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Abstract

In fault-tolerant distance labeling we wish to assign short labels to the vertices of a graph G such

that from the labels of any three vertices u, v, f we can infer the u-to-v distance in the graph

G \ {f}. We show that any directed weighted planar graph (and in fact any graph in a graph family

with O(
√
n)-size separators, such as minor-free graphs) admits fault-tolerant distance labels of size

O(n2/3). We extend these labels in a way that allows us to also count the number of shortest paths,

and provide additional upper and lower bounds for labels and oracles for counting shortest paths.

Keywords: forbidden-set distance labels, planar graphs, fault-tolerant distance labels, counting

shortest paths

1. Introduction

Computing distances in graphs is one of the most basic and important problems in graphs

theory, both from theoretical and practical points of view. In this work we consider distance labeling

schemes, in which one preprocesses a network to assign labels to the vertices, so that the distance

between any two vertices u and v can be recovered from just the labels of u and v (and no other

information). The main criteria of interest are foremost the size of the label, and to a lesser extent

the time it takes to recover the distance from a given pair of labels (query time). Distance labeling

schemes are useful in the distributed setting, where it is advantageous to be able to infer distances

based only on local information such as the labels of the source and destination. This is the case
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in communication networks or in disaster stricken areas, where communication with a centralized

entity is infeasible or downright impossible.

Considering the latter scenario of disaster management, it is not only likely that a disastrous

event makes communication with a centralized entity impossible, but also that parts of the network

are affected by the disaster, and that only shortest paths that avoid affected parts of the network

should be considered when computing distances. Forbidden-set distance labeling schemes assign

labels to vertices, so that, for any pair of vertices u and v, and any set F of failed vertices, the

length of a shortest u-to-v path that avoids all vertices in F can be recovered just from the labels

of u, v, and of the vertices in F . In this work we study forbidden-set distance labeling schemes in

directed planar networks. We also study the extension of such schemes to capture not only the

distance from u to v, but also the number of distinct u-to-v shortest paths.

For unweighted graphs, we measure the label size in bits. For weighted graphs and queries

concerning lengths of the shortest paths, we assume that the distance between any two vertices fits

in a single machine word, and measure the label size in words. For queries concerning the number of

shortest paths, unless mentioned otherwise, we assume that the number of shortest paths between

any two vertices fits in a single machine word, and measure the label size in words.

1.1. Related work

Labeling schemes provide a clean and natural model for studying how to distribute information

about a graph. Problems considered in this model include adjacency [1, 2, 3, 4, 5, 6], flows and

connectivity [7, 8, 9], and Steiner tree [10]. See [11] for a recent survey. We specifically focus on

distance labeling schemes.

Distance labeling schemes. Embedding distance information into labels was studied by Graham and

Pollak [12] in the 1970’s in the so-called squashed cube model. In 2000, Peleg [13] formalized the

notion of distance labeling schemes, and provided schemes with polylogarithmic label size (in bits)

and query time for trees, interval graphs and permutation graphs. Gavoille et al. [14] showed that

for general graphs, the label size is Θ(n), and for trees, Θ(log2 n). For (unit-weight) planar graphs

they showed a lower bound of Ω(n1/3), and an upper bound of O(
√
n log n) bits. The O(

√
n log n)

upper bound is simple (just store the distance to each of the O(
√
n) vertices of a planar separator,

and then recurse on both sides of the separator), and was recently improved to O(
√
n) [15]. However,

the rare polynomial gap between the lower and upper bound remains an interesting and important
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open problem. For weighted planar graphs Gavoille et al. gave tight (up to polylogarithmic factors)

Θ̃(n1/2) upper and lower bounds.1

Approximate distance labeling schemes. Since exact distance labels typically require polynomial

size labels [14], researchers have sought smaller labels that yield approximate distances. Gavoille et

al. [16] studied such labels for general graphs and various graph families. Specifically, for planar

graphs, they presented O(n1/3 log n)-bit labels that provide a 3-approximation of the distance. In

the same year, Gupta et al. [17] presented smaller 3-approximate labels, requiring only O(log2 n)

bits, and Thorup gave (1 + ε)-approximate labels of size O(log n/ε), for any fixed ε > 0 [18]. The

latter result was generalized to H-minor free graphs by Abraham and Gavoille in [19].

Forbidden-set distance labeling schemes. Forbidden-set labels were introduced in the context of

routing labels by Feigenbaum et al. [20, 21], and studied by several others [22, 23, 24, 25, 26]. Exact

forbidden-set labeling schemes of polylogarithmic size are given in [22, 24] for graphs of bounded

treewidth or cliquewidth. For unweighted graphs of bounded doubling dimension, forbidden-set

labels with polylogarithmic size and (1 + ε)-stretch are also known [25]. For undirected planar

graphs, and for any fixed ε > 0, Abraham et al. [26] presented a forbidden-set labeling scheme of

polylogarithmic size such that a (1 + ε)-approximation of the shortest path between vertices u and v

that avoids a set F of failed vertices can be recovered from the labels of u, v, and the labels of the

failed vertices in Õ(|F |2) time.

Other related work on planar graphs. There are many other concepts related to distances in the

presence of failures. In the replacement paths problem, we are given a graph along with a source and

sink vertices, and the goal is to efficiently compute all shortest paths between the source and the

destinations for every possible single-edge failure in the graph. In planar graphs, this problem can

be solved in nearly linear time [27, 28, 29]. Moreover, for the single-source single-failure version of

the problem (i.e. when only the source vertex is fixed at construction time, and the query specifies

just the target and a single failed vertex), Baswana et al. [30] presented an oracle with size and

construction time O(n log4 n) that answers queries in O(log3 n) time. Building upon this oracle,

they then present an oracle of size Õ(n2/q) supporting arbitrary distance queries subject to a single

failure in time Õ(q) for any q ∈ [1, n1/2]. The authors of [31] show how to construct in Õ(n) time an

1The Õ(·) notation suppresses logO(1) n factors.
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oracle of size Õ(n) that, given a source vertex u, a target vertex v, and a set F of k faulty vertices,

reports the length of a shortest u-to-v path in G \ F in Õ(
√
kn) time. They further show that for

any r ∈ [1, n] there exists an Õ(n
k+1

rk+1

√
nr)-size oracle that answers queries in time Õ(k

√
r). Recently,

Italiano et al. [32] gave an oracle of size O(n log n) and construction time O(n log2 n/ log log n) that

supports reachability queries subject to a single failure in time O(log n).

Another related concept is that of dynamic distance oracles. Here a graph is preprocessed so

as to efficiently support distance queries between arbitrary pairs of vertices as well as updates

to the graph. Updates may include deletion of edges or vertices (decremental updates), or also

addition of new edges and vertices (fully dynamic). Fakcharoenphol and Rao [33] presented distance

oracles for planar graphs that require Õ(n2/3) and Õ(n4/5) amortized time per update and query for

non-negative and arbitrary edge-weight updates respectively.2 The space required by these oracles is

O(n log n). The extensions of this result in [34, 35, 36, 31] yield a dynamic oracle for planar graphs

that can handle arbitrary edge weight updates, edge deletions and insertions (not violating the

planarity of the embedding) and vertex deletions, as well as answer distance queries, in Õ(n2/3)

time each.

Counting shortest paths in planar graphs. In the (non-faulty) counting version of shortest paths

labeling, given the labels of vertices s and t we wish to return the number of shortest s-to-t paths

in G (i.e. paths whose length is equal to d(s, t)). This problem (without faults) in planar graphs was

recently studied in [37] where labels3 of size Θ(
√
n) were constructed under the assumption that the

number of shortest paths between any two vertices fits in a constant number of machine words. In

the general case where the numbers consist of L bits, the obtained labels consist of O(
√
n · L) bits.

As already observed in [37], it is easy to construct an unweighted planar graph where L = n − 1

making the labels consist of Θ(n1.5) bits, that is, more than in a naive encoding storing the whole

graph in every label. However, the following simple construction shows that we cannot hope to

construct labels consisting of o(n) bits without bounding L:

Fact 1. There is no labeling scheme for counting shortest paths in planar graphs with labels consisting

2Though this is not mentioned in [33], the query time can be made worst-case rather than amortized by standard

techniques.
3In [37], the authors actually considered the oracle version of the problem, but their solution can be easily applied

for labeling as well.
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of o(n) bits.

Proof. Given n bits b0, . . . , bn−1 we construct a graph consisting of a path s = u0 − u1 − · · · − un−1
and another path v1 − v2 − · · · − vn = t in which every edge is duplicated (i.e. there are two parallel

edges between each pair vi, vi+1). Finally, for every i = 0, . . . , n − 1 such that bi = 1, we add an

edge ui − vi+1. Then the number of shortest s-to-t paths is exactly
∑n−1
i=0 bi · 2n−1−i, and so by an

encoding argument the total number of bits in the labels of s and t must be at least n.

Therefore, when counting shortest paths we will measure the size of a label in the number of

machine words, each long enough to store the number of shortest paths between any two vertices in

the graph.

We highlight one interesting application where our scheme for counting shortest s-to-t paths

that avoid vertices v1, v2, . . . , vk can be modified to obtain a better bound on the sizes of the labels

in bits. Say that instead of counting such shortest paths we would like to check if avoiding vertices

v1, v2, . . . , vk increases the length of the shortest path. In such case, we only need to check if the

number of shortest s-to-t paths that avoid vertices v1, v2, . . . , vk is nonzero. Because the number

of shortest paths is always at most 2n, by well known properties of prime numbers, choosing a

random prime p consisting of Θ(k · log n) bits guarantees that with high probability, for every

s, t, v1, v2, . . . , vk, the number of shortest paths counted modulo p is nonzero if and only if the

number of shortest paths is nonzero. Our scheme (as well as the scheme of [37]) can be used for

counting modulo p, so we obtain labels consisting of Õ(
√
n · k) bits for such queries.

1.2. Our results

• In Section 3 we present a single-fault distance labeling scheme (forbidden-set labeling scheme for

a set of cardinality 1) with label size O(n2/3). By increasing the label-size by polylogarithmic

factors, we show how to support queries in Õ(
√
n) time, and how to construct all labels in

Õ(n5/3) time. Our labeling scheme extends (with no overhead in the label size) to a labeling

scheme for counting shortest paths (with a single fault).

• In Section 4 we extend the counting labels of [37] to the following fault-tolerant variant. Given

the labels of vertices s, t, v1, v2, . . . , vk, we wish to return the number of s-to-t paths that avoid

vertices v1, . . . , vk and whose length is equal to d(s, t) (the original s-to-t distance in G). We

show that the labeling of [37] (with labels of size Õ(
√
n)) actually works in this more general
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setting. A naive query to such labeling takes Õ(
√
n · k2) time, we show how to improve this to

Õ(
√
n · k).

• In Section 5 we show a lower bound of Ω(
√
nL) on the label-size (in bits) for counting shortest

paths (without faults), in graphs in which the number of distinct shortest paths between any

two vertices consists of at most L bits.

• In Section 6 we show a lower bound on dynamic oracles for counting shortest paths, conditioned

on the hardness of online boolean matrix-vector multiplication. We prove that for any dynamic

shortest paths counting oracle in undirected planar graphs, either the query time or the update

time must be Ω(
√
n) (up to subpolynomial factors).

We focus on planar graphs but in fact all our results (except for the efficient preprocessing time

and query time in Section 3) hold for any graph family with O(
√
n)-size separators (such as H-minor

free graphs and bounded genus graphs). This is also the case for the standard (i.e. without failures)

labeling scheme of Gavoille et al. [14]. However, while their Õ(n1/2)-size labels are obtained with a

straightforward application of separators, our O(n2/3)-size (fault-tolerant) labels are obtained with

a non-standard and intricate use of separators.

2. Preliminaries

Throughout the paper we consider as input a weighted directed planar graph G, embedded in the

plane. We assume that the input graph has no negative length cycles. We can transform the graph

in a standard way, in O(n log2 n
log logn ) time, so that all edge weights are non-negative and distances are

preserved [38].

Separators and recursive decompositions. Miller [39] showed how to compute a Jordan curve that

intersects the graph at a set of vertices Sep(G) of size O(
√
n) and separates G into two pieces

with at most 2n/3 vertices each. Jordan curve separators can be used to recursively separate a

planar graph until pieces have constant size. The authors of [40] show how to obtain a complete

recursive decomposition tree T of G in O(n) time. T is a binary tree whose nodes correspond to

subgraphs of G (called pieces), with the root being all of G and the leaves being pieces of constant

size. We identify each piece P with the node representing it in T (we can thus abuse notation and

write P ∈ T ), with its boundary ∂P (i.e. vertices that belong to some separator along the recursive
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decomposition used to obtain P ), and with its separator Sep(P ). We denote by T [P,Q] the P -to-Q

path in T (and also use T (P,Q], T [P,Q), and T (P,Q)).

An r-division [41] of a planar graph, for r ∈ [1, n], is a decomposition of the graph into O(n/r)

pieces, each of size O(r), such that each piece P has O(
√
r) boundary vertices (denoted ∂P ). Another

desired property of an r-division is that the boundary vertices lie on a constant number of faces

(called holes) of the piece. For every r larger than some constant, an r-division with few holes

is represented in the decomposition tree T of [40]. It is convenient to describe the r-division by

truncating T at pieces of size O(r), that also satisfy the other required properties. We refer to those

pieces (the leaves of T after truncation) as regions and denote by Ru the region containing vertex u

(if u belongs to multiple regions, we arbitrarily designate one of them as Ru).

Dense distance graphs and FR-Dijkstra. The dense distance graph of a set of vertices U that lie

on a constant number of faces of a planar graph H, denoted DDGH(U) is a complete directed

graph on the vertices of U . Each edge (u, v) has weight dH(u, v), equal to the length of the shortest

u-to-v path in H. DDGH(U) can be computed in time O((|U |2 + |H|) log |H|) using the multiple

source shortest paths (MSSP) algorithm [34, 42]. Thus, computing DDGP (∂P ) over all pieces of

the recursive decomposition of G requires time O(n log2 n) and space O(n log n). We next give a

–convenient for our purposes– interface for FR-Dijkstra [33], which is an efficient implementation of

Dijkstra’s algorithm on any union of DDGs. The algorithm exploits the fact that, due to planarity,

certain submatrices of the adjacency matrix of DDGH(U) satisfy the Monge property. (A matrix

M satisfies the Monge property if, for all i < i′ and j < j′, Mi,j + Mi′,j′ ≤ Mi′,j + Mi,j′ [43].)

The interface is specified in the following theorem, which was essentially proved in [33], with some

additional components and details from [36, 38].

Theorem 2 ([33, 36, 38]). Given a set Y of DDGs, Dijkstra’s algorithm can be run on the union

of any subset of Y with O(N) vertices in total (with multiplicities) and an arbitrary set of O(N)

extra edges in time O(N log2N).

3. Single-Fault Labeling for Reporting Shortest Paths

Warm-up. As a warm-up, we first sketch a simple labeling scheme that assigns a label of size

O(n4/5) to each vertex. Consider an r-division for r = n4/5, and let R be the set of its regions. The

label of each vertex u consists of the following:
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(a) The r-division R. Space: O(n/r).

(b) For each region R in the r-division, the length of the shortest path in G, among paths that are

internally disjoint from R, from u to
⋃
P∈R ∂P , and from

⋃
P∈R ∂P to u. There are O(n/r)

regions and for each of them we store O(n/r ·
√
r) distances. Space: O(n2/r3/2).

(c) The region Ru and the ∂Ru-to-∂Ru distances in G \ {u}. Space: O(r).

The space is thus O(n/r + n2/r3/2 + r) = O(n4/5).

Let us now consider a query (u, v, f), and assume, for simplicity, that no two of u, v and f are

contained in a single region. We have two cases. If there is a shortest u-to-v path in G \ {f} that

is vertex-disjoint from Rf , then the u-to-∂Rv distances among paths internally-disjoint from Rf

(item (b)), together with Rv, which is stored for v (item (c)), allow us to retrieve the length of this

path. In the other case, we employ the u-to-∂Rf distances among paths internally-disjoint from

Rf (item (b)), the information stored in item (c) for f , and the ∂Rf -to-v distances among paths

internally-disjoint from Rf (item (b)).

It is not difficult to combine this approach with the distance-labeling scheme of Gavoille et al. [14]

for the failure-free setting to obtain labels of size O(n3/4). (Item (b) has to be modified to store

distances to separators of ancestors of Ru instead of distances to
⋃
P∈R ∂P , requiring O(n3/2/r)

space.) In the approach that we present below, we rely on separators in a more sophisticated and

delicate manner to obtain labels of size O(n2/3).

The label. Recall that an r-division is represented by a decomposition tree T , whose root corresponds

to G. The internal nodes of T correspond to pieces of G. The two children of a piece P ∈ T are the

subgraphs of P external and internal to Sep(P ). The leaves of T are the regions of the r-division.

The label of each vertex u in G consists of the following information:

(i) The entire decomposition tree T . Space: O(n/r).

(ii) For each region R in the r-division, the shortest path distances in G from u to ∂R among

paths that are internally disjoint from R. There O(n/r) regions and each of them has O(
√
r)

boundary vertices. Space: O(n/
√
r).

(iii) The region Ru and the ∂Ru-to-∂Ru distances in G \ {u}. Space: O(r).
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(iv) For each piece P ∈ T with sibling Q, for each p ∈ ∂P \Q, the shortest path distance from

u to p in G \ (P ∪ Q) ∪ {p}, and the shortest path distance from p to u in G \ Q. Space:

O(
∑
P∈T ∂P ) = O(n/

√
r), c.f. [44].

(v) For each ancestor piece P of Ru in T , for each vertex p of Sep(P ) \ ∂P , the shortest path

distance from u to p among paths in P \ ∂P that are internally disjoint from Sep(P ), and the

shortest path distance in P \ ∂P from p to u. Space: O(
√
n), c.f. [44].

The overall space required by the above five items is O(n/r + n/
√
r + r + n/

√
r +
√
n), which is

O(n2/3) for r = n2/3.

The query. Upon query (u, v, f) we say that a path is a (u, v, f)-path if it is a u-to-v path in G that

avoids f , and we seek the shortest (u, v, f)-path, which we denote by S. Let X denote the lowest

node in T that is an ancestor of Rf and of at least one of {Ru, Rv}. Let us assume without loss of

generality that X is an ancestor of Ru. We return the minimum of the following three:

1. S includes a vertex of ∂Rf .

The length of this path is found with a Single-Source Shortest-Paths (SSSP) computation

on the (non-planar) graph G1 whose vertices are u, v, and ∂Rf \ {f} and whose edges are

in one-to-one correspondence with the distances specified below, i.e. for each a-to-b distance,

there is an edge from a to b with length equal to that distance:

• the u-to-∂Rf \ {f} distances from item (ii) in u’s label (or the u-to-∂Rf \ {f} distances

in Rf \ {f}, which can be computed from item (iii), if Ru = Rf );

• the ∂Rf \ {f}-to-∂Rf \ {f} distances from item (iii) in f ’s label;

• the ∂Rf \ {f}-to-v distances from item (ii) in v’s label (or the ∂Rf \ {f}-to-v distances

in Rf \ {f}, which can be computed from item (iii), if Rv = Rf ).

2. S avoids Rf but includes a boundary vertex of some piece on T [X,Rf ].

The length of this path is found with a SSSP computation on the graph G2 whose vertices are

u, v, and ∂P of all nodes P that are siblings of some node Q on the X-to-Rf path in T . The

edges are in one-to-one correspondence with the u-to-∂P distances from item (iv) in u’s label

and the ∂P -to-v distances from item (iv) in v’s label.
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3. S avoids all boundary vertices of all the pieces on T [X,Rf ].

This is required only for the case where the lowest common ancestor of Ru and Rv is not

an ancestor of Rf (otherwise, it is an ancestor of X and a u-to-v path cannot avoid the

boundary vertices of X). The length of this path is found with a SSSP computation on the

graph G3 whose vertices are u, v, and Sep(P ) \ ∂P of all nodes P on T (X,Ru). The edges

are in one-to-one correspondence with the u-to-Sep(P ) distances from item (v) in u’s label

and the Sep(P )-to-v distances from item (v) in v’s label. If Ru = Rv, the shortest path may

not cross any of these separators; in that case the distance may be retrieved by a single SSSP

computation in Ru \ {f} (item (iii)).

Correctness. Let us consider the three options for the shortest (u, v, f)-path S (an illustration is

provided in Figure 1).

1. S includes a vertex of ∂Rf . Let a (resp. b) denote the first (resp. last) vertex of S that

belongs to ∂Rf \ {f}. The path S can be partitioned into a u-to-a prefix, an a-to-b infix, and

a b-to-v suffix. All three subpaths are represented in G1, and all paths represented in G1 do

not include f .

2. S avoids Rf but includes a boundary vertex of some piece on T [X,Rf ]. First observe that

all u-to-v paths in G2 avoid some (not necessarily proper) ancestor of Rf and therefore also

avoid f . To see that S is represented in G2, let Q denote the unique piece on T (X,Rf ] such

that S avoids Q but visits its sibling P (such a piece Q must exist because S avoids Rf but

visits some piece on T [X,Rf ]). Since S visits P it must visit some vertex of ∂P . Let p be

the first such vertex of S. Partition S into a shortest u-to-p path in G \ (Q ∪ P ) ∪ {p} and a

shortest p-to-v path in G \Q. These two subpaths are represented in G2.

3. S avoids all boundary vertices of all the pieces on T [X,Rf ]. If S does not visit ∂Ru (and

thus Ru = Rv) then we find S with an SSSP computation in Ru \ {f}. Otherwise, S visits a

separator vertex of some piece that is a proper ancestor of Ru. Let P be the rootmost such

piece. Since S avoids ∂X we have that S is restricted to X and hence P is a descendant of

X. In fact, P must be a proper descendant of X (otherwise, S visits Sep(X) and therefore

visits the boundary of both child-pieces of X including the one on T [X,Rf ], a contradiction).

We therefore have that P ∈ T (X,Ru) and S is restricted to P . Also observe that S avoids
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Rf

u

v

f

a

b

(a) Case 1.

Rf

X

P

Q

u

p v

(b) Case 2.

Rf

X
P

u

p

v

(c) Case 3.

Figure 1: An illustration of the three different cases that arise for the query. In the figures we assume that u, v 6∈ Rf

and the different colors in each path represent its decomposition as defined in the proof of correctness. In the figure

for Case 2, the blue piece denotes Rf , while the siblings of its ancestors in T (X,Rf ] are denoted by different scales of

gray; the deeper the piece is in T , the darker its color. Piece Q is denoted be the red-dashed rectangle. For Case 3,

the setting is the same and in our illustration P is the child of X that is not an ancestor of Rf . Sep(P ) is denoted by

green.

∂P because otherwise S must visit a separator vertex of some ancestor of P , contradicting P

being rootmost. Let p be the first vertex of S that belongs to Sep(P ). S can be decomposed

into a shortest path from u to p in P \ ∂P that is internally disjoint from Sep(P ), and a suffix

that is a shortest path from p to v in P \ ∂P ; S is thus represented in G3. To see that no path

represented in G3 contains f , observe that P may contain f , but since Rf is not a descendant

of P , f must be a vertex of ∂P and so is not visited by any path represented in G3.

We thus arrive at the following result.

Theorem 3. Given a directed planar graph G of size n, with real edge-lengths, we can assign an
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O(n2/3)-size label to each vertex of G such that upon query (u, v, x), where u, v, x ∈ V (G), the length

of the shortest u-to-v path in G \ {x} can be retrieved from the labels of u, v and x.

Remark. Any graph G of size n from a family of graphs that hereditarily admits O(
√
n)-size

separators (such as H-minor free graphs and bounded genus graphs) can be recursively decomposed

so that we get an r-division (perhaps not with the few-holes property). As our labeling scheme does

not require the few-holes property, Theorem 3 actually applies to any such graph family.

Extension for counting. We now show how to extend our single-fault labeling from reporting u-to-v

shortest paths in G\{f} to counting the number of u-to-v shortest paths in G\{f}. Our modification

does not increase the label size (assuming that each number we store fits into a single word, see the

discussion in the introduction). However, the efficient query algorithm cannot be applied, leading to

Õ(n2/3) query time.

In order to extend the labeling scheme for counting, for every u-to-v shortest path distance which

is stored in our label, we also store the number of such u-to-v shortest paths. The change in query

time is that instead of the SSSP computations on G1, G2, G3 we use an SSSP computation that

counts shortest paths. That is, for each edge in Gi there is a value representing its multiplicity (the

value we added to the label), and we want to compute the number of shortest paths with respect

to the multiplicities. This extension can be achieved by a trivial extension to Dijkstra’s algorithm,

resulting in Õ(n2/3) query time (In contrast, FR-Dijkstra has no known extension for counting

shortest paths). The following lemma proves the correctness of our labeling scheme.

Lemma 4. Every shortest path from u to v in G \ {f} is represented exactly once in the query

graphs G1, G2, G3.

Proof. The same argument as in the correctness subparagraph proves that every shortest path is

represented at least once in the query graphs. It remains to show that every path is represented at

most once. Let us consider the three cases for a shortest (u, v, f)-path:

1. S includes a vertex of ∂Rf . S is not represented in G2, G3 because every path that is

represented there must avoid an ancestor of Rf . S is represented exactly once in G1 because

it has a unique decomposition into subpaths S1S2S3 where S1 is from u to the first vertex b1

of S in ∂Rf , S2 is from b1 to the last vertex b2 of S in ∂Rf , and S3 is from b2 to v.

12



2. S avoids Rf but includes a boundary vertex of some piece on T [X,Rf ]. S is not represented

in G1 because all the paths that are represented there touch Rf , it is also not represented in

G3 since every path there avoids all boundary vertices of all pieces in T [X,Rf ]. To prove that

S is represented in G2 exactly once we again show that S can be uniquely decomposed into

three subpaths in G2. Let P be the sibling of some piece Q ∈ T [X,Rf ] s.t. S visits P , and let

p ∈ ∂P ∩ S. If P is not the deepest such piece, then S also visits Q but the edge (p, v) in G2

counts only paths in G \Q, hence S is not represented as a u− p− v path in G2. If P is the

deepest such piece but p is not the first vertex in ∂P that S visits, then the u-to-p subpath of

S is not represented as an edge (u, p) in G2 since only paths in G \ (P ∪Q) ∪ {p} are.

3. S avoids all boundary vertices of all the pieces on T [X,Rf ]. S is not represented in G1, G2

because every path that is represented there touches some piece in T [X,Rf ]. It is counted

exactly once in G3 by a similar argument to case 2 above: S is counted once in G3 by the first

separator vertex that S visits in the rootmost piece that it visits. Finally, in the case where

Ru = Rv = Rf , we perform Dijkstra (with its extension for counting) on Ru \ ∂Ru.

Efficient queries for planar graphs. We can easily achieve Õ(n2/3) query-time, since this is the size

of the graphs that we construct and can thus perform Dijkstra for SSSP computations. This query

time applies to any graph family with
√
n-size separators, such as minor-free graphs. On planar

graphs, in order to perform queries more efficiently we have to assume random access to the labels of

vertices u, v and x; retrieving them would require Õ(n2/3) time. We present an Õ(
√
n)-time query

algorithm for planar graphs at the expense of increasing the labels’ size by polylogarithmic factors.

Let us now formally state the main result of [30].

Theorem 5 ([30]). Given a weighted directed planar graph G of size n and a source s ∈ V (G),

we can construct in O(n log4 n) time an O(n log4 n)-size data structure, that upon query (v, x), for

v, x ∈ V (G), returns the s-to-v distance in G \ {x} in time O(log n).

C ases 2 & 3. G2 and G3 are of size O(
√
n) and they can be constructed in O(

√
n) time from the

labels of u, v and f . We can compute SSSPs in these graphs in O(
√
n log n) time using Dijkstra’s

algorithm. We handle the subcase of Case 3 in which Ru = Rv and the sought shortest path does

not cross ∂Ru as follows. The label of u additionally stores the single-source single-failure distance

oracle of Theorem 5 for graph Ru \ (∂Ru \ {u}) and source u. It occupies Õ(r) = Õ(n2/3) additional

space. Upon query, we simply query this oracle with (v, x).
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C ase 1. This is the only involved case, as G1 can be of size Θ(r) = Θ(n2/3) and we aim at

performing SSSP computations in time Õ(
√
n). Let us note that the distances of u to ∂Rf \ {f}

in the case that Ru = Rf can be computed in time Õ(
√
r) = Õ(n1/3) if we have stored the oracle

of Theorem 5 for graph Ru and source u in the label of u. The case Rv = Rf can be treated

analogously.

In order to perform efficient SSSP computations we resort to FR-Dijkstra (Theorem 2). We

first make a minor modification to item (iii) of the label so that the Monge property required

for FR-Dijkstra is satisfied: instead of storing ∂Ru-to-∂Ru distances in G \ {u}, we instead store

∂Ru-to-∂Ru distances in Ru \{u} and ∂Ru-to-∂Ru distances in G\ ((Ru \∂Ru)∪{u}). This ensures

that the set of vertices over which the DDGs are built lie on a constant number of faces of the

reference graph. The size of the label is unaffected by this modification. We can then use Theorem 2

in a straightforward way to compute the sought shortest path in time Õ(
√
r) = Õ(n1/3).

Efficient preprocessing for planar graphs. The labels can be naively constructed in O(n2) time.

This is true for any graph family with
√
n-size separators. For planar graphs, we show that the

construction time can be improved to Õ(n5/3).

The complete recursive decomposition of G, required for item (i), can be computed in O(n)

time [40]. For the rest of the items, we use MSSP data structure for an appropriate subgraph of G,

or of the reverse graph of G, i.e. G with all its edges reversed.

The multiple-source shortest paths (MSSP) data structure [34] represents all shortest path trees

rooted at the vertices of a single face g in a planar graph. It can be constructed in O(n log n) time,

requires O(n log n) space, and can report any distance between a vertex of f and any other vertex in

the graph in O(log n) time. Using a simple modification of the underlying graph, presented in [31],

we can ensure that MSSP returns the length of the shortest path that is internally disjoint from a

prespecified subset of the vertices of g.

To compute the information required for item (ii) of the labels, we build an MSSP data structure

for the reverse graph of G \ (R \ ∂R) for each piece R in the r-division and each of the O(1) holes g

on which the vertices of ∂R lie. We then query the sought distances. The time required to construct

the MSSP data structures is Õ(n2/r) = Õ(n4/3) and the time required for computing the distances

is Õ(n2/
√
r) = Õ(n5/3). The precomputations for items (iii), (iv) and the first part of item (v) can

be done analogously –for item (iii) we store the distances described in the description of the efficient
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query implementation.

For the second part of item (v), we can not make use of MSSP, as the shortest path from u to

p ∈ Sep(P ) is allowed to cross Sep(P ). We can instead build an Õ(|P |)-size exact distance oracle

for P \ ∂P in Õ(|P |3/2) time that answers distance queries in Õ(|P |ε) time, for any constant ε > 0

([45]); we pick ε = 1/6. We then query this oracle for the all distances we need to compute in

P \ ∂P . Over all pieces, the preprocessing time is Õ(n3/2) and the sought distances are retrieved in

Õ(n3/2 · n1/6) = Õ(n5/3)

To wrap up, the global preprocessing time is Õ(n5/3) and is upper bounded by the total size of

the labels up to polylogarithmic factors. The following theorem concludes this section.

Theorem 6. Given a directed planar graph G of size n, with real edge-lengths, in overall Õ(n5/3)

time we can assign an Õ(n2/3)-size label to each vertex of G such that upon query (u, v, x), where

u, v, x ∈ V (G), the length of the shortest u-to-v path in G \ {x} can be computed in Õ(
√
n) time

from the labels of u, v and x.

4. Labeling for Counting Shortest Paths

In this section we design labels such that given the labels of any k + 2 vertices s, t, v1, v2, . . . , vk,

we should return the number of s-to-t paths that avoid vertices v1, . . . , vk and whose length is equal

to d(s, t) (the original s-to-t distance in G). Note that this is the same as returning the number

of shortest s-to-t paths in G \ {v1, v2, . . . , vk} only if the length of the shortest s-to-t path does

not change when {v1, v2, . . . , vk} fail. We show that the labeling of [37] (with labels of size O(
√
n))

actually works in this more general setting and show how to perform a query in Õ(
√
n · k) time. We

assume in this section that edge weights are positive. Formally, we show the following result:

Theorem 7. Given a directed planar graph G of size n, with real positive edge-lengths and a

positive integer k, we can assign a label to each vertex of G that consists of O(
√
n) machine words,

each long enough to store the number of shortest paths between any two vertices in G, such that

upon query (s, t, v1, v2, . . . , vk), where s, t, , v1, v2, . . . , vk ∈ V (G), the number of s-to-t paths in

G \ {v1, v2, . . . , vk} that have length equal to the distance from s to t in G can be computed in

Õ(
√
n · k) time from the labels of s, t, v1, v2, . . . , vk.

The label. We first compute a complete recursive decomposition of G. The label of each vertex u in

G then consists of the following information:
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(i) For each ancestor piece P of u, for every v ∈ Sep(P ), the number p1(u, v) and length d1(u, v)

of all u-to-v shortest paths in P \ Sep(P ) ∪ {v}.

(ii) For each ancestor piece P of u, for every v ∈ Sep(P ), the number p2(v, u) and length d2(v, u)

of all v-to-u shortest paths in P \ ∂P .

In what follows, in the case that v is in many separators of ancestor pieces of u, when referring

to d1(u, v), p1(u, v), d2(v, u) and p2(v, u) we mean the values computed for the rootmost such piece.

The query - without faults. When there are no faulty vertices, every s-to-t shortest path Qst in G is

uniquely determined by a piece P in the recursive decomposition and a vertex v ∈ Sep(P ). The

piece P is the rootmost ancestor piece of s in the recursive decomposition s.t. Qst visits Sep(P )

and therefore does not visit ∂P . Such a piece P must be an ancestor of both s and t. The vertex

v ∈ Sep(P ) is the first vertex of Sep(P ) visited by Qst. Qst can thus be decomposed into a prefix Q1

in P \Sep(P )∪ {v} from s to v, and a suffix Q2 in P \ ∂P from v to t. For every possible v we have

the number of such Q1 in (i) of s and the number of such Q2 in (ii) of t. We therefore add the term

p1(s, v) · p2(v, t) to the answer. However, we only wish to add this term if d(s, v) + d(v, t) = d(s, t)

(otherwise, we are counting non-shortest paths). We have d(s, v) + d(v, t) from the labels of s and

t. We compute d(s, t) as follows. Let A[u] be the union of separator vertices of all ancestors of u.

Then

d(s, t) = min
v∈A[s]∩A[t]

(d1(s, v) + d2(v, t)), (1)

and the overall query is computed as

paths(s, t) =
∑

v∈A[s]∩A[t] s.t
d1(s,v)+d2(v,t)=d(s,t)

p1(s, v) · p2(v, t) (2)

It takes Õ(
√
n) time to perform such query because there are O(

√
n) vertices in A[s] ∩A[t] and

for each of them we perform Õ(1) calculations. We also compute d(s, t) beforehand in Õ(
√
n) time.

The query - with faults. We begin with an Õ(
√
n ·k2) time query and then improve this to Õ(

√
n ·k).

We order the faulty vertices in the increasing order of their distances from s in G, and index them

v1, . . . , vk accordingly. For convenience we refer to s as v0 and to t as vk+1. Denote by R[j] the

number of s-to-vj shortest paths in G that avoid v1, . . . , vj−1. Denoting by paths(vi, vj) the number
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of vi-to-vj shortest paths in G we obtain the recurrence:

R[j] = paths(s, vj) −
∑

i<j s.t.
d(s,vi)+d(vi,vj)=d(s,vj)

R[i] · paths(vi, vj) (3)

To see why this recurrence holds, it suffices to show that every shortest path Qsvj in G from s to vj

that visits at least one of v1, . . . , vj−1 is counted in the second term exactly once. It is clear that

every such path is counted at least once, because it can be decomposed into a prefix composed of a

shortest path from s to the first vi that Qsvj visits (i.e. is counted by R[i]) and a suffix composed of

a vi-to-vj path (i.e. counted by paths(vi, vj)). To see why every path Qsvj is counted at most once,

notice that every such path visits the faulty vertices monotonically with respect to their ordering.

In other words, if Qsvj visits some vi and then some vj then i < j. This holds because if vi is on a

shortest path from s to vj then d(s, vi) < d(s, vj), and by our ordering of the faulty vertices i < j.

Since R[i] only counts paths that are internally disjoint from failed vertices, the only time Qsvj is

counted is when we count paths of the form s vi  vj , where vi is the first faulty vertex Qsvj

visits.

Given R[1], . . . , R[j − 1] we can compute R[j] in Õ(
√
n · j) using the recurrence. For each faulty

vertex vi with i < j we perform a paths(vi, vj) query as described above which takes Õ(
√
n) time,

so the overall complexity is Õ(
√
n · k2).

Improved query time. We now show how to improve the query time from Õ(
√
n · k2) to Õ(

√
n · k).

In order to achieve this, we cannot afford to compute paths(vi, vj) for every pair i, j. Instead, we

will express R[j] as a summation over O(
√
n) terms that we can compute in Õ(1) time.

By combining equations (2) and (3), and since paths(s, vj) can be computed in Õ(
√
n) time, we get

that computing R[j] boils down to computing the following double summation:∑
i<j s.t.

d(s,vi)+d(vi,vj)=d(s,vj)

R[i]
∑

v∈A[vi]∩A[vj ] s.t
d1(vi,v)+d2(v,vj)=d(vi,vj)

p1(vi, v) · p2(v, vj) (4)

The above sum counts all s-to-vj shortest paths Qsvj that can be decomposed into three parts:

Q1 - a shortest s-to-vi path in G (for some vi) that avoids v1, . . . , vi−1.

Q2 - a shortest vi-to-v path in P \ Sep(P ) ∪ {v} for some v ∈ Sep(P ), where P is defined as the

rootmost ancestor of vi s.t. Q touches Sep(p) (v is the first vertex of Sep(P ) in Q2).

Q3 - a shortest v-to-vj path in P \ ∂P .
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We use the same decomposition into Q1, Q2, Q3 but sum the terms differently. Denoting D(s, v) =

mini(d(s, vi) + d1(vi, v)) we compute:∑
v∈A[vj ] s.t.

D(s,v)+d2(v,vj)=d(s,vj)

p2(v, vj)
∑

i<j s.t. v∈A[vi] and
d(s,vi)+d1(vi,v)=D(s,v)

R[i] · p1(vi, v) (5)

Let us explain equation (5). Denote the inner summation term (in blue) as Fj(v). Fj(v) counts the

number of combinations for Q1Q2 by iterating over every faulty vertex vi where i < j and v ∈ A[vi].

For a fixed vi, the number of such combinations is R[i] · p1(vi, v). Among all Q1Q2 combinations,

we only want to sum combinations Q1Q2 that have length d(s, v). Ideally, this could be imposed by

adding the condition d(s, vi)+d1(vi, v) = d(s, v) to the inner sum. However, we cannot compute d(s, v)

because we do not have the label of v. Instead, we add the condition d(s, vi) + d1(vi, v) = D(s, v)

where D(s, v) = mini(d(s, vi) + d1(vi, v)) (observe that D(s, v) ≥ d(s, v)). This condition is easy

to check using d1(vi, v) stored in the label of vi and the value d(s, vi) which can be computed

beforehand using equation (1). The counting remains correct because in the outer sum we check that

D(s, v) + d2(v, vj) = d(s, vj) which only holds if D(s, v) = d(s, v) (because when D(s, v) > d(s, v)

then by the triangle inequality we have that D(s, v) +d2(v, vj) > d(s, v) +d2(v, vj) ≥ d(s, vj)). Note

that even if D(s, v) = d(s, v) it may be that D(s, v) + d2(v, vj) > d(s, vj). This happens in the case

that there are no s-to-vj shortest paths that visit v. In other words, we check that a path Q1Q2Q3

is shortest by verifying that d(s, vi) + d1(vi, v) + d2(v, vj) = d(s, vj). This is true iff D(s, v) = d(s, v)

and d2(v, vj) = d(v, vj) which means that Q1Q2Q3 is indeed a shortest path.

Observe that in the inner sum we consider only i < j. This is because for i ≥ j none of the

paths from s to vj that visit vi is shortest due to the ordering of the faulty vertices.

As for the outer sum, it counts the number of Q3 paths for every v ∈ A[vj ]. Overall, we iterate

over every v ∈ A[vj ] and multiply Fj(v) (the number of Q1Q2 paths) by p2(v, vj) (the number of

Q3 paths) and obtain the answer.

Overall, in the j-th iteration we compute R[j] using the Fj(v) values according to equation (5).

Notice that Fj+1(v) is either equal to Fj(v) or to Fj(v) +R[j] · p1(vj , v). We can therefore compute

Fj+1(v) for every v ∈ A[vj ] using the just computed R[j] and Fj(v). This takes total Õ(
√
n) time

and Õ(
√
n · k) time over all the k + 2 iterations.

In order to check the distance restrictions in the summations we precompute d(s, vj) for every

0 ≤ j ≤ k + 1 and D(s, v) for every v ∈
⋃

0≤i≤k+1A[vi]. The former (d(s, vj)) is computed using

(1), and the latter (D(s, v)) is computed by iterating over every i and v ∈ A[vi] and maintaining the
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minimum value for each D(s, v). Thus, the precomputation of D(s, v) and d(s, vj) takes Õ(
√
n · k)

time.

5. A Lower Bound on Labels for Counting Shortest Paths

In this section we show a lower bound of Ω(
√
nL) bits on the label-size for counting shortest paths

(without faults) in undirected planar graphs, when the number of distinct shortest paths between

any two vertices consists of at most L bits. The proof is a modification of the grid construction of

Gavoille et al. [14] for standard distance labeling:

The grid construction of Gavoille et al. [14]. Consider a (
√
n+1)×(

√
n+1) grid consisting of vertices

vi,j , for all i, j = 0, 1, . . . ,
√
n such that i+ j > 0. For every i = 1, 2, . . . ,

√
n and j = 0, 1, . . . ,

√
n− 1

we add an edge (vi,j , vi,j+1). For all i, j = 1, 2, . . . ,
√
n we add an edge (vi,j , vi−1,j). The vertices

si = vi,0 for i = 1, 2, . . . ,
√
n are called sources, and the vertices tj = v0,j for j = 1, 2, . . . ,

√
n are

called targets. Then, for all i, j = 1, 2, . . . ,
√
n we subdivide the edge (vi,j−1, vi,j) by inserting a new

vertex v′i,j , and similarly for all i, j = 1, 2, . . . ,
√
n we subdivide the edge (vi,j , vi−1,j) by inserting a

new vertex v′′i,j . We set the weight of every edge (vi,j−1, v
′
i,j) to be n− i, and the weight of every

edge (v′′i,j , vi−1,j) to be n− j. The weight of each other edge is 1.

It is easy to verify that the shortest path from the i-th source si to the j-th target tj consists of

2j horizontal edges followed by 2i vertical edges. Moreover, one can encode any
√
n×
√
n boolean

matrix M by inserting a (shortcut) edge (of weight 1) from s = v′i,j to t = v′′i,j if and only if

M [i, j] = 1. This way, the shortest si-to-tj path is shorter by one (i.e. uses the shortcut edge) if

and only if M [i, j] = 1. Since there are 2n boolean matrices, the total label size of all sources and

targets must be at least log(2n) = n and hence some label must be of size Ω(
√
n).

Theorem 8. Any labeling scheme for counting shortest paths in planar graphs such that the number

of distinct shortest paths between any two vertices consists of at most L bits requires labels consisting

of Ω(
√
nL) bits.

Proof. Let us consider a (
√
m+1)×(

√
m+1) grid graph as in the above grid construction of Gavoille

et al. [14]. In every intersection, instead of a single s-to-t shortcut, we introduce an O(L)-size gadget

– essentially the one described in the proof of Fact 1.

More specifically, suppose that we are given L− 1 bits b0, . . . , bL−2. Each edge of the gadget will

have weight equal to 1/L. The gadget consists of a path s = u0 − u1 − · · · − uL−1 and another path
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v1−v2−· · ·−vL = t in which every edge is duplicated (i.e. there are two parallel edges between each

pair vi, vi+1). Finally, for every i = 0, . . . , L− 2 such that bi = 1, we add an edge ui − vi+1. The

number of shortest s-to-t paths in the gadget is exactly
∑L−2
i=0 bi · 2L−1−i. Note that this number is

congruent to 0 modulo 2. The size of the graph is n = Θ(mL).

Now, the number of shortest paths from the i-th source vertex si to the j-th target vertex tj is 1

if all bi’s are equal to 0 for the gadget at intersection (i, j); otherwise it is equal to
∑L−2
i=0 bi · 2L−1−i.

Hence, each pair (i, j) allows us to recover Θ(L) distinct bits. Thus, the total label size of

all sources and targets must be at least log(2mL) = mL and hence some label must be of size

Ω(
√
mL) = Ω(

√
nL).

We leave the problem of closing the gap between this Ω(
√
nL) lower bound and the O(

√
nL)

upper bound open for further investigation.

6. A Lower Bound on Dynamic Oracles for Counting Shortest Paths

In this section we consider dynamic oracles for counting shortest paths (without faults) in

undirected planar graphs. That is, data structures that can support queries for counting shortest

paths as well as updates to the edge weights. We show a lower bound conditioned on the hardness

of Online Boolean Matrix-Vector Multiplication (OMv):

Conjecture 9 (OMv Conjecture, [46]). For every ε > 0, there is no O(N3−ε)-time algorithm that

given an N ×N boolean matrix M and a stream of boolean vectors v1, . . . , vN computes the products

Mvi online (i.e. computes Mvi before seeing vi+1).

Based on the above conjecture, we prove that for any dynamic shortest paths counting oracle

in undirected planar graphs, either the query time or the update time must be Ω(
√
n) (up to

subpolynomial factors).

Theorem 10. A dynamic shortest paths counting oracle in undirected n-vertex planar graphs with

amortized query time q(n) and update time u(n) cannot have q(n) + u(n) = O(n1/2−ε) for any ε > 0

unless the OMv conjecture is false. This holds even if we only allow edge-weight increments and

decrements by 1.

Proof. Our proof follows closely the proof of Abboud-Dahlgaard [47] for dynamic oracles reporting

(i.e. not counting) shortest paths. There are a few subtle differences, but the main difference
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is that [47] was based on min-plus vector-matrix multiplication while ours is based on standard

vector-matrix multiplication.

Encoding the matrix as a grid. We consider a
√
n ×
√
n boolean matrix M (i.e. N =

√
n in

Conjecture 9) and encode it using a (
√
n+ 1)× (

√
n+ 1) grid GM . For convenience, we index the

rows and columns of M as 1, . . . ,
√
n and the rows and columns of GM as 0, . . . ,

√
n. The grid GM

contains:

1. All horizontal edges of the form ((i, j), (i, j + 1)) except for ((0, j), (0, j + 1)) (i.e. except for

the first grid row). All these edges have the same weight
√
n.

2. All vertical edges of the form ((i, j), (i+ 1, j)) except for ((i,
√
n), (i+ 1,

√
n)) (i.e. except for

the last grid column). The weight of edge ((i, j), (i+ 1, j)) is j + 1.

3. If Mi,j = 1 we add an edge ei,j = ((i− 1, j − 1), (i, j)) with weight
√
n+ j.

Denote the vertices of the first row (0, j) as sj and vertices of the last column (i,
√
n) as ti.

Consider the shortest sj-to-ti path. It is easy to see that if Mi,j+1 = 0 then this path is (1) unique,

(2) composed of a vertical prefix and and a horizontal suffix, and (3) is of length
√
n(
√
n−j)+i(j+1).

If however Mi,j+1 = 1 then there are exactly two such shortest paths (one using ei,j and the other

using ((i− 1, j − 1), (i, j − 1)) followed by ((i, j − 1), (i, j))) both of length
√
n(
√
n− j) + i(j + 1).

The zero matrix grid. We would like to make the length of the above shortest paths independent of

i and j. We define another (
√
n+ 1)× (

√
n+ 1) grid G0 that has no diagonal edges and contains:

1. All horizontal edges of the form ((i, j), (i, j + 1)) except for ((0, j), (0, j + 1)) (i.e. except for

the first grid row). All these edges have the same weight
√
n.

2. All vertical edges of the form ((i, j), (i+ 1, j)) except for ((i, 0), (i+ 1, 0)) (i.e. except for the

first grid column). The weight of edge ((i, j), (i+ 1, j)) is
√
n− j + 1.

Denote the vertices of the first column (i, 0) of G0 as s′i and vertices of the first row (0, j) of G0

as t′j . The graph G on which we build the oracle is obtained by connecting the two grids G0 and

GMt (the grid representation of the transpose of M). This is done by adding edges bi = (ti, s
′
i) of

weight w(bi) = (
√
n+ 1)(

√
n− i) for every 1 ≤ i ≤

√
n.
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The reduction. In order to solve the OMv problem, for each query vector v[1, . . . ,
√
n], if v is the

all-zero vector we simply output an all-zero vector. Otherwise, we (1) reset the weight w(bi) of

every bi to be (
√
n+ 1)(

√
n− i), (2) for every i, if v[i] = 0 we increase the weight of bi by 1, and (3)

for every index 0 ≤ j <
√
n we query the oracle for the number of shortest paths from sj to t′j+1.

Finally, we decrease the oracle’s answer by the number of 1’s in v and assign this value as the j-th

entry in the result Mv.

To see why the above procedure correctly calculates Mv, first note that the j-th entry in Mv is

exactly the number of indices 1 ≤ i ≤
√
n s.t. ei,j is present in GMt and v[i] = 1. The length of

the shortest path from sj to t′j+1 through an edge bk is d(sj , tk) + w(bk) + d(s′k, t
′
j+1) = 2n+ 2

√
n.

This value is independent of both j and k, so for each 1 ≤ k ≤
√
n we have a unique shortest path

through bk if ek,j+1 is absent in G or exactly two shortest paths if ek,j+1 is present in G. In step (2),

when we increase by 1 the edges bi corresponding to entries in v where v[i] = 0, paths going through

these bi’s are longer than paths going through other bi’s and are therefore not shortest (we made

sure that v is not all-zero). Hence, every bi that corresponds to v[i] = 1 contributes 1 +M t
i,j+1 to

the number of shortest paths from sj to t′j+1, and by subtracting the number of 1’s in v we obtain

the correct answer.

Overall, for each vector we perform O(
√
n) updates and queries, so overall we perform O(n)

updates and queries. If each update/query takes O(n0.5−ε) time then we get overall O(n1.5−ε) =

O(N3−ε/2) contradicting Conjecture 9.

7. Conclusions and Open Problems

Our main contribution in this paper is a single-fault distance labeling scheme for planar graphs

with label size Õ(n2/3), query time Õ(
√
n), and construction time Õ(n5/3).

The main open question that is left unanswered by our work is the existence of non-trivial multiple-

fault distance labels (tolerating more than a single fault). Labels for approximate distances [26] also

rely on separators, and do handle multiple failures. In the failure-free case, the labels of [26] consist

of distances to a small (logarithmic) sample of vertices on some separators, called connections. To

handle failures, the label of each vertex u also stores the failure-free labels of the connections of u.

This only increases the label-size by a polylogarithmic factor. In case of exact distances, the size of

the failure-free labels is Ω(
√
n), so this approach seems unsuitable.

22



Another natural open question is whether the gap between our O(n2/3)-size fault-tolerant labels

and the O(n1/2)-size labels without failures is actually required and tight. We observe that the

existing lower bound technique of Gavoille et al. cannot be extended to show a lower bound above

Ω(
√
n) for fault-tolerant labels. The reason is that their technique uses a global argument showing

that if we wish to encode the distances between a subset S of k ≤
√
n vertices then all their labels

together require size Ω(k2). However, even in the presence of (any number of) failures, encoding

distances can be done with total size Õ(k2) (simply store for every u, v ∈ S the length of the shortest

u-to-v path that is internally disjoint from S).
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[15] P. Gawrychowski, P. Uznański, Better distance labeling for unweighted planar graphs, in: 17th

WADS, 2021, pp. 428–441. doi:10.1007/978-3-030-83508-8\_31.

[16] C. Gavoille, M. Katz, N. A. Katz, C. Paul, D. Peleg, Approximate distance labeling schemes,

in: 9th ESA, 2001, pp. 476–487. doi:10.1007/3-540-44676-1\_40.

[17] A. Gupta, A. Kumar, R. Rastogi, Traveling with a pez dispenser (or, routing issues in MPLS),

in: 42nd FOCS, 2001, pp. 148–157. doi:10.1109/SFCS.2001.959889.

[18] M. Thorup, Compact oracles for reachability and approximate distances in planar digraphs,

Journal of the ACM 51 (6) (2004) 993–1024. doi:10.1145/1039488.1039493.

[19] I. Abraham, C. Gavoille, Object location using path separators, in: 25th PODC, ACM, 2006,

pp. 188–197. doi:10.1145/1146381.1146411.

[20] J. Feigenbaum, D. R. Karger, V. S. Mirrokni, R. Sami, Subjective-cost policy routing, in: 1st

WINE, 2005, pp. 174–183. doi:10.1007/11600930\_18.

[21] J. Feigenbaum, D. R. Karger, V. S. Mirrokni, R. Sami, Subjective-cost policy routing, Theor.

Comput. Sci. 378 (2) (2007) 175–189. doi:10.1016/j.tcs.2007.02.020.

24

https://doi.org/10.1145/1721837.1721855
https://doi.org/10.1016/j.tcs.2005.03.015
https://doi.org/10.1016/j.jalgor.2004.05.002
https://doi.org/10.1007/978-3-030-83508-8_31
https://doi.org/10.1007/3-540-44676-1_40
https://doi.org/10.1109/SFCS.2001.959889
https://doi.org/10.1145/1039488.1039493
https://doi.org/10.1145/1146381.1146411
https://doi.org/10.1007/11600930_18
https://doi.org/10.1016/j.tcs.2007.02.020


[22] A. D. Twigg, Compact forbidden-set routing, Tech. Rep. UCAM-CL-TR-678, University of

Cambridge, Computer Laboratory (Dec. 2006).

URL https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-678.pdf
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