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e General graphs: (:)(n)

« Planar graphs: O(y/n -logn) Weighted: Q(/n)
Unweighted: Q(n!/3)

» Planar graphs (1 4 ¢)-approximation: O (log n/¢)
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Our result

Labels of size O(n?/3) for fault-tolerant distance
labeling in planar graphs
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Counting shortest paths

Classic O(+/n) labels for counting can be used
in fault tolerant setting

Query time O(y/n - k)










