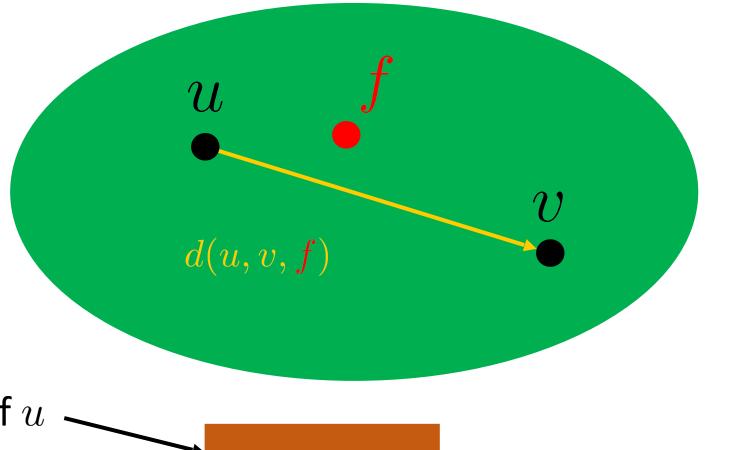






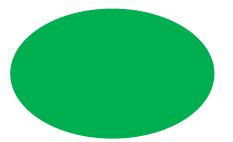


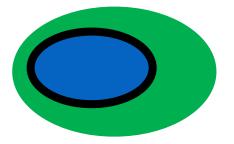


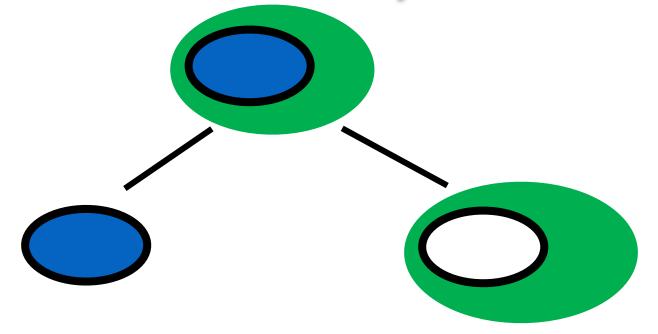


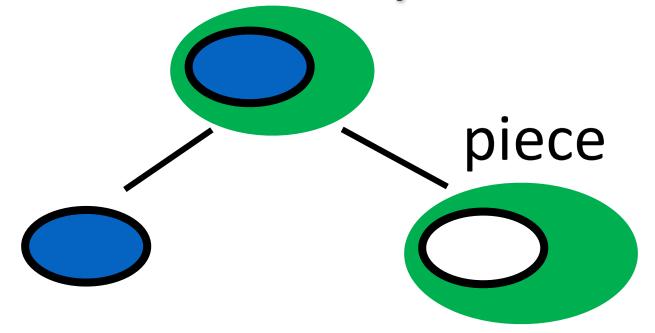
Our result

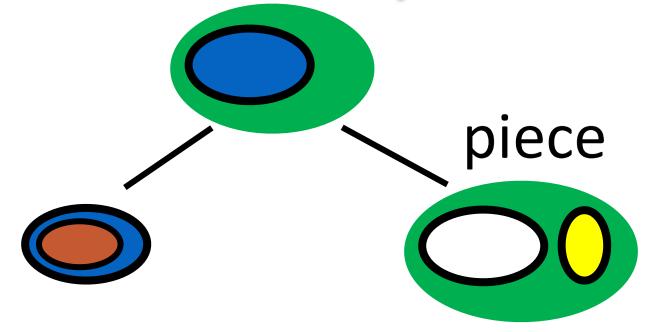
Labels of size $\tilde{O}(n^{2/3})$ for fault-tolerant distance labeling in planar graphs

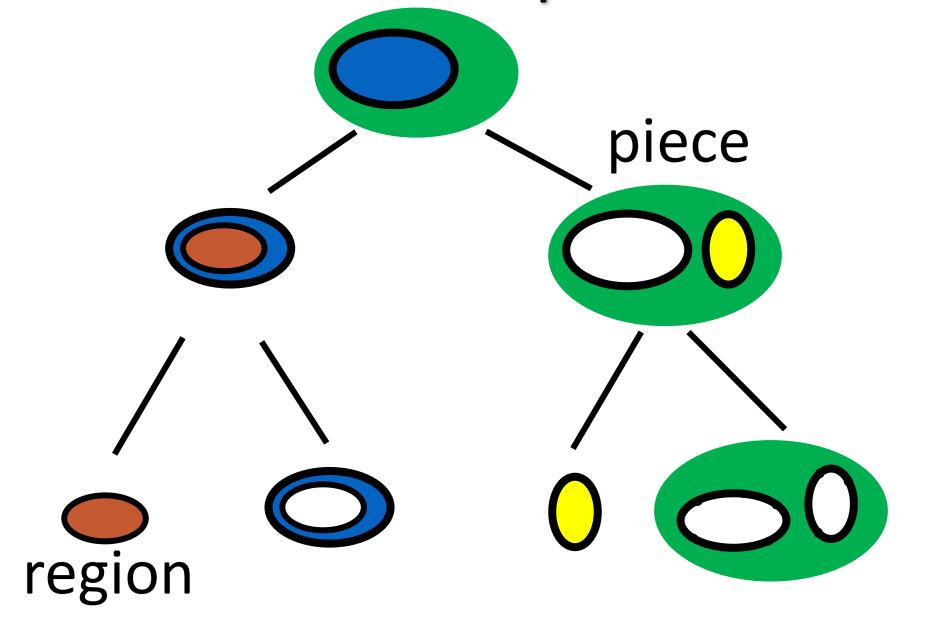


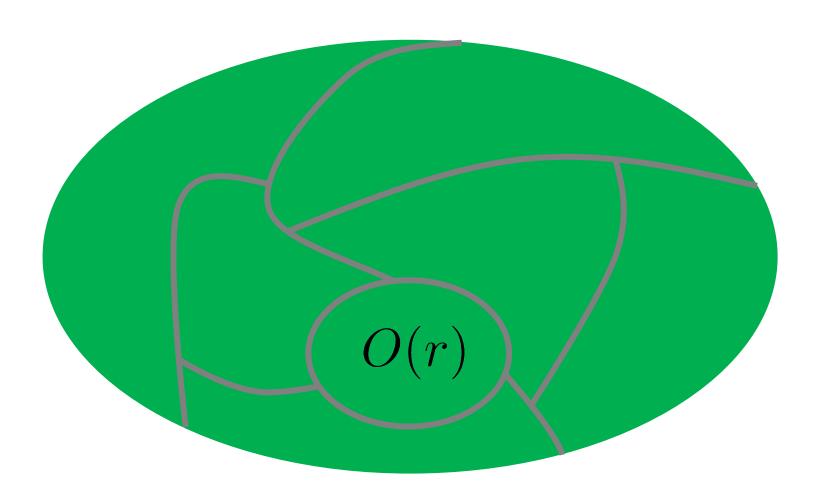


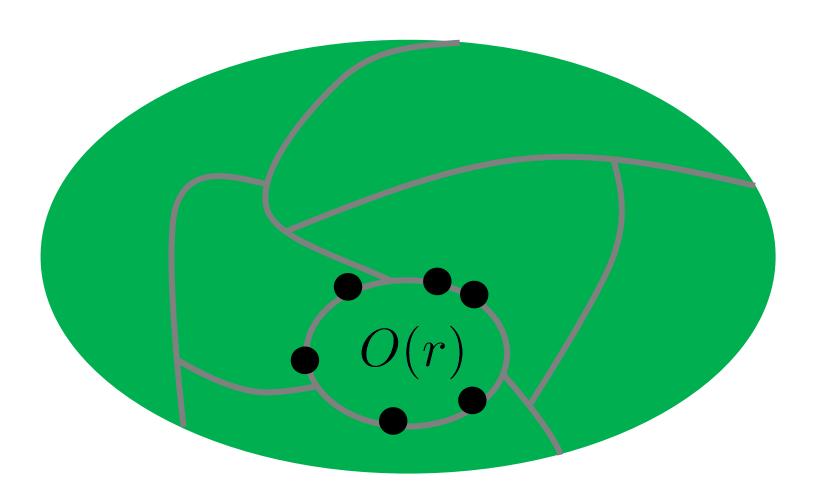


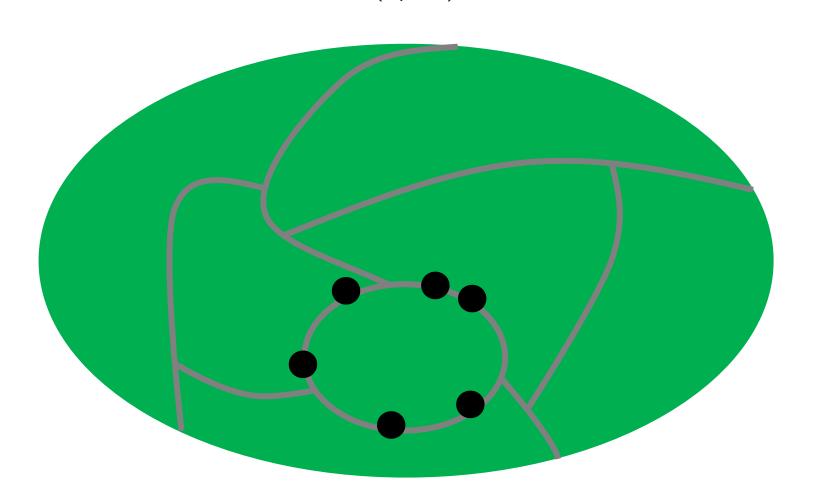


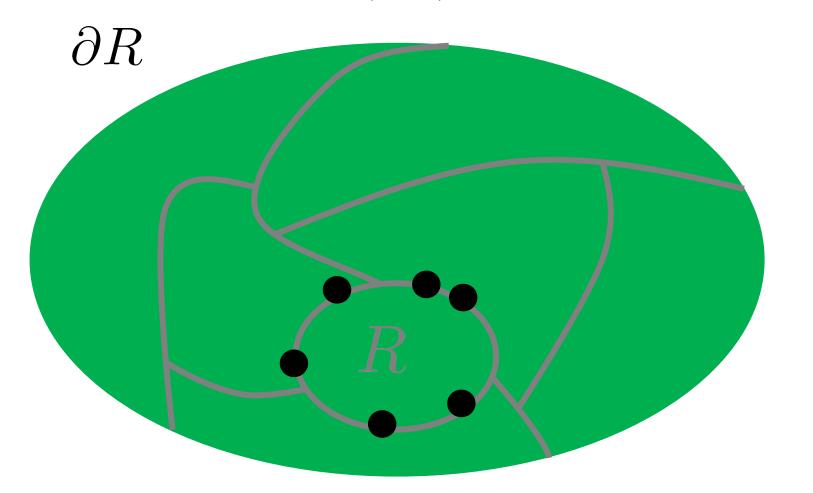


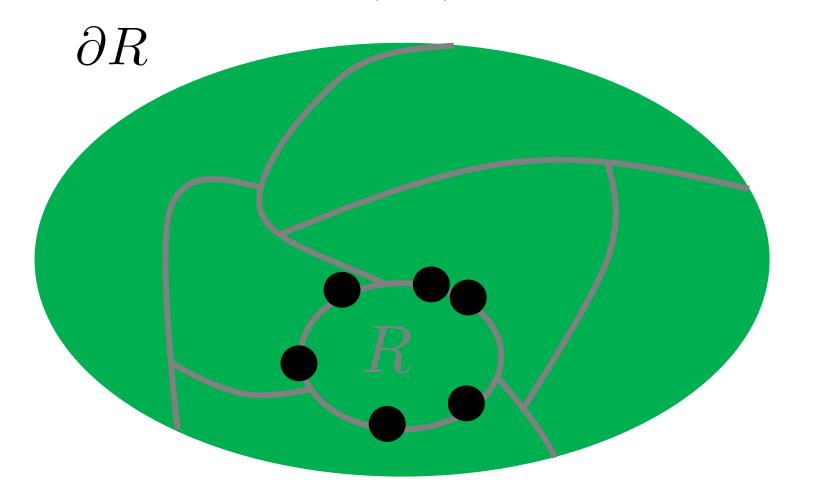




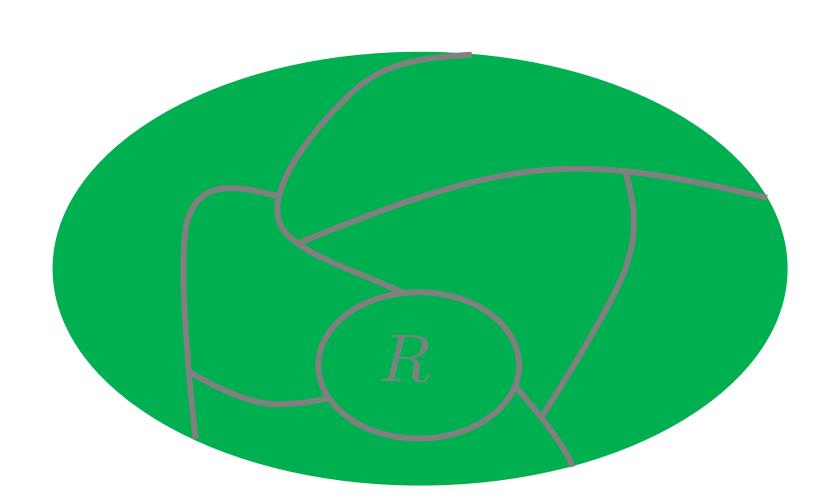


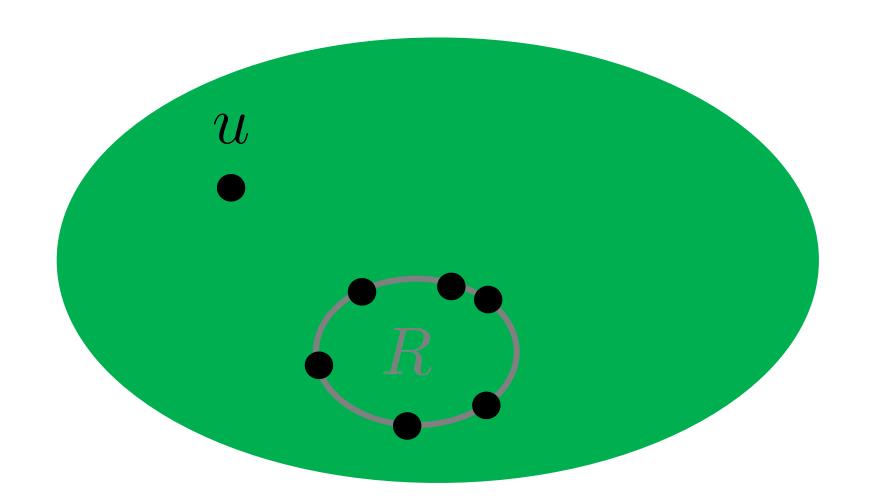


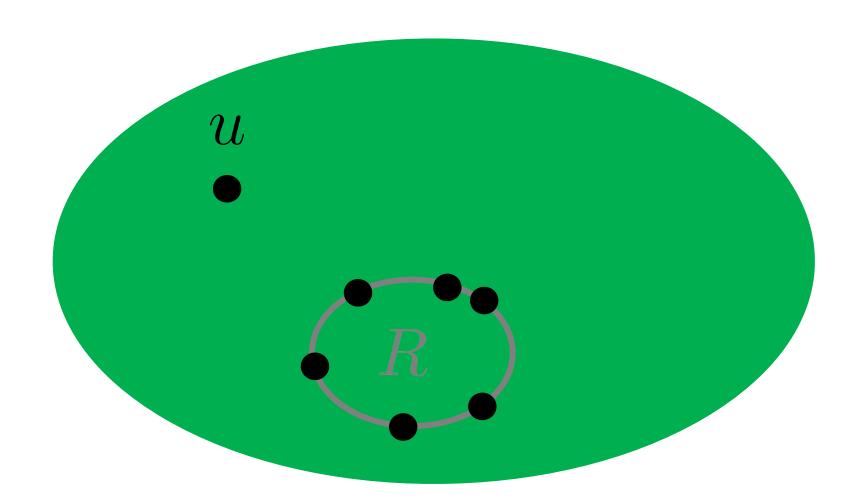


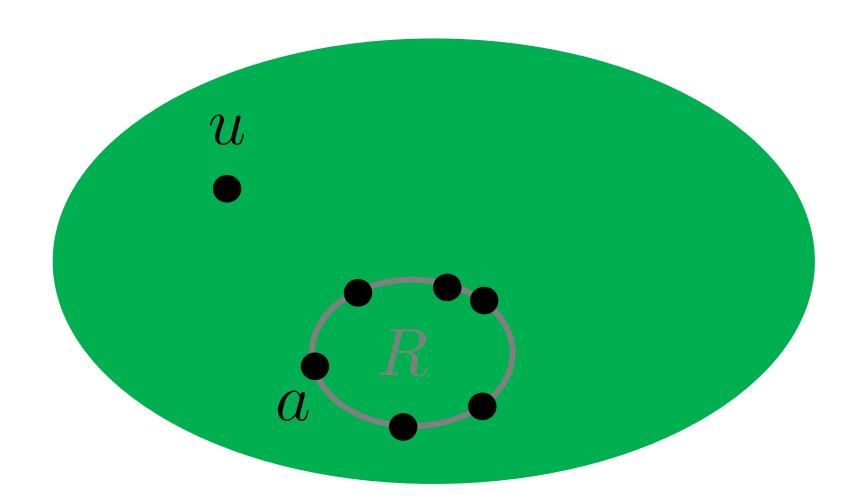


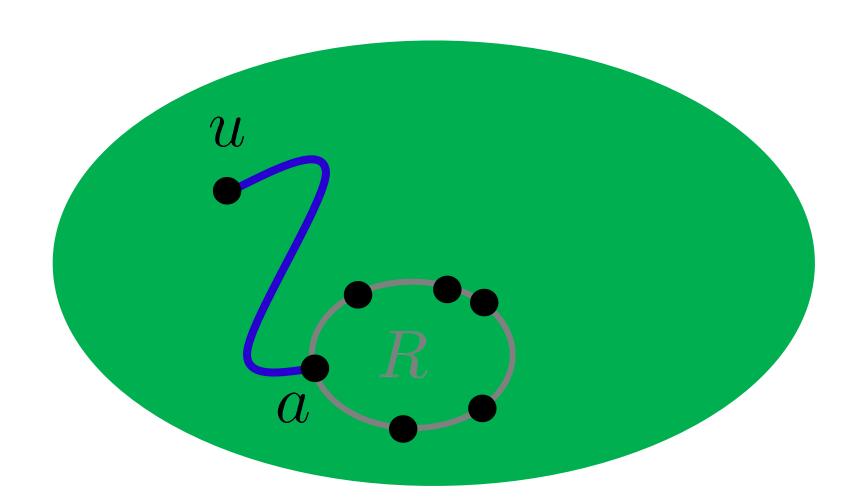
Fault tolerant distance labels

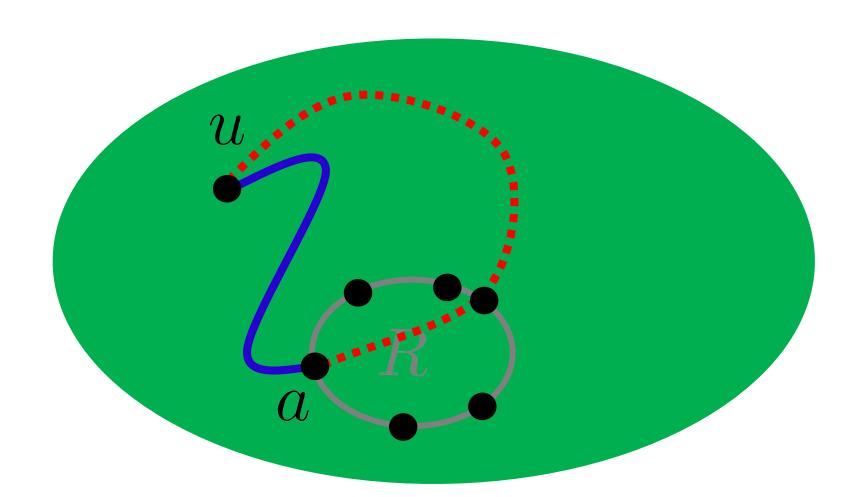


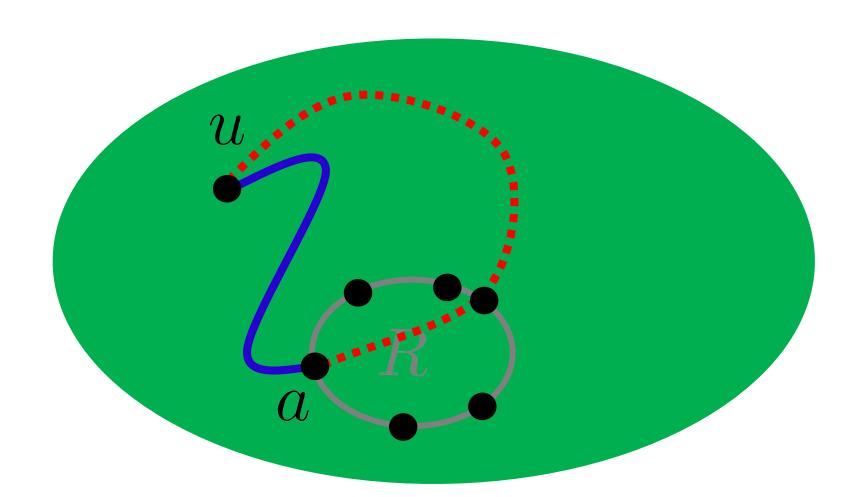




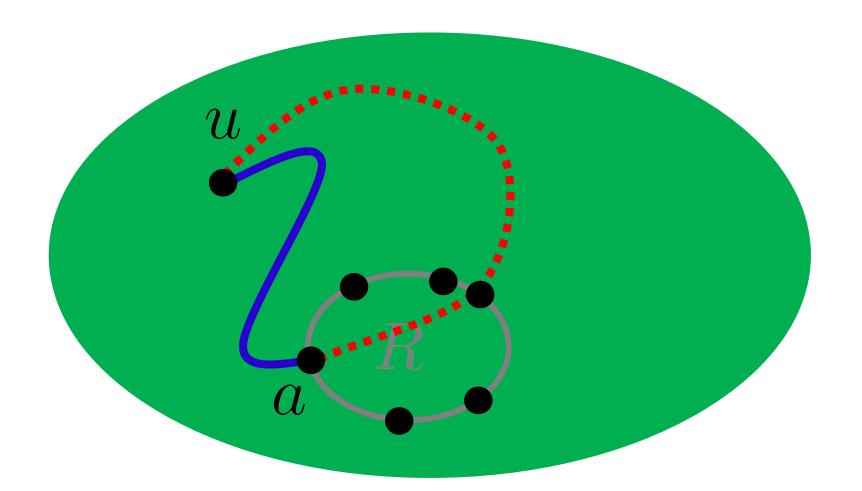






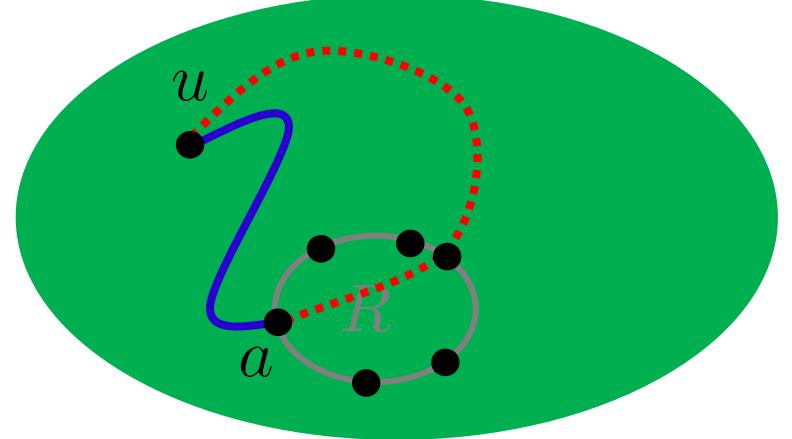


space =
$$\#regions \cdot |\partial R|$$



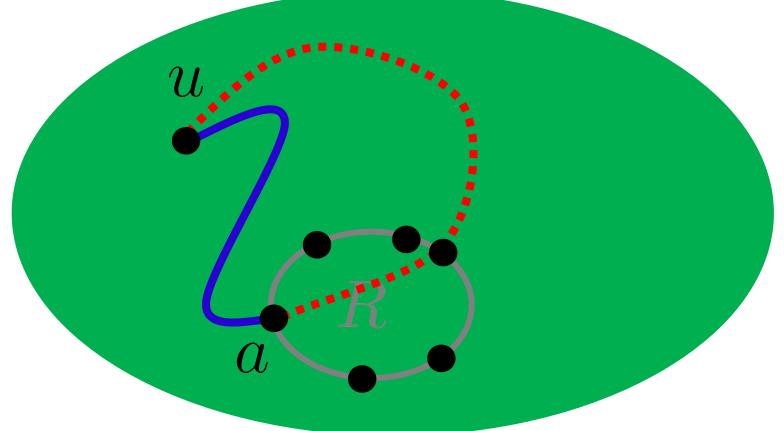
space =
$$\#regions \cdot |\partial R|$$

$$O(n/r)$$



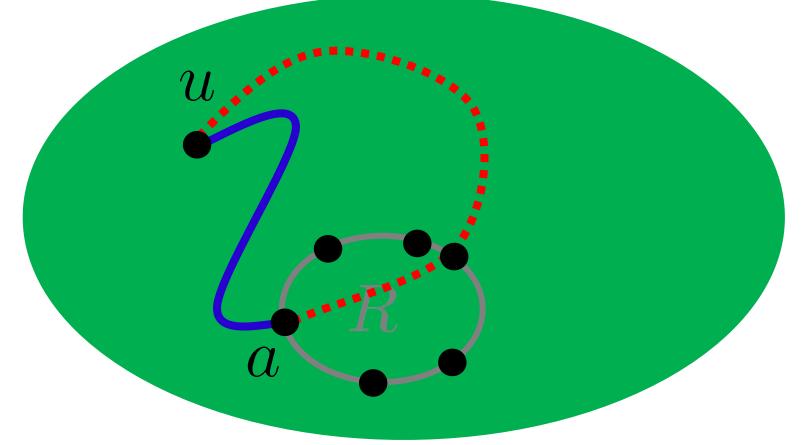
space =
$$\#regions \cdot |\partial R|$$

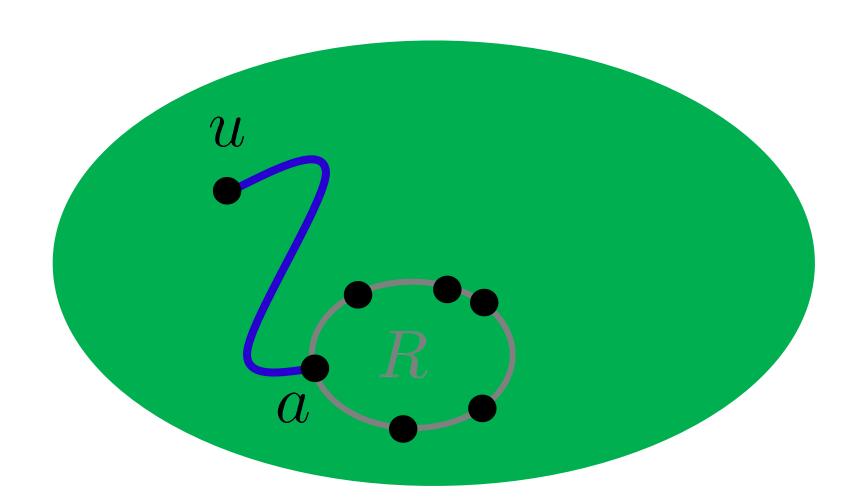
 $O(n/r) \cdot O(\sqrt{r})$



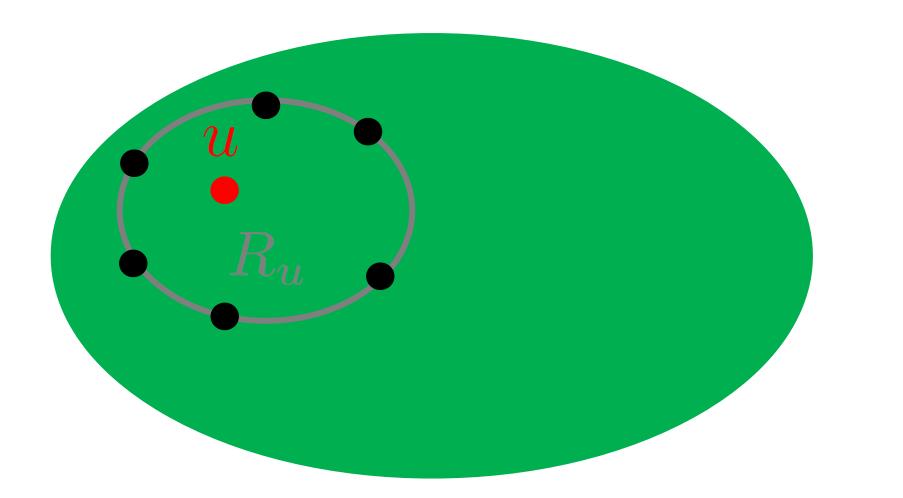
space =
$$\#regions \cdot |\partial R|$$

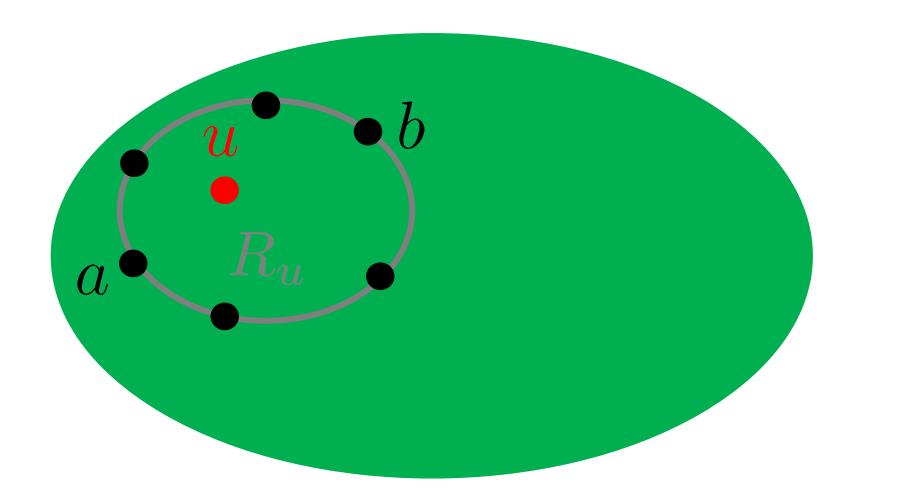
 $\tilde{O}(n/\sqrt{r}) = O(n/r) \cdot O(\sqrt{r})$

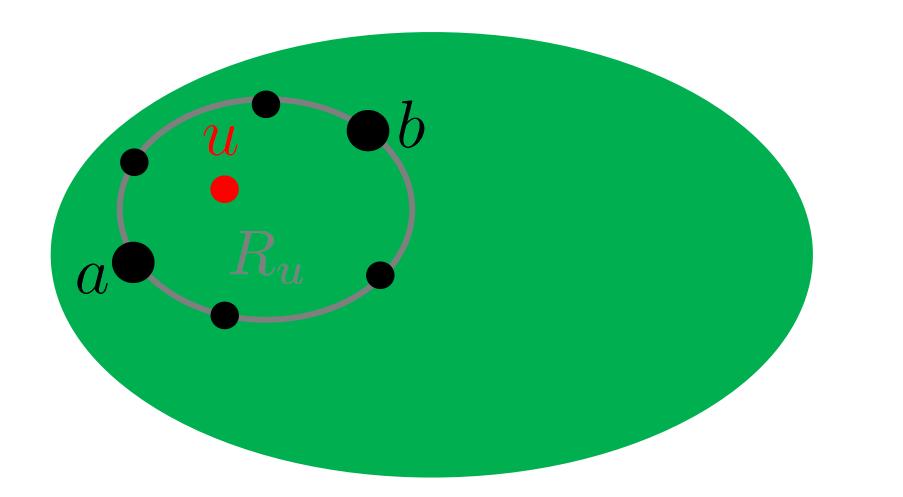


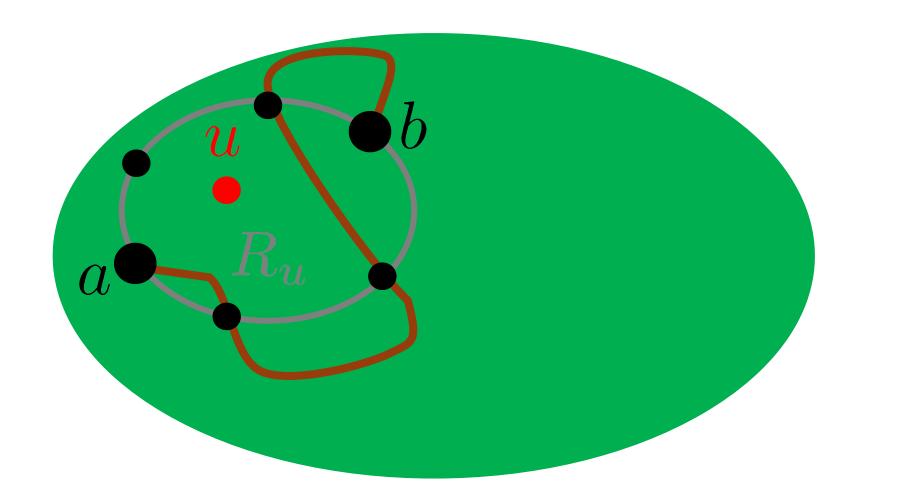


u to ∂R internally disjoint from R for every region R ∂R_u to ∂R_u in $G \setminus \{u\}$



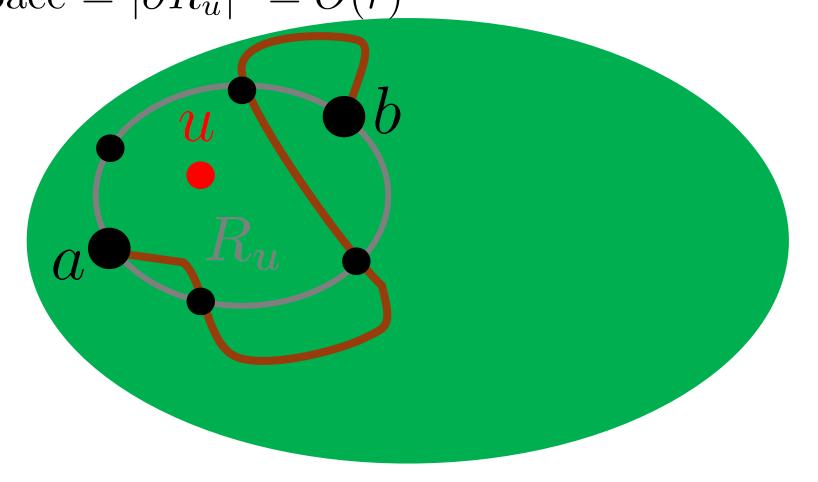


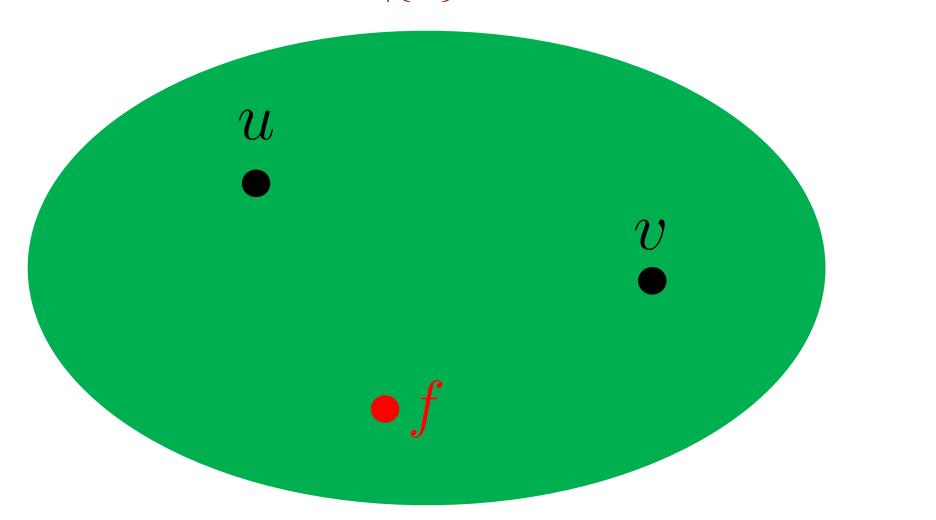


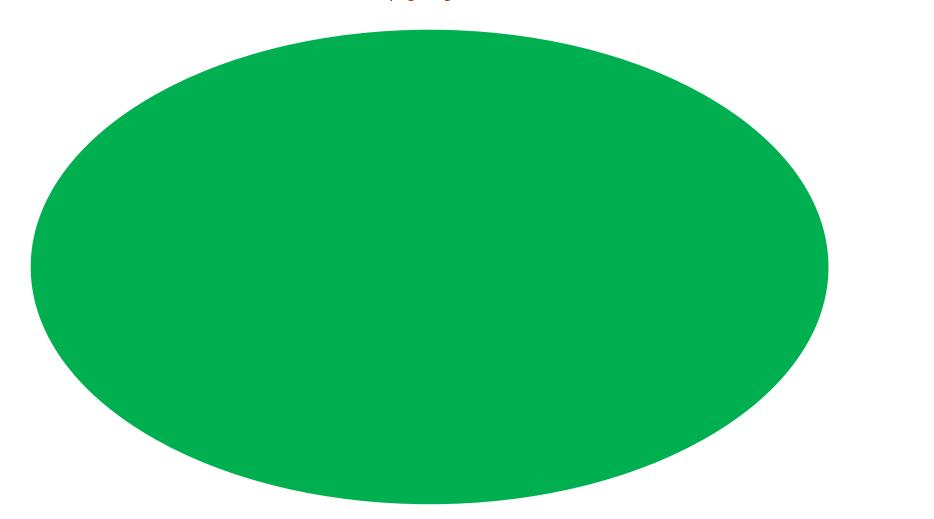


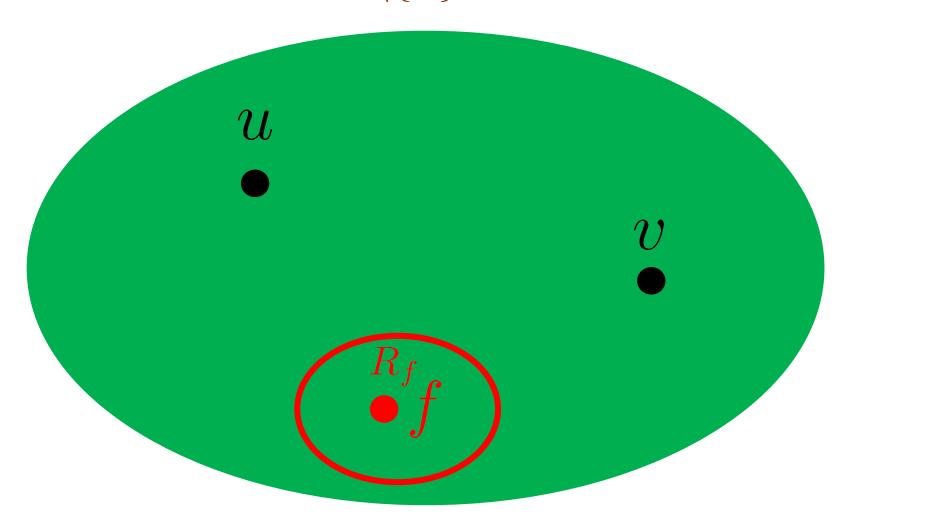
u to ∂R internally disjoint from R for every region R

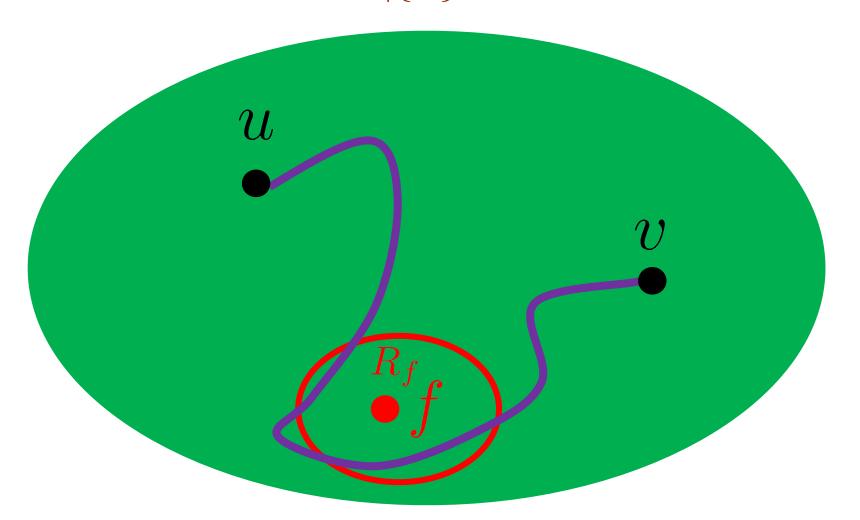
$$\partial R_u$$
 to ∂R_u in $G \setminus \{u\}$
space = $|\partial R_u|^2 = \tilde{O}(r)$

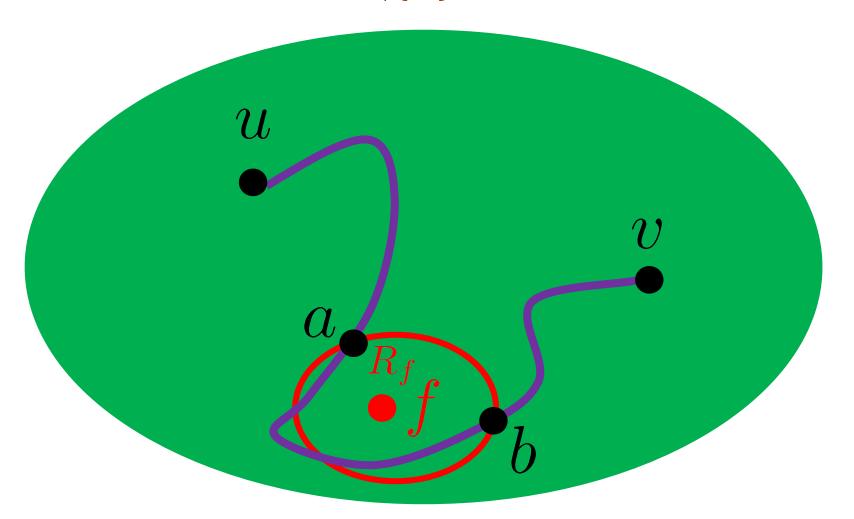


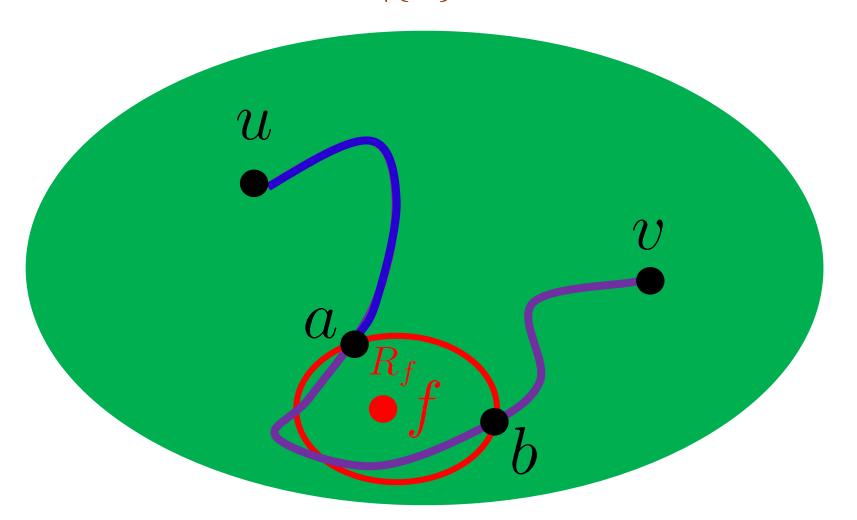


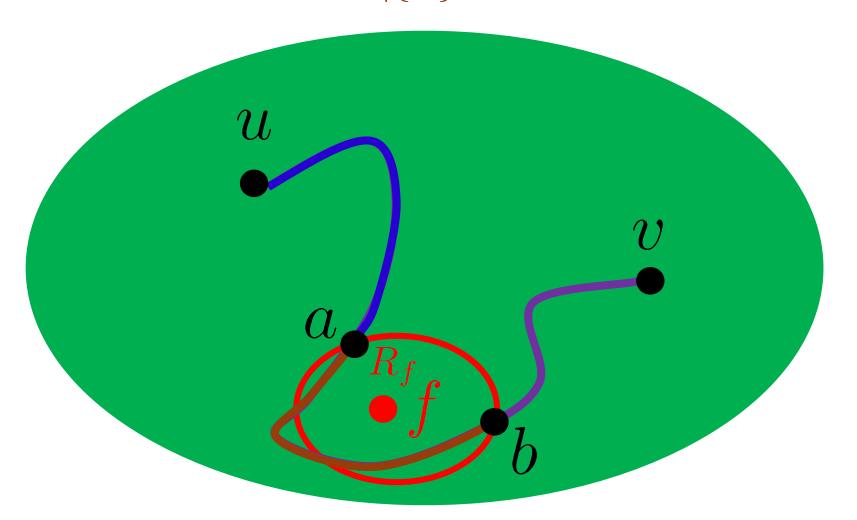


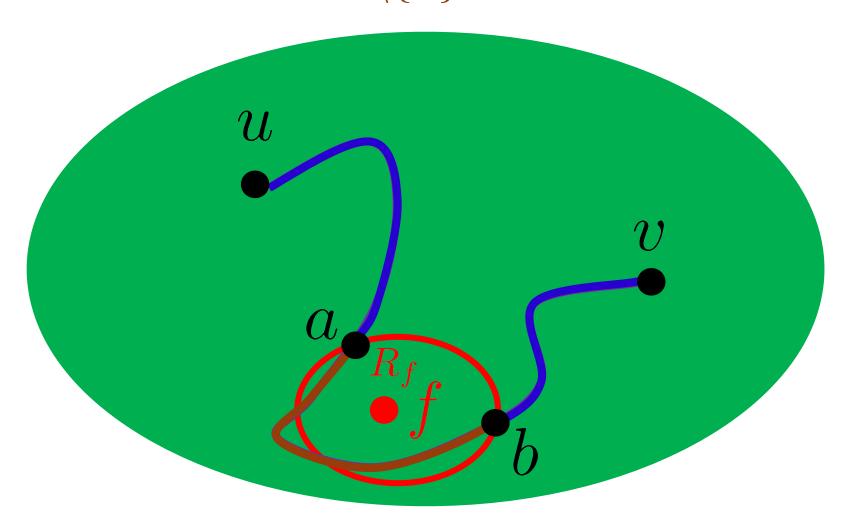


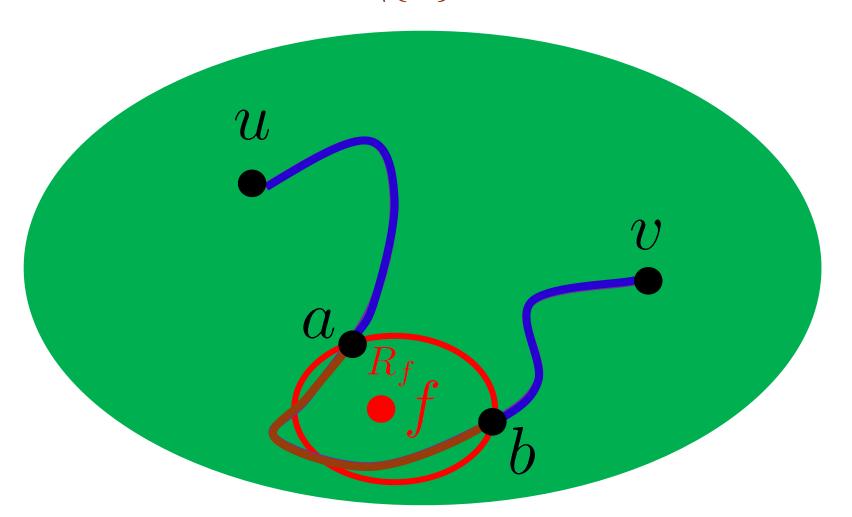


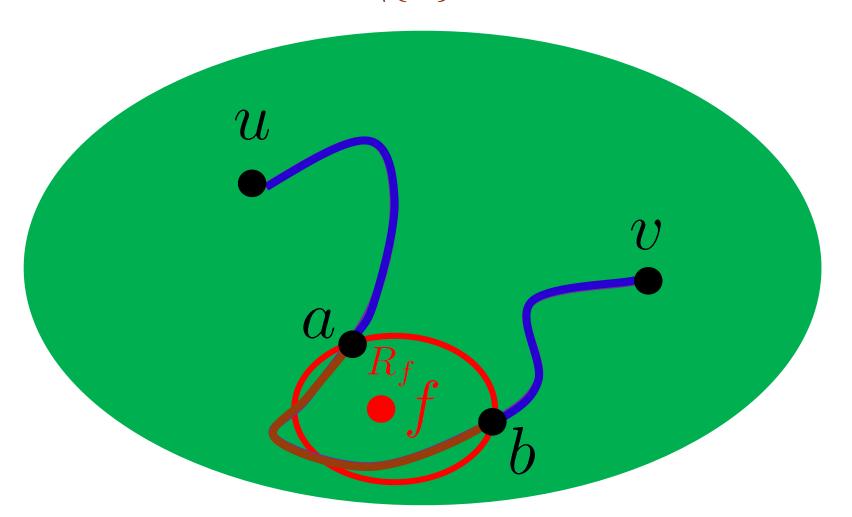


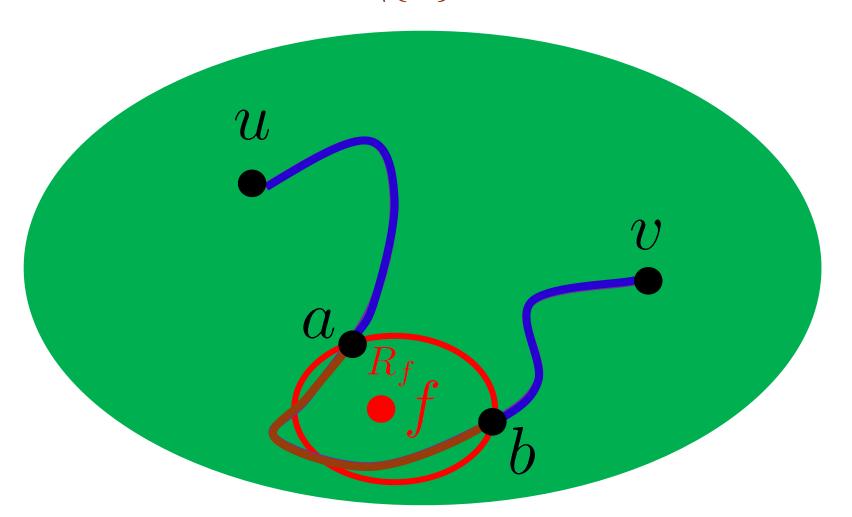




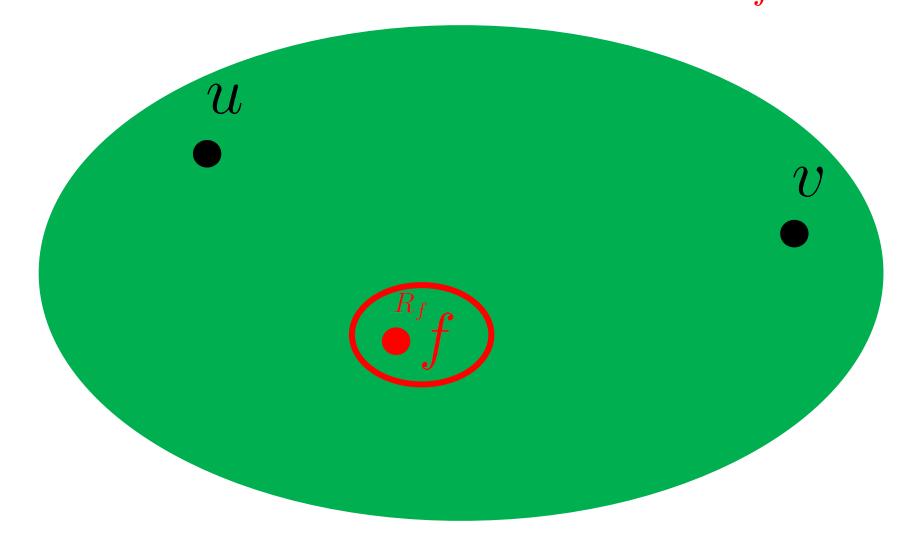




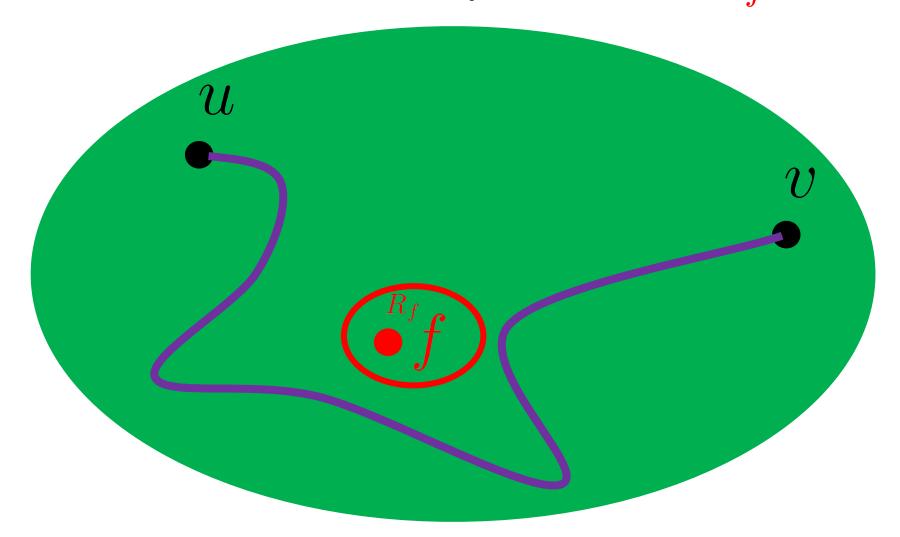




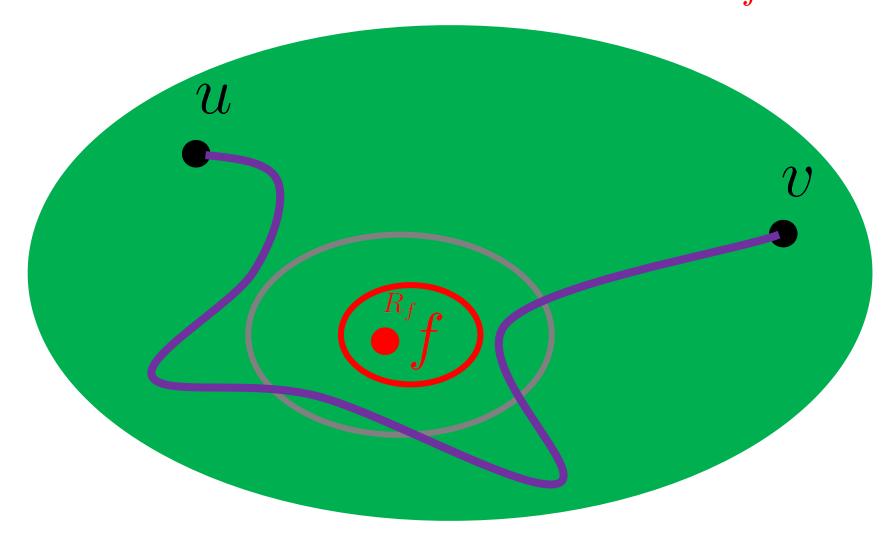
Case 2: Shortest path touches ∂P for ancestor piece P of R_f



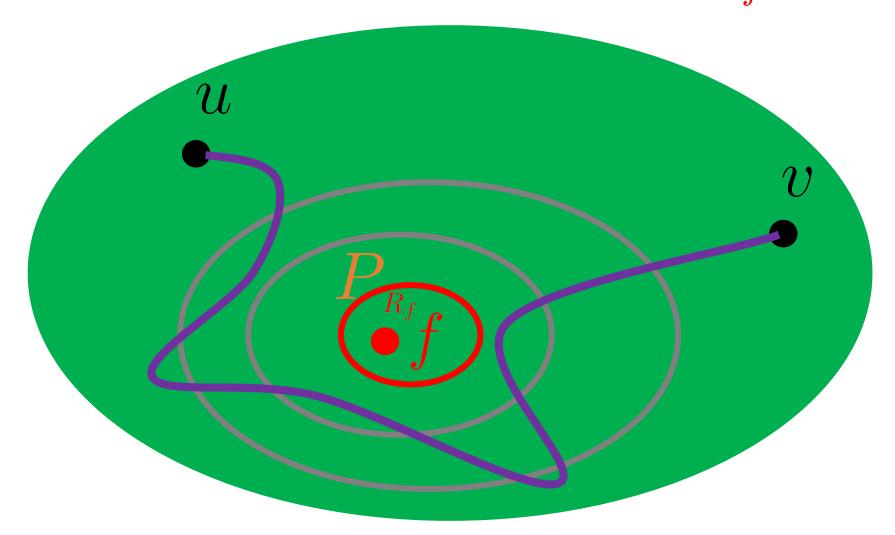
Case 2: Shortest path touches ∂P for ancestor piece P of R_f



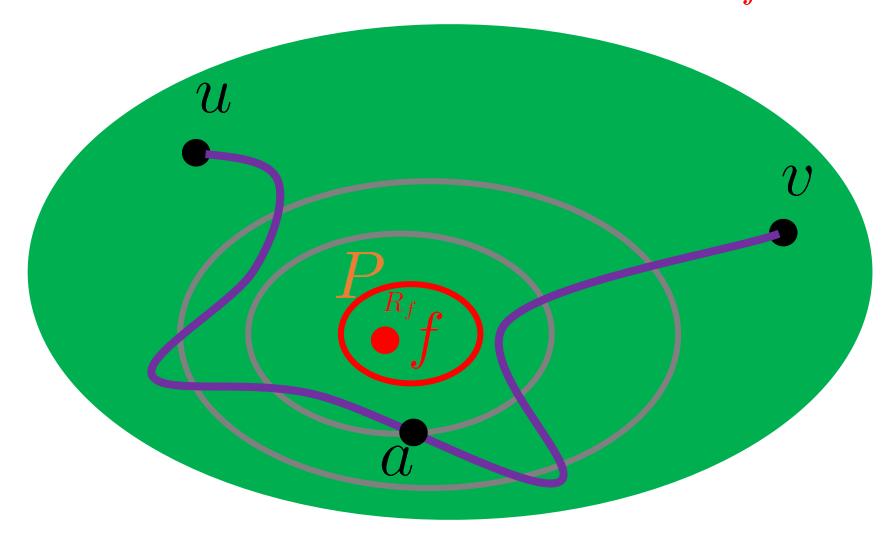
Case 2: Shortest path touches ∂P for ancestor piece P of R_f



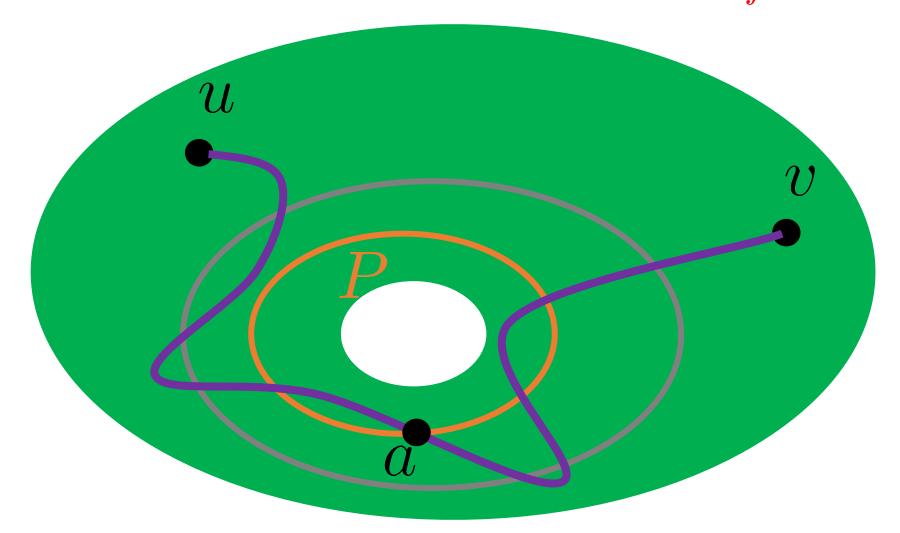
Case 2: Shortest path touches ∂P for ancestor piece P of R_f



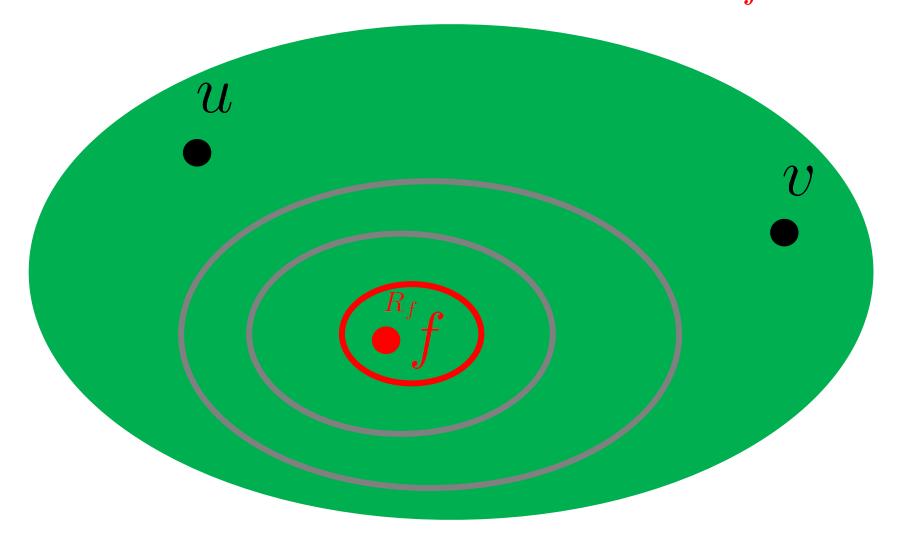
Case 2: Shortest path touches ∂P for ancestor piece P of R_f



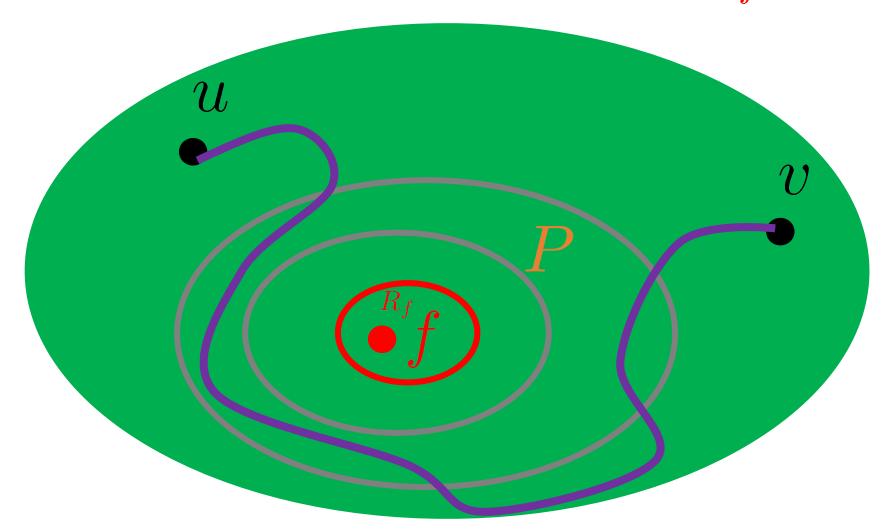
Case 2: Shortest path touches ∂P for ancestor piece P of R_f



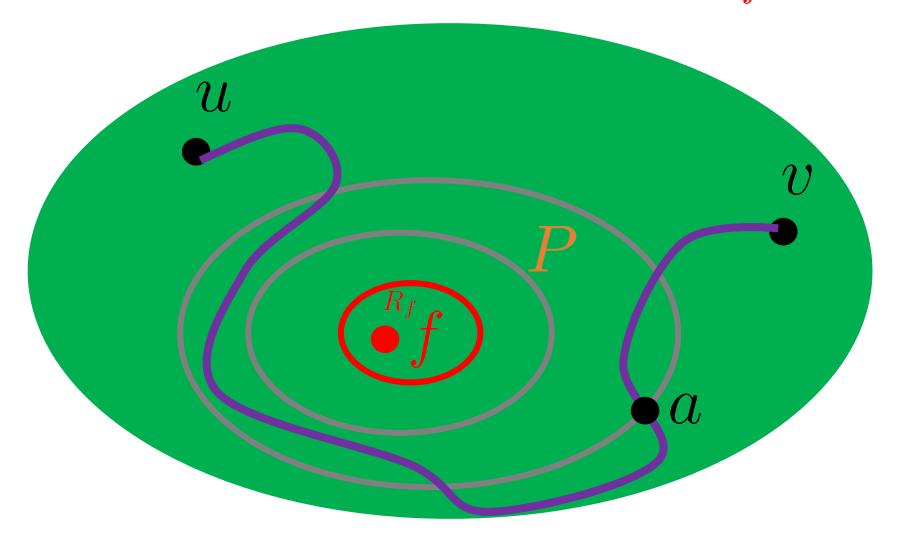
Case 2: Shortest path touches ∂P for ancestor piece P of R_f



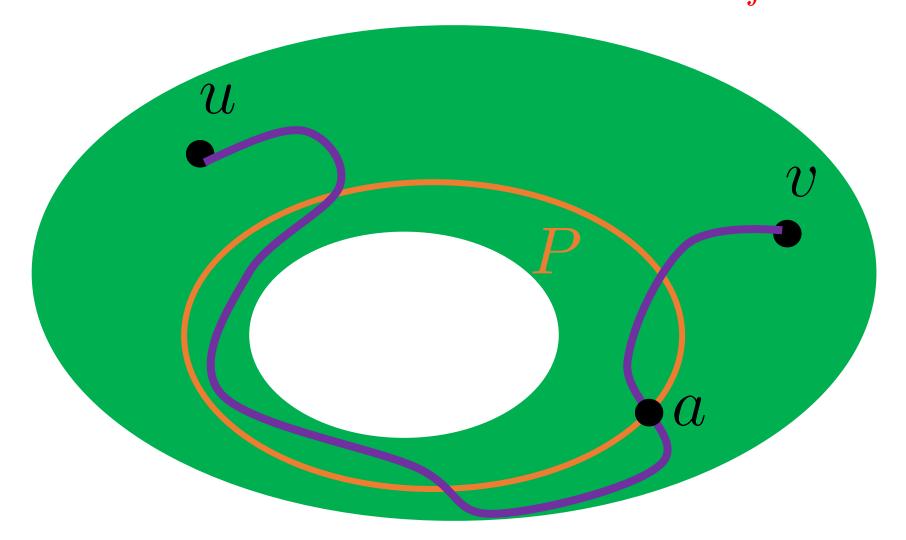
Case 2: Shortest path touches ∂P for ancestor piece P of R_f



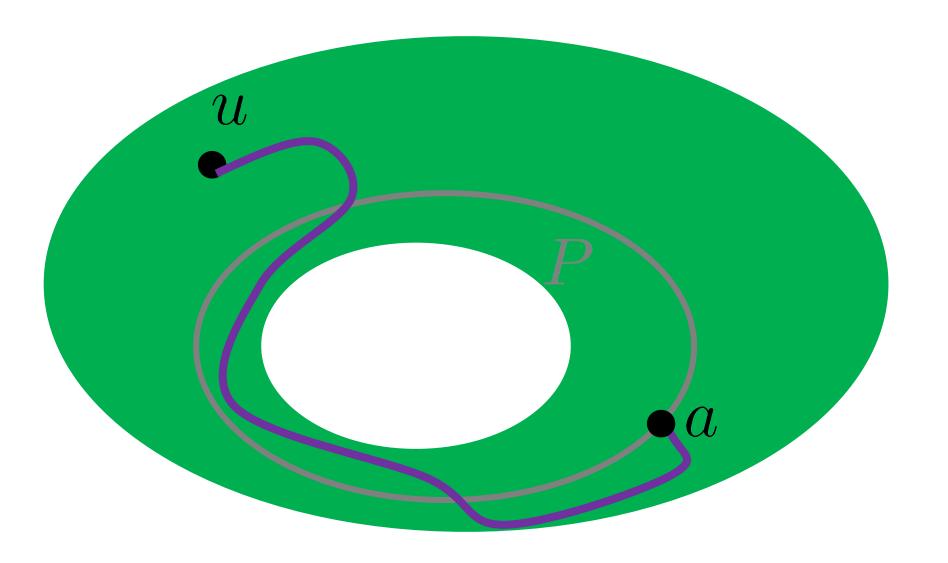
Case 2: Shortest path touches ∂P for ancestor piece P of R_f



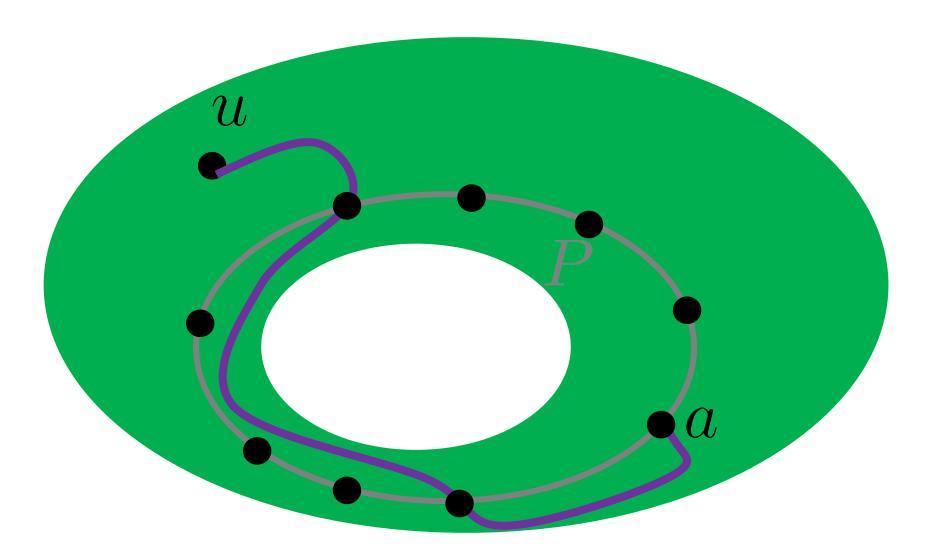
Case 2: Shortest path touches ∂P for ancestor piece P of R_f



u's label in case 2:

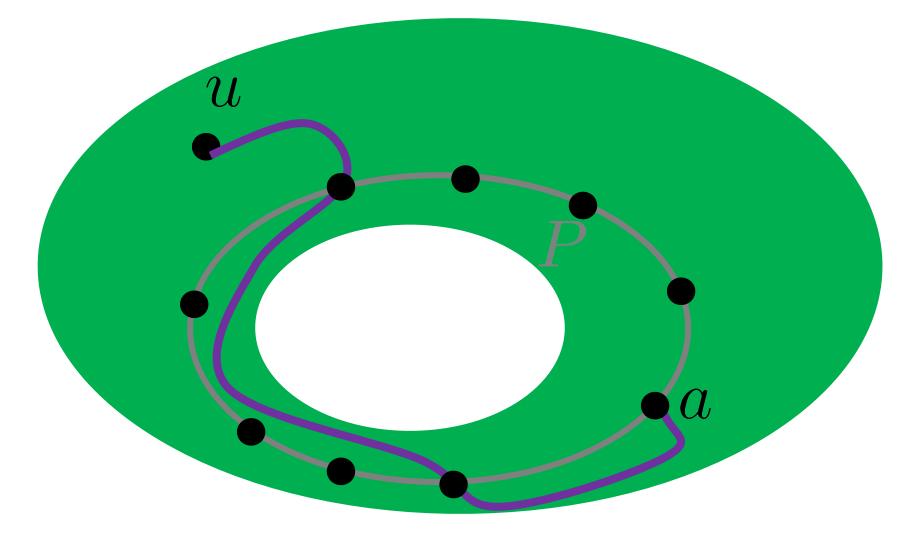


u's label in case 2:

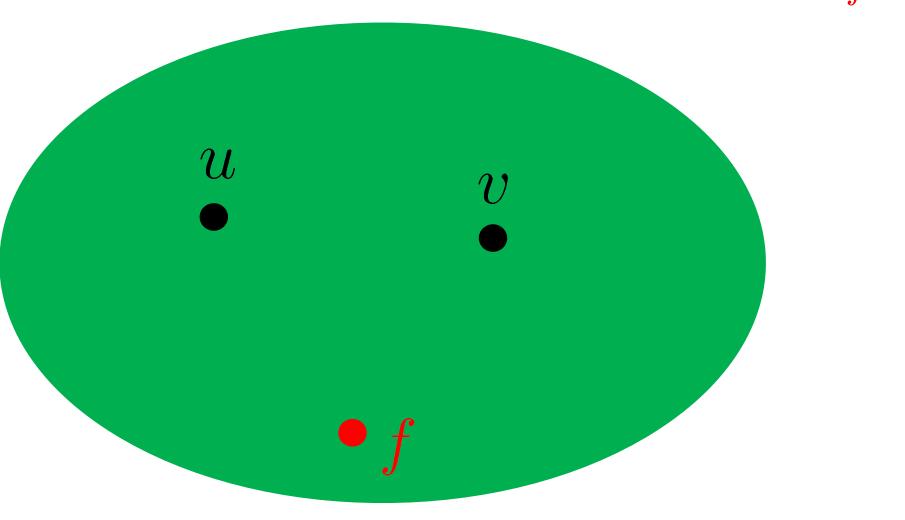


u's label in case 2:

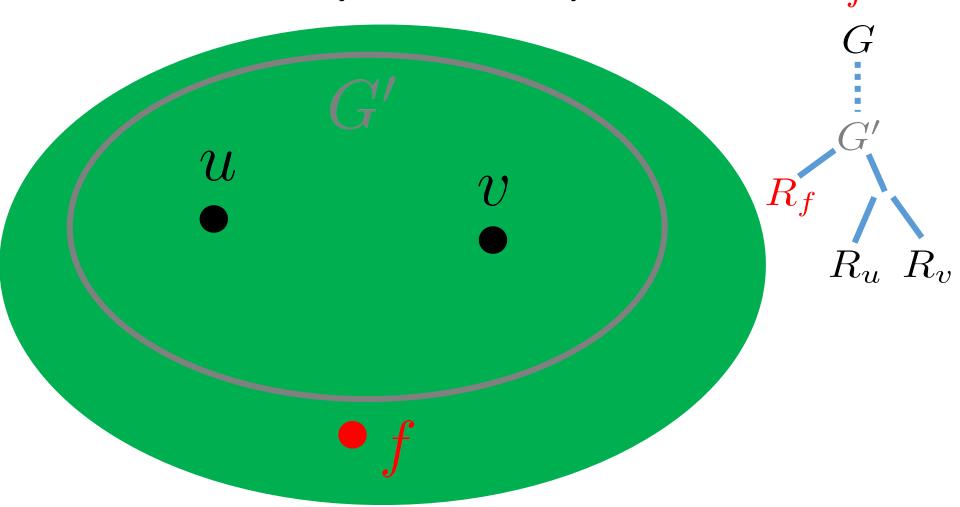
space =
$$\tilde{O}(\sum_{P \in Pieces} |\partial P|) = \tilde{O}(n/\sqrt{r})$$



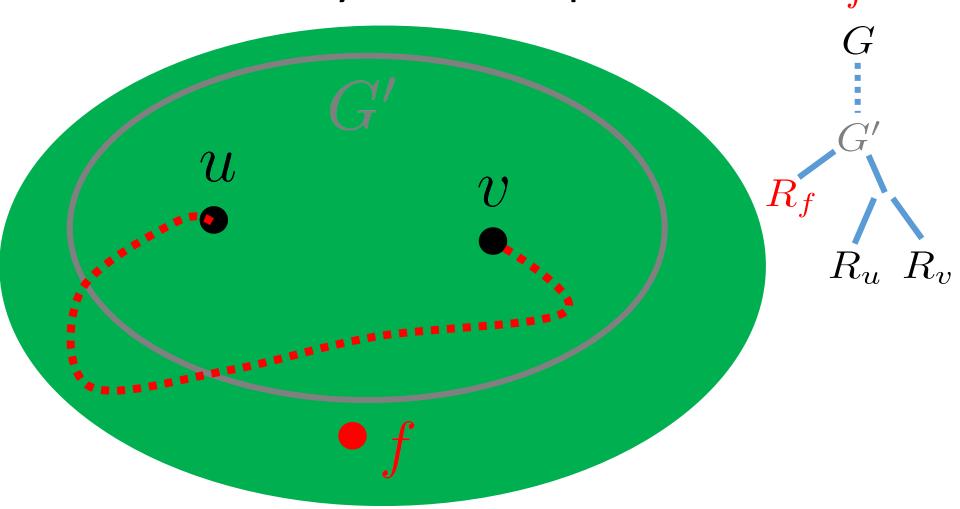
Case 3: Shortest path doesn't touch ∂P for any ancestor piece P of R_f



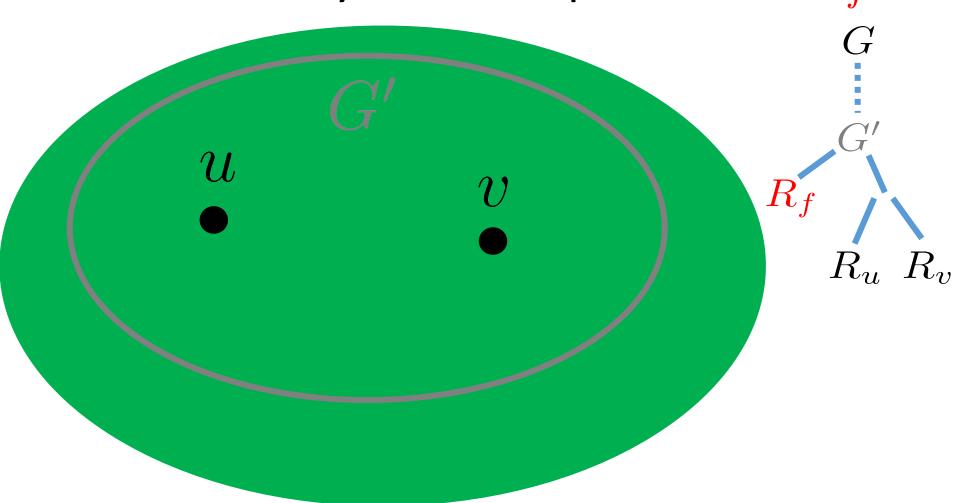
Case 3: Shortest path doesn't touch ∂P for any ancestor piece P of R_f



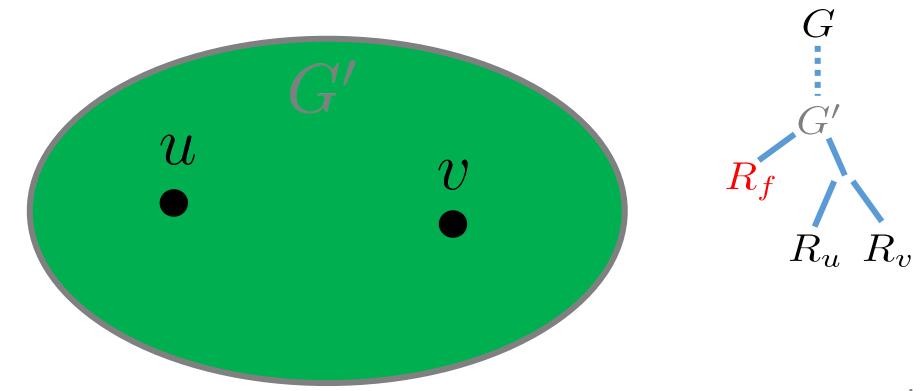
Case 3: Shortest path doesn't touch ∂P for any ancestor piece P of R_f



Case 3: Shortest path doesn't touch ∂P for any ancestor piece P of R_f

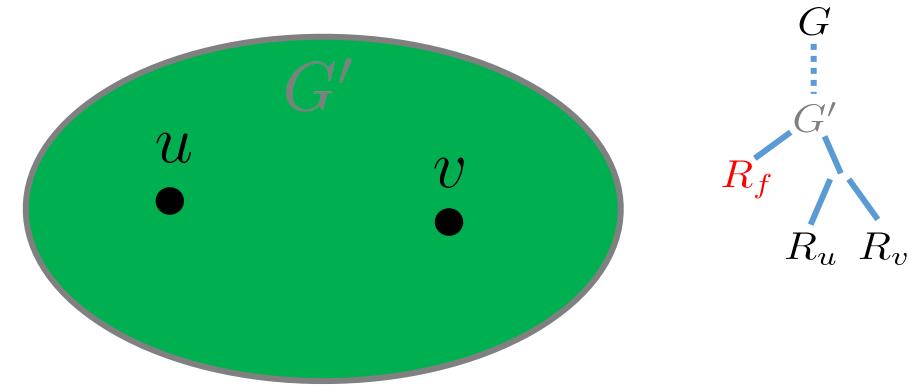


Case 3: Shortest path doesn't touch ∂P for any ancestor piece P of R_f



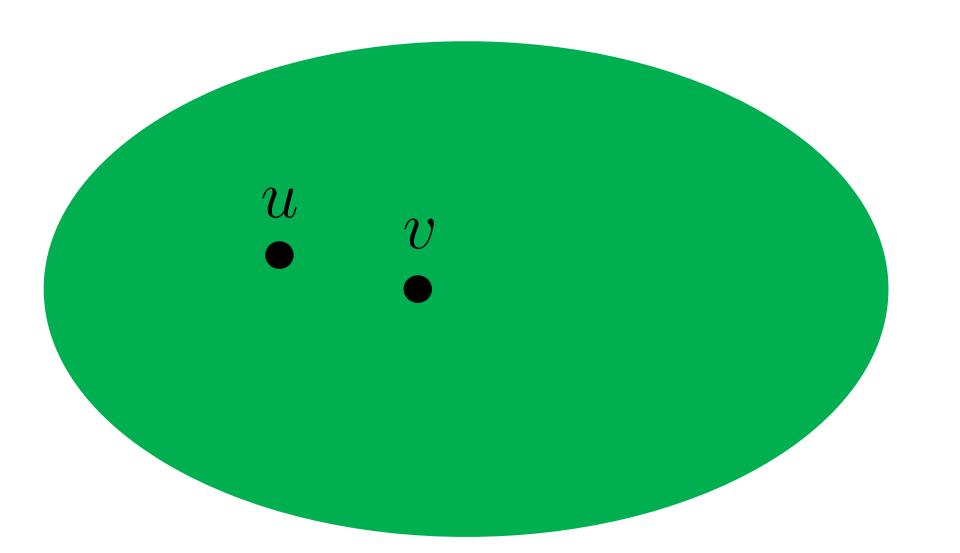
use labeling without faults in G'

Case 3: Shortest path doesn't touch ∂P for any ancestor piece P of R_f

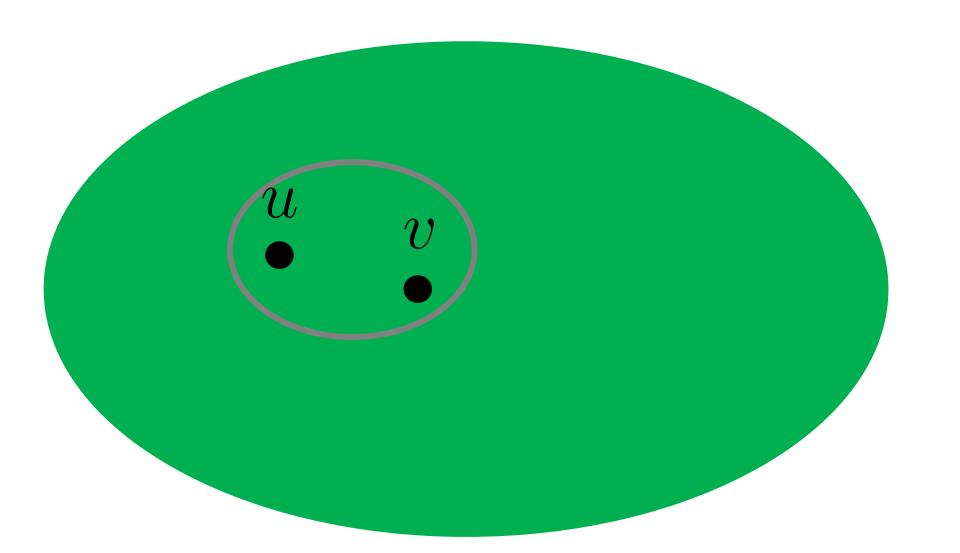


use labeling without faults in G' $\tilde{O}(\sqrt{n})$ space

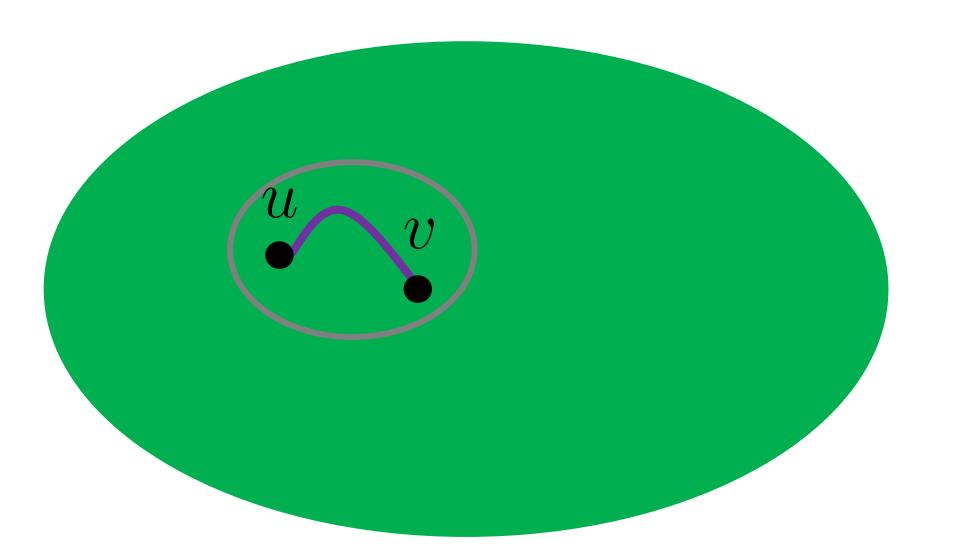
Last case: $R_u=R_v$ and the shortest path doesn't touch ∂R_u



Last case: $R_u=R_v$ and the shortest path doesn't touch ∂R_u

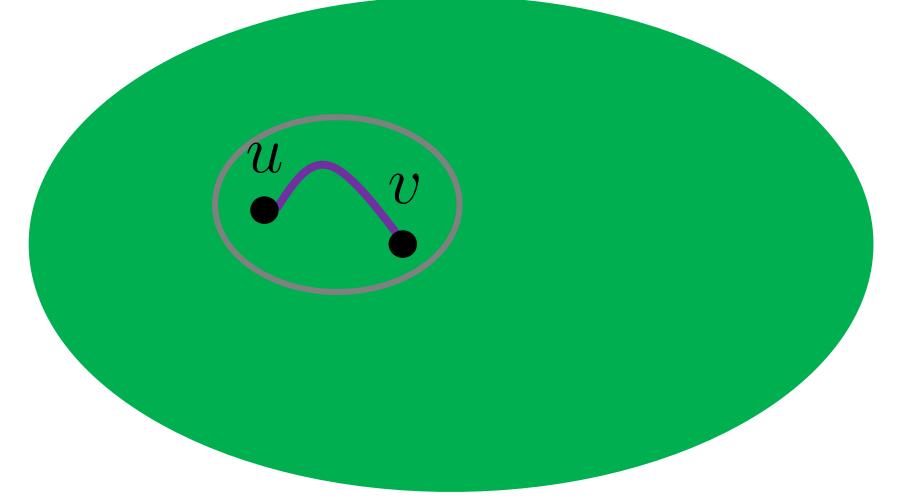


Last case: $R_u=R_v$ and the shortest path doesn't touch ∂R_u



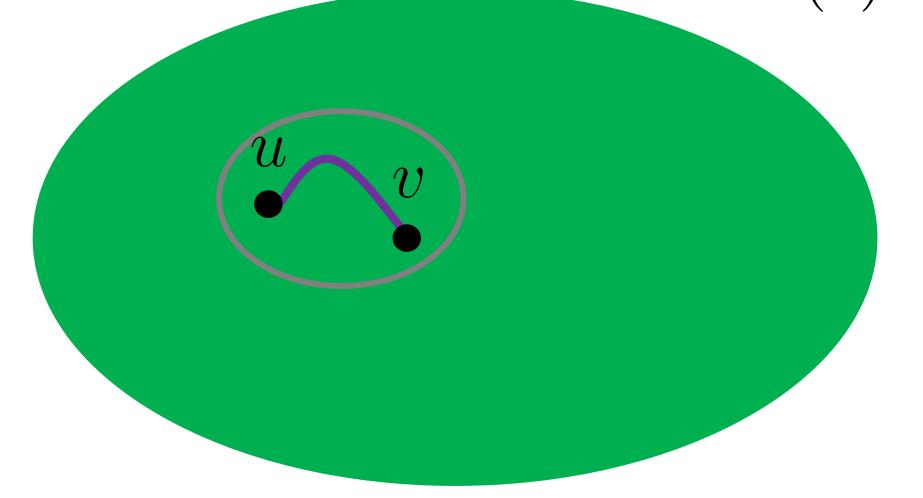
Last case: $R_u=R_v$ and the shortest path doesn't touch ∂R_u

Label stores the entire region R_u



Last case: $R_u=R_v$ and the shortest path doesn't touch ∂R_u

Label stores the entire region R_u



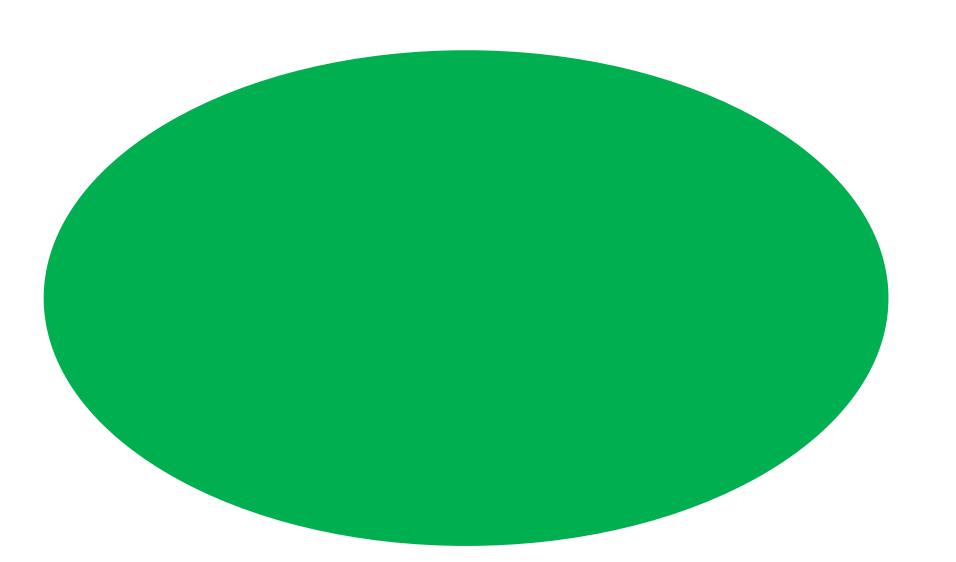
$$\tilde{O}(n/\sqrt{r} + r + \sqrt{n})$$

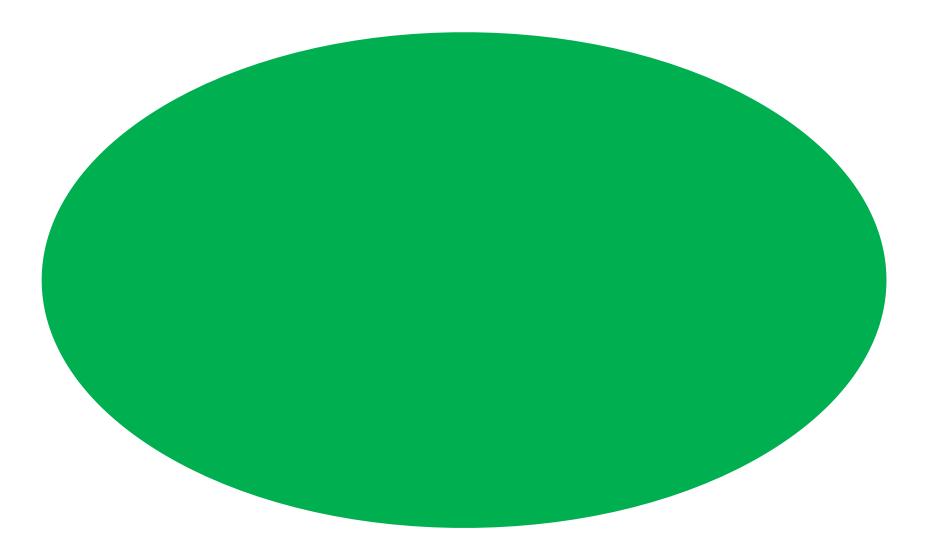
$$\tilde{O}(n/\sqrt{r} + r + \sqrt{n})$$

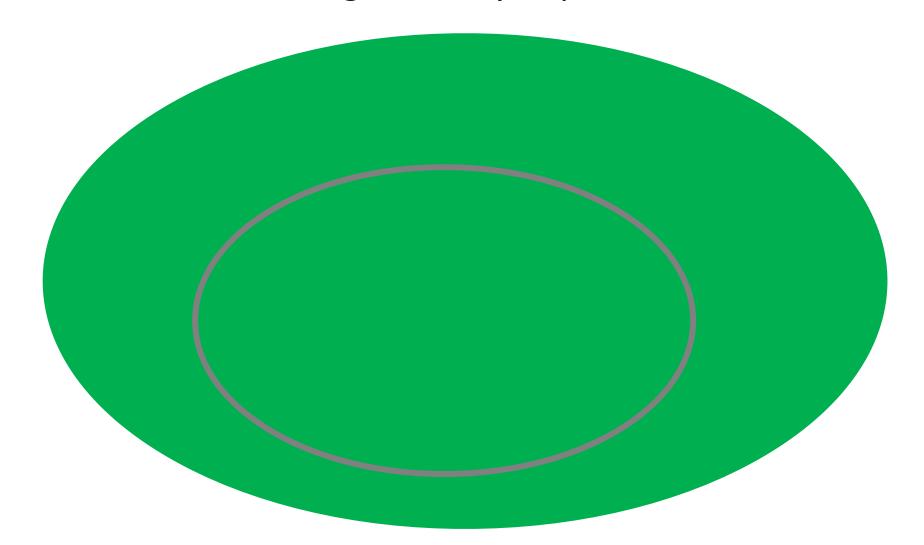
$$r = n^{2/3}$$

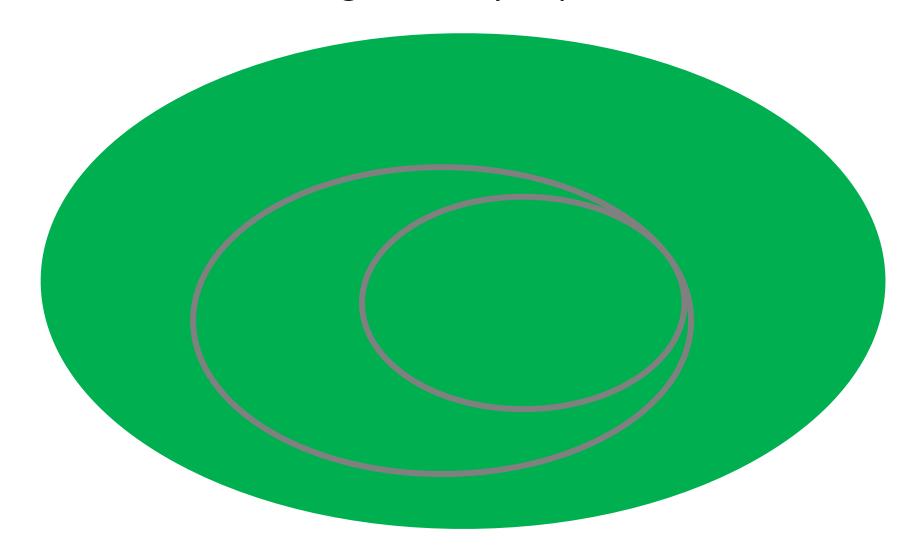
$$\begin{split} \tilde{O}(n/\sqrt{r} + r + \sqrt{n}) \\ r &= n^{2/3} \\ \tilde{O}(n^{2/3}) \end{split}$$

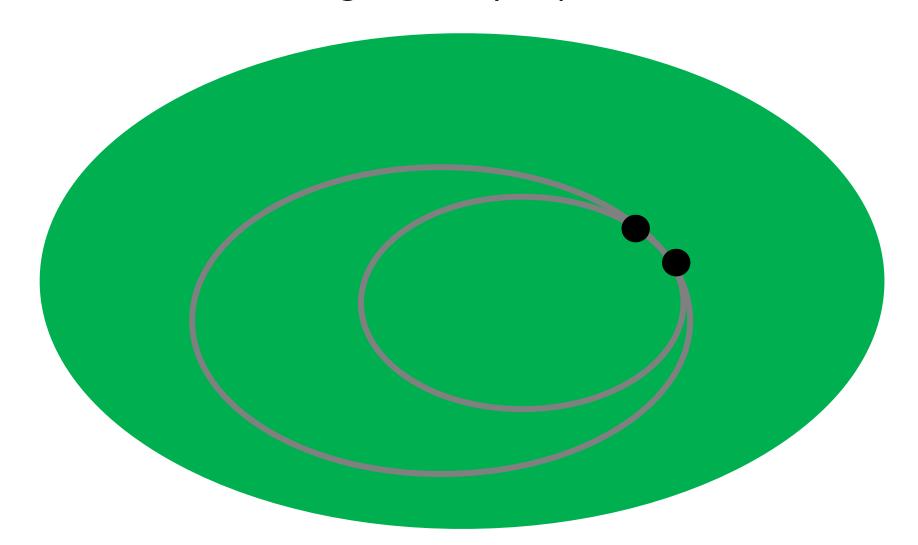
$$\begin{split} \tilde{O}(n/\sqrt{r} + r + \sqrt{n}) \\ r &= n^{2/3} \\ \tilde{O}(n^{2/3}) \end{split}$$

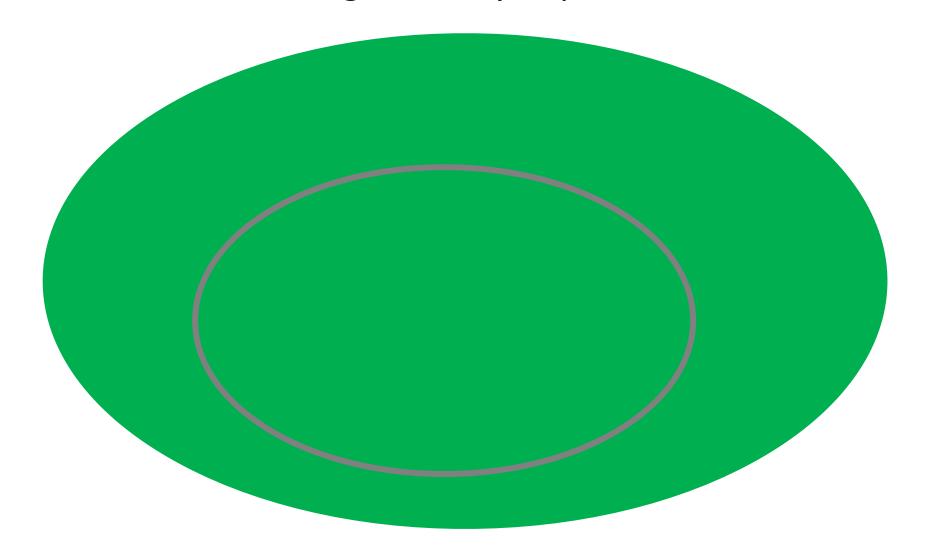






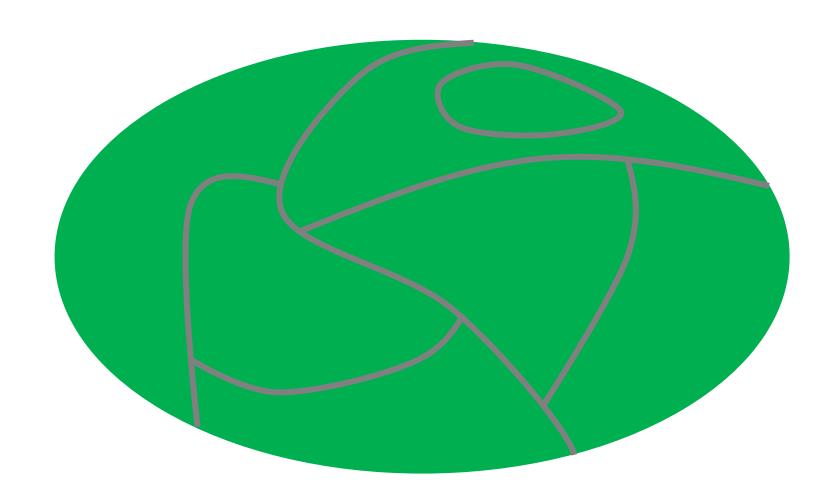






There might be holes inside pieces

There might be holes inside pieces



Query time is only $\tilde{O}(\sqrt{n})$

Query time is only $\tilde{O}(\sqrt{n})$

• Non-trivial (sublinear) labeling in the case of 2 faults?

Non-trivial (sublinear) labeling in the case of 2 faults?

Current label stores the entire graph!

Non-trivial (sublinear) labeling in the case of 2 faults?
 Current label stores the entire graph!

Lower bounds for fault tolerant setting?

general argument:

[Gavoille et al. SODA '01]

k labels encode d data bits $\to \Omega(\frac{d}{k})$ label size

How about $\omega(\sqrt{n})$ lower bound for fault tolerant?

[Gavoille et al. SODA '01]

general argument:

k labels encode d data bits $\rightarrow \Omega(\frac{d}{k})$ label size

How about $\omega(\sqrt{n})$ lower bound for fault tolerant?

Argument doesn't work!

[Gavoille et al. SODA '01]

general argument:

k labels encode d data bits $\rightarrow \Omega(\frac{d}{k})$ label size

How about $\omega(\sqrt{n})$ lower bound for fault tolerant?

Argument doesn't work!

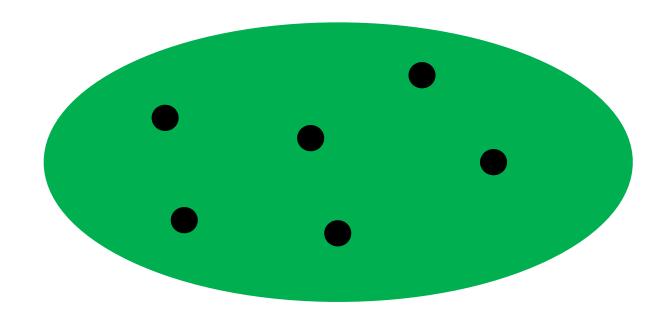
[Gavoille et al. SODA '01]

general argument:

k labels encode d data bits $\rightarrow \Omega(\frac{d}{k})$ label size

How about $\omega(\sqrt{n})$ lower bound for fault tolerant?

Argument doesn't work!



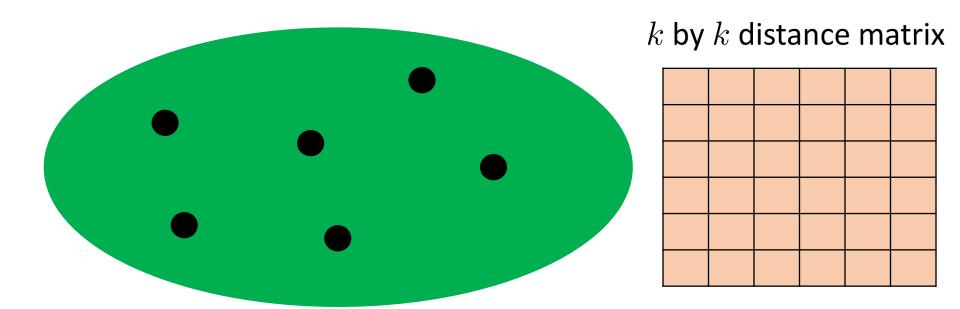
[Gavoille et al. SODA '01]

general argument:

k labels encode d data bits $\to \Omega(\frac{d}{k})$ label size

How about $\omega(\sqrt{n})$ lower bound for fault tolerant?

Argument doesn't work!



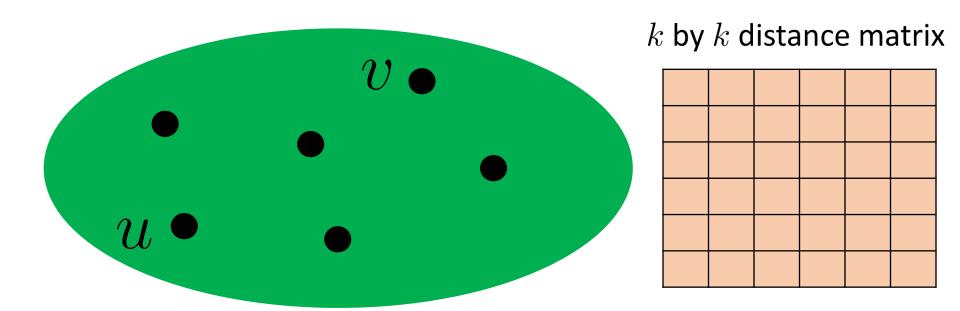
[Gavoille et al. SODA '01]

general argument:

k labels encode d data bits $\rightarrow \Omega(\frac{d}{k})$ label size

How about $\omega(\sqrt{n})$ lower bound for fault tolerant?

Argument doesn't work!



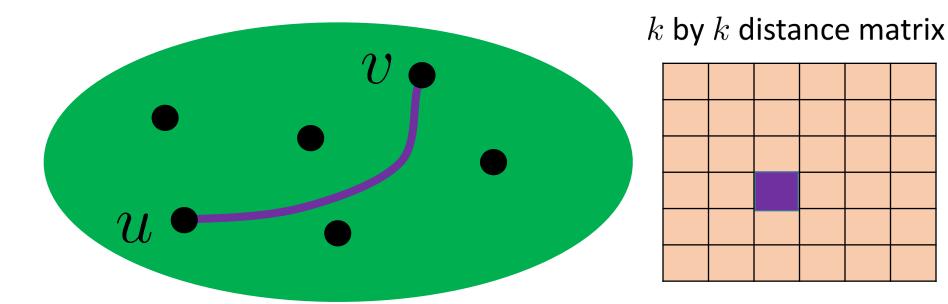
[Gavoille et al. SODA '01]

general argument:

k labels encode d data bits $\rightarrow \Omega(\frac{d}{k})$ label size

How about $\omega(\sqrt{n})$ lower bound for fault tolerant?

Argument doesn't work!



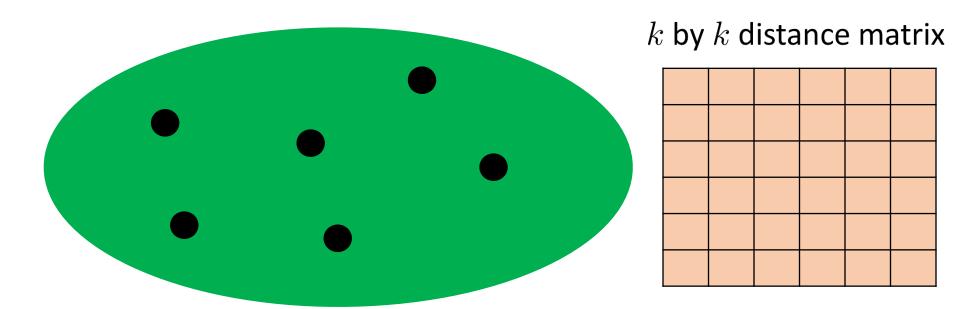
[Gavoille et al. SODA '01]

general argument:

k labels encode d data bits $\rightarrow \Omega(\frac{d}{k})$ label size

How about $\omega(\sqrt{n})$ lower bound for fault tolerant?

Argument doesn't work!



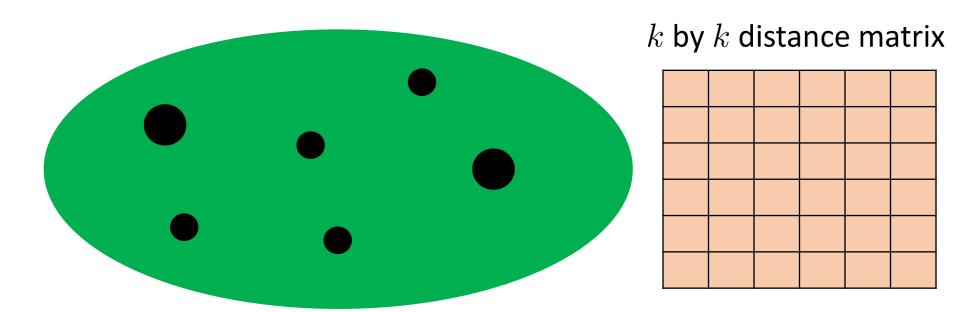
[Gavoille et al. SODA '01]

general argument:

k labels encode d data bits $\rightarrow \Omega(\frac{d}{k})$ label size

How about $\omega(\sqrt{n})$ lower bound for fault tolerant?

Argument doesn't work!



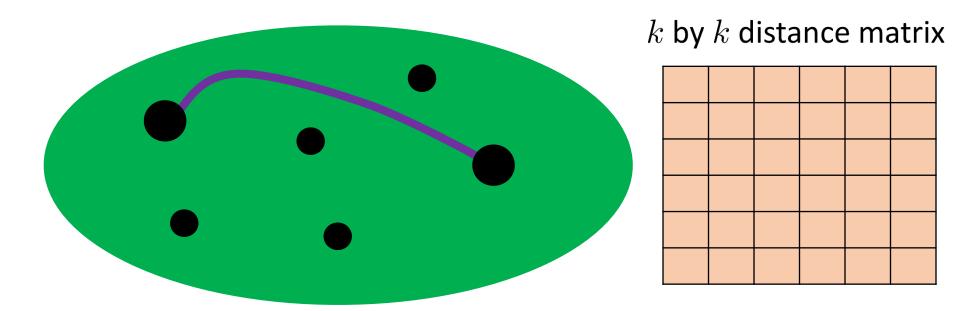
[Gavoille et al. SODA '01]

general argument:

k labels encode d data bits $\to \Omega(\frac{d}{k})$ label size

How about $\omega(\sqrt{n})$ lower bound for fault tolerant?

Argument doesn't work!



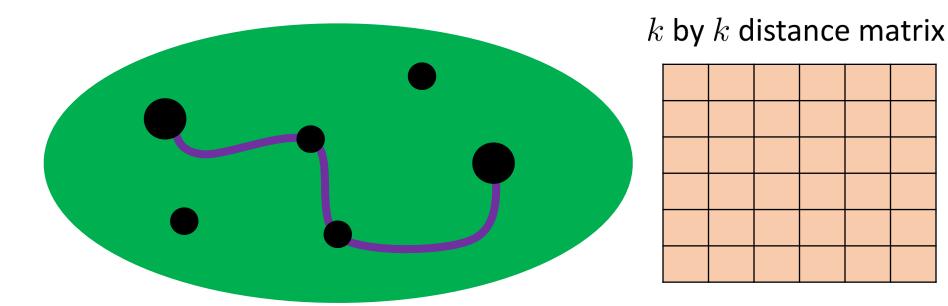
[Gavoille et al. SODA '01]

general argument:

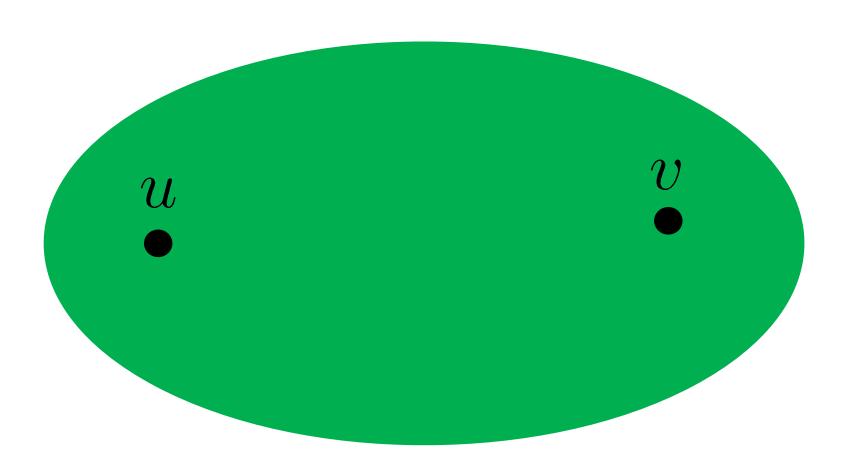
k labels encode d data bits $\to \Omega(\frac{d}{k})$ label size

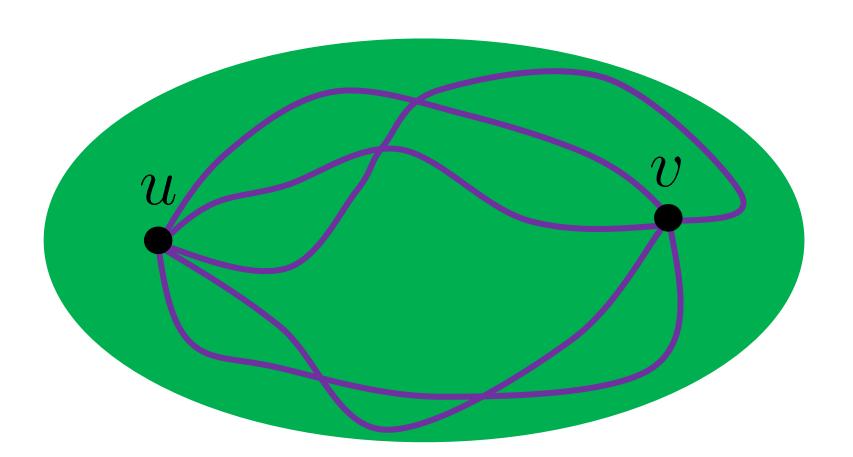
How about $\omega(\sqrt{n})$ lower bound for fault tolerant?

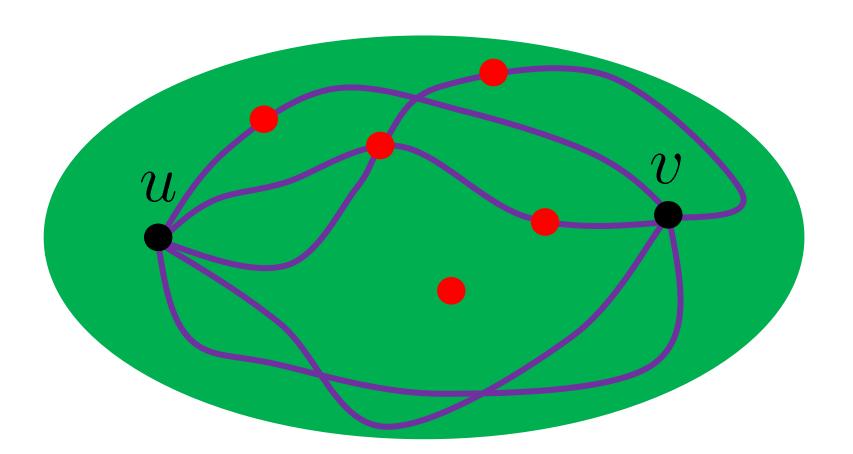
Argument doesn't work!

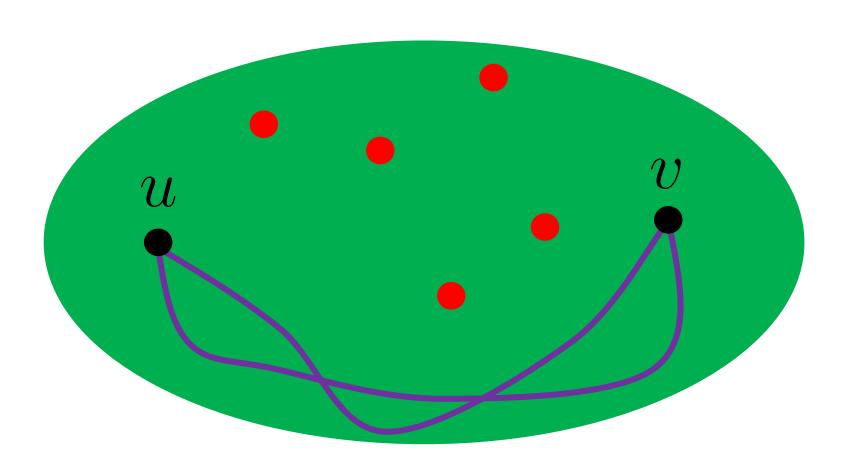


Labels can be extended for counting the number of shortest paths with the same label size up to polylog factors

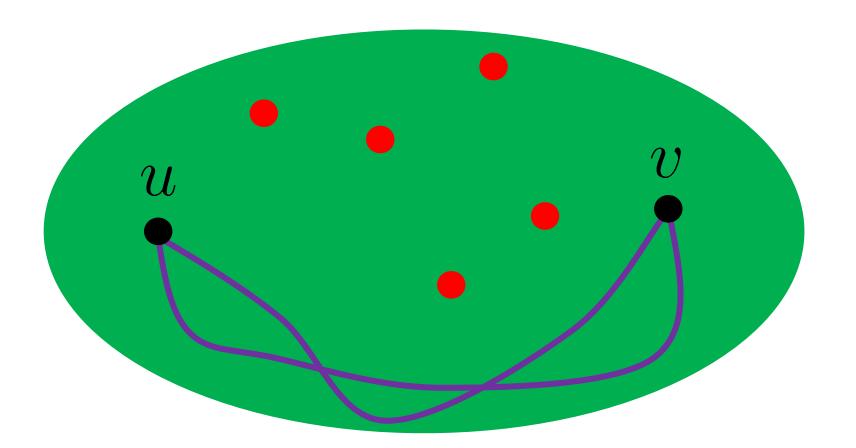






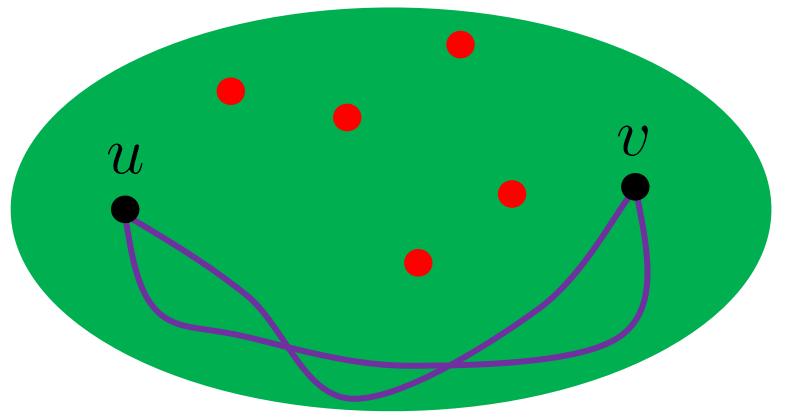


Classic $\tilde{O}(\sqrt{n})$ labels for counting can be used in fault tolerant setting



Classic $\tilde{O}(\sqrt{n})$ labels for counting can be used in fault tolerant setting

Query time $\tilde{O}(\sqrt{n}\cdot k)$



Thanks for waitching!!!

Thanks for waitching!!!