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• Find minimal substrings of S containing P as a subsequence

• The minimal substrings of S which contain P as a

subsequence are shown in blue: S [6, 16] and S [39, 44]
• We consider a version of the problem where the goal is to find

the length of the shortest substring of S containing P as a

subsequence
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Complexities - Algorithms

• |P | = m, |S | = n

• (Old) upper bound: O (nm/log n) (Das et al. [DFG+97])

• This work: no O (nm1−𝜖 ) or O (n1−𝜖m) algorithm assuming

OVH
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Complexities - Data structures

• Our OV reduction + Equi et al. [EMT21]: polynomial time

preprocessing does not help

• Time/Space tradeoffs:

space time

[AA02] O (n) O (∑m
i=1 dist occ (Pi ) · i)

This work O (n +
( n
𝜏

)k ) O (k · 𝜏 · log log n) m = k fixed

This work Ω(nk−k 𝛿−o (1) ) O (n𝛿) m = k fixed

• dist occ (Pi ) is the number of distinct minimal substrings

containing P [1] . . .P [i] as a subsequence

• Conditional lower bound based on hardness of k−Set
Disjointness
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Complexities - Special case |P | = 2

• This work: Faster preprocessing for decision version using

min-plus matrix multiplication
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Orthogonal Vectors

• Two sets A,B of d-dimensional, binary vectors, each set has

size n

• Problem: Decide if there is a vector in A that is orthogonal to

a vector in B

• OVH: There is no algorithm running in time O (n2−𝜖 poly(d))
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OV→ Episode Matching

• build P from B: for b ∈ B, seperate each coordinate by new

letter x

eg: 101 → 1x0x1

• concatenate and separate by new letter y

eg: B = {101, 111, 110},
P = 1x0x1y1x1x1y1x1x0

• Length of P = O (nd)
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OV→ Episode Matching

• build S from A: for a ∈ A,

0 → 01

1 → 00

separate each coordinate by letter x

eg: 100 → 00x01x01

• let b1 = 010, b2 = 110, a = 100

• b1 and a are orthogonal

• 0x1x0 is a subsequence of 00x01x01

• b2 and a are not orthogonal

• 1x1x0 is not a subsequence of 00x01x01
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OV→ Episode Matching

a s(a) b p(b)

010 01x00x01 010 0x1x0

• to build S as follows:

• let z be the d-dimensional 0 vector

• ⇒ s (z) = 01x01x . . . x01

• S =

s (a1)ys (z)ys (a2)ys (z)y . . . s (an)ys (z)ys (a1)ys (z)y . . . s (n)
• Length of S = O (nd)
• |P | |S |1−𝜖 = O (n2−𝜖 d2−𝜖 )

|P |1−𝜖 |S | = O (n2−𝜖 d2−𝜖 )
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OV→ Episode Matching

a s(a) b p(b) z s(z)

010 01x00x01 010 0x1x0 000 01x01x01

No orthogonal vectors:

y s (z) y s (ai−1) y s (z) y s (ai ) y s (z) y s (ai+1) y s (z) y

y p(bj−1) y p(bj ) y p(bj+1) y p(bj+2) y
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OV→ Episode Matching

a s(a) b p(b) z s(z)

010 01x00x01 010 0x1x0 000 01x01x01

ai , bj orthogonal:

y s (z) y s (ai−1) y s (z) y s (ai ) y s (z) y s (ai+1) y s (z) y

y p(bj−2) y p(bj−1) y p(bj ) y p(bj+1) y p(bj+2) y
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OV→ Episode Matching

S = s (a1)ys (z)ys (a2)ys (z)y . . . s (an)ys (z)ys (a1)ys (z)y . . . s (an)

• ai ⊥ bj

• j < i : “overflow” to the right

• j > i : “overflow” to the left
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Binary alphabet

• replace x and y by binary gadgets

15



Space/time trade-off

• |P | = k fixed at preprocessing

• Upper bound: Space: O (n +
( n
𝜏

)k ), Time: O (k · 𝜏 · log log n)
m = k

• Conditional lower bound: Space: Ω(nk−k 𝛿−o (1) ), Time: O (n𝛿)

16



Space/time trade-off, Lower bound

Definition (k-Set Disjointness Problem)
Preprocess m sets S1, S2, . . . , Sm of total size

∑m
i=1 |Si | = N drawn

from a universe U such that given (i1, i2, . . . , ik ) we can quickly

decide whether
⋂k

j=1 Sij = ∅.

• Up to logN factors equivalent to the problem where every

element appears in the same number of sets [BGPS21]

Conjecture (Strong k-Set Disjointness Conjecture)

Any data structure for the k-Set Disjointness Problem that

answers queries in time T must use Ω̃
(
Nk/T k

)
space.

17
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Space/time trade-off, Lower bound

S1 = {1, 3, 4} 𝛼1

S2 = {2} 𝛼2

S3 = {1, 2, 3, 4} 𝛼3

S4 = {2, 4} 𝛼4

S5 = {1, 3} 𝛼5

S = 𝛼1𝛼3𝛼5︸  ︷︷  ︸
1

$$$ 𝛼2𝛼3𝛼4︸  ︷︷  ︸
2

$$$ 𝛼1𝛼3𝛼5︸  ︷︷  ︸
3

$$$ 𝛼1𝛼3𝛼4︸  ︷︷  ︸
4

S1 ∩ S4 = ∅?
P1 = 𝛼1𝛼4

S2 ∩ S5 = ∅?
P2 = 𝛼2𝛼5

18
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Space/time trade-off, upper bound

• Space=O (n +
( n
𝜏

)k ), Time= O (k · 𝜏 · log log n)

• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))
• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS
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Thank you!

Contact: teresa.anna.steiner@univie.ac.at
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