The Fine-Grained Complexity of Episode Matching

June 24, 2022

Philip Bille, Inge Li Gørtz, Shay Mozes, Teresa Anna Steiner, Oren Weimann

Episode Matching

$P=$ ANANAS
$S=\underset{0}{\text { BATMAN }} \operatorname{AND}_{10}$ ANNA $_{15} \operatorname{SING} \underset{20}{\text { NANANANA }} \underset{25}{\text { AND }} \underset{35}{\text { EAT }} \underset{40}{\text { BANANAS }}$

Episode Matching

$$
\begin{aligned}
& P=\text { ANANAS } \\
& S=\underset{0}{\text { BATMAN }}{ }_{5} \text { AND }_{10} \text { ANNA }_{15} \text { SING }{ }_{20}^{\text {NANANANA }} \underset{25}{\text { AND }} \underset{30}{\text { EAT }} \underset{35}{\text { BANANAS }}
\end{aligned}
$$

- Find minimal substrings of S containing P as a subsequence

Episode Matching

- Find minimal substrings of S containing P as a subsequence
- The minimal substrings of S which contain P as a subsequence are shown in blue: $S[6,16]$ and $S[39,44]$

Episode Matching

$$
\begin{aligned}
& P=\text { ANANAS } \\
& S=\underset{0}{\text { BATMAN }}{ }_{5} \text { AND }_{10} \text { ANNA }_{15} \text { SING }{ }_{20} \text { NANANAANA }_{25}^{\text {AND }} \underset{30}{\text { EAT }} \underset{35}{\text { BANANAS }}
\end{aligned}
$$

- Find minimal substrings of S containing P as a subsequence
- The minimal substrings of S which contain P as a subsequence are shown in blue: $S[6,16]$ and $S[39,44]$
- We consider a version of the problem where the goal is to find the length of the shortest substring of S containing P as a subsequence

Complexities - Algorithms

- $|P|=m,|S|=n$

Complexities - Algorithms

- $|P|=m,|S|=n$
- (Old) upper bound: $O(n m / \log n)$ (Das et al. [DFG $\left.\left.{ }^{+} 97\right]\right)$

Complexities - Algorithms

- $|P|=m,|S|=n$
- (Old) upper bound: $O(n m / \log n)$ (Dis et al. [DFG $\left.\left.{ }^{+} 97\right]\right)$
- This work: no $O\left(n m^{1-\epsilon}\right)$ or $O\left(n^{1-\epsilon} m\right)$ algorithm assuming OVH

Complexities - Data structures

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help

Complexities - Data structures

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

Complexities - Data structures

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

Complexities - Data structures

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

	space	time	
[AA02]	$O(n)$	$O\left(\sum_{i=1}^{m} \operatorname{dist}\right.$ _occ $\left.\left(P_{i}\right) \cdot i\right)$	
This work	$O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$	$O(k \cdot \tau \cdot \log \log n)$	$m=k$ fixed
This work	$\Omega\left(n^{k-k \delta-o(1)}\right)$	$O\left(n^{\delta}\right)$	$m=k$ fixed

Complexities - Data structures

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

	space	time	
[AA02]	$O(n)$	$O\left(\sum_{i=1}^{m} \operatorname{dist_ occ}\left(P_{i}\right) \cdot i\right)$	
This work	$O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$	$O(k \cdot \tau \cdot \log \log n)$	$m=k$ fixed
This work	$\Omega\left(n^{k-k \delta-o(1)}\right)$	$O\left(n^{\delta}\right)$	$m=k$ fixed

- dist_occ $\left(P_{i}\right)$ is the number of distinct minimal substrings containing $P[1] \ldots P[i]$ as a subsequence

Complexities - Data structures

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

	space	time	
[AA02]	$O(n)$	$O\left(\sum_{i=1}^{m}\right.$ dist_occ $\left.\left(P_{i}\right) \cdot i\right)$	
This work	$O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$	$O(k \cdot \tau \cdot \log \log n)$	$m=k$ fixed
This work	$\Omega\left(n^{k-k \delta-o(1)}\right)$	$O\left(n^{\delta}\right)$	$m=k$ fixed

- dist_occ $\left(P_{i}\right)$ is the number of distinct minimal substrings containing $P[1] \ldots P[i]$ as a subsequence
- Conditional lower bound based on hardness of k-Set Disjointness

Complexities - Special case $|P|=2$

- This work: Faster preprocessing for decision version using min-plus matrix multiplication

Orthogonal Vectors

- Two sets A, B of d-dimensional, binary vectors, each set has size n
- Problem: Decide if there is a vector in A that is orthogonal to
a vector in B
- OVH: There is no algorithm running in time $O\left(n^{2-\epsilon} \operatorname{poly}(d)\right)$

OV \rightarrow Episode Matching

- build P from B : for $b \in B$, seperate each coordinate by new letter x
eg: $101 \rightarrow 1 \times 0 \times 1$

UV \rightarrow Episode Matching

- build P from B : for $b \in B$, separate each coordinate by new letter x
eg: $101 \rightarrow 1 \times 0 \times 1$
- concatenate and separate by new letter y
eg: $B=\{101,111,110\}$,
$P=1 \times 0 x 1 y 1 x 1 x 1 y 1 x 1 x 0$

UV \rightarrow Episode Matching

- build P from B : for $b \in B$, separate each coordinate by new letter x
eg: $101 \rightarrow 1 \times 0 \times 1$
- concatenate and separate by new letter y
eg: $B=\{101,111,110\}$,
$P=1 \times 0 \times 1 y 1 \times 1 \times 1 y 1 x 1 x 0$
- Length of $P=O(n d)$

OV \rightarrow Episode Matching

- build S from A : for $a \in A$,

$$
\begin{aligned}
& 0 \rightarrow 01 \\
& 1 \rightarrow 00
\end{aligned}
$$

separate each coordinate by letter x
eg: $100 \rightarrow 00 \times 01 \times 01$

OV \rightarrow Episode Matching

- build S from A : for $a \in A$,

$$
\begin{aligned}
& 0 \rightarrow 01 \\
& 1 \rightarrow 00
\end{aligned}
$$

separate each coordinate by letter x
eg: $100 \rightarrow 00 \times 01 \times 01$

OV \rightarrow Episode Matching

- build S from A : for $a \in A$,

$$
\begin{aligned}
& 0 \rightarrow 01 \\
& 1 \rightarrow 00
\end{aligned}
$$

separate each coordinate by letter x
eg: $100 \rightarrow 00 \times 01 \times 01$

- let $b_{1}=010, b_{2}=110, a=100$

OV \rightarrow Episode Matching

- build S from A : for $a \in A$,

$$
\begin{aligned}
& 0 \rightarrow 01 \\
& 1 \rightarrow 00
\end{aligned}
$$

separate each coordinate by letter x
eg: $100 \rightarrow 00 \times 01 \times 01$

- let $b_{1}=010, b_{2}=110, a=100$
- b_{1} and a are orthogonal

OV \rightarrow Episode Matching

- build S from A : for $a \in A$,

$$
\begin{aligned}
& 0 \rightarrow 01 \\
& 1 \rightarrow 00
\end{aligned}
$$

separate each coordinate by letter x
eg: $100 \rightarrow 00 \times 01 \times 01$

- let $b_{1}=010, b_{2}=110, a=100$
- b_{1} and a are orthogonal
- $0 \times 1 \times 0$ is a subsequence of $00 \times 01 \times 01$

OV \rightarrow Episode Matching

- build S from A : for $a \in A$,

$$
\begin{aligned}
& 0 \rightarrow 01 \\
& 1 \rightarrow 00
\end{aligned}
$$

separate each coordinate by letter x
eg: $100 \rightarrow 00 \times 01 \times 01$

- let $b_{1}=010, b_{2}=110, a=100$
- b_{1} and a are orthogonal
- $0 \times 1 \times 0$ is a subsequence of $00 \times 01 \times 01$
- b_{2} and a are not orthogonal

OV \rightarrow Episode Matching

- build S from A : for $a \in A$,

$$
\begin{aligned}
& 0 \rightarrow 01 \\
& 1 \rightarrow 00
\end{aligned}
$$

separate each coordinate by letter x
eg: $100 \rightarrow 00 \times 01 \times 01$

- let $b_{1}=010, b_{2}=110, a=100$
- b_{1} and a are orthogonal
- $0 \times 1 \times 0$ is a subsequence of $00 \times 01 \times 01$
- b_{2} and a are not orthogonal
- $1 \times 1 \times 0$ is not a subsequence of $00 \times 01 \times 01$

OV \rightarrow Episode Matching

a	$\mathrm{s}(\mathrm{a})$	b	$\mathrm{p}(\mathrm{b})$
010	$01 \times 00 \times 01$	010	$0 \times 1 \times 0$

- to build S as follows:

OV \rightarrow Episode Matching

a	$\mathrm{s}(\mathrm{a})$	b	$\mathrm{p}(\mathrm{b})$
010	$01 \times 00 \times 01$	010	$0 \times 1 \times 0$

- to build S as follows:
- let z be the d-dimensional 0 vector

OV \rightarrow Episode Matching

a	$\mathrm{s}(\mathrm{a})$	b	$\mathrm{p}(\mathrm{b})$
010	$01 \times 00 \times 01$	010	$0 \times 1 \times 0$

- to build S as follows:
- let z be the d-dimensional 0 vector
- $\Rightarrow s(z)=01 x 01 x \ldots x 01$

OV \rightarrow Episode Matching

a	$\mathrm{s}(\mathrm{a})$	b	$\mathrm{p}(\mathrm{b})$
010	$01 \times 00 \times 01$	010	$0 \times 1 \times 0$

- to build S as follows:
- let z be the d-dimensional 0 vector
- $\Rightarrow s(z)=01 x 01 x \ldots x 01$
- $S=$

$$
s\left(a_{1}\right) y s(z) y s\left(a_{2}\right) y s(z) y \ldots s\left(a_{n}\right) y s(z) y s\left(a_{1}\right) y s(z) y \ldots s(n)
$$

OV \rightarrow Episode Matching

a	$\mathrm{s}(\mathrm{a})$	b	$\mathrm{p}(\mathrm{b})$
010	$01 \times 00 \times 01$	010	$0 \times 1 \times 0$

- to build S as follows:
- let z be the d-dimensional 0 vector
- $\Rightarrow s(z)=01 x 01 x \ldots x 01$
- $S=$ $s\left(a_{1}\right) y s(z) y s\left(a_{2}\right) y s(z) y \ldots s\left(a_{n}\right) y s(z) y s\left(a_{1}\right) y s(z) y \ldots s(n)$
- Length of $S=O(n d)$

UV \rightarrow Episode Matching

a	$\mathrm{s}(\mathrm{a})$	b	$\mathrm{p}(\mathrm{b})$
010	$01 \times 00 \times 01$	010	$0 \times 1 \times 0$

- to build S as follows:
- let z be the d-dimensional 0 vector
- $\Rightarrow s(z)=01 x 01 x \ldots x 01$
- $S=$

$$
s\left(a_{1}\right) y s(z) y s\left(a_{2}\right) y s(z) y \ldots s\left(a_{n}\right) y s(z) y s\left(a_{1}\right) y s(z) y \ldots s(n)
$$

- Length of $S=O(n d)$
- $|P||S|^{1-\epsilon}=O\left(n^{2-\epsilon} d^{2-\epsilon}\right)$
$|P|^{1-\epsilon}|S|=O\left(n^{2-\epsilon} d^{2-\epsilon}\right)$

OV \rightarrow Episode Matching

a	$\mathrm{s}(\mathrm{a})$	b	$\mathrm{p}(\mathrm{b})$	z	$\mathrm{s}(\mathrm{z})$
010	$01 \times 00 \times 01$	010	$0 \times 1 \times 0$	000	$01 \times 01 \times 01$

No orthogonal vectors:

$$
\begin{array}{llllllllll}
y & s(z) & y & s\left(a_{i-1}\right) & y & s(z) & y & s\left(a_{i}\right) & y & s(z) \\
y & p\left(b_{j-1}\right) & & y & p\left(b_{j}\right) & & & y\left(a_{i+1}\right) \\
& & p\left(b_{j+1}\right) &
\end{array}
$$

OV \rightarrow Episode Matching

a	$\mathrm{s}(\mathrm{a})$	b	$\mathrm{p}(\mathrm{b})$	z	$\mathrm{s}(\mathrm{z})$
010	$01 \times 00 \times 01$	010	$0 \times 1 \times 0$	000	$01 \times 01 \times 01$

a_{i}, b_{j} orthogonal:
$\begin{array}{llllllllll}y & s(z) & y & s\left(a_{i-1}\right) & y & s(z) & y & s\left(a_{i}\right) & \text { y } & s(z) \\ y & p\left(b_{j-2}\right) & & & \text { y } p\left(b_{j-1}\right) & \text { y } s\left(a_{i+1}\right) \\ p\left(b_{j}\right) & \text { y } p\left(b_{j+1}\right) & \end{array}$

OV \rightarrow Episode Matching

$$
S=s\left(a_{1}\right) y s(z) y s\left(a_{2}\right) y s(z) y \ldots s\left(a_{n}\right) y s(z) y s\left(a_{1}\right) y s(z) y \ldots s\left(a_{n}\right)
$$

- $a_{i} \perp b_{j}$
- $j<i$: "overflow" to the right
- $j>i$: "overflow" to the left

OV \rightarrow Episode Matching

$$
S=\underline{s\left(a_{1}\right) y s(z) y s\left(a_{2}\right) y s(z) y \ldots s\left(a_{n}\right) y s(z) y s\left(a_{1}\right) y s(z) y \ldots s\left(b_{n}\right)}
$$

- $a_{i} \perp b_{j}$
- $j<i$: "overflow" to the right
- $j>i$: "overflow" to the left

OV \rightarrow Episode Matching

$$
S=\underline{s\left(a_{1}\right) y s(z) y s\left(a_{2}\right) y s(z) y \ldots s\left(a_{n}\right) y s(z) y s\left(a_{1}\right) y s(z) y \ldots s\left(a_{n}\right)}
$$

- $a_{i} \perp b_{j}$
- $j<i$: "overflow" to the right
- $j>i$: "overflow" to the left

Binary alphabet

- replace x and y by binary gadgets

Space/time trade-off

- $|P|=k$ fixed at preprocessing
- Upper bound: Space: $O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time: $O(k \cdot \tau \cdot \log \log n)$ $m=k$
- Conditional lower bound: Space: $\Omega\left(n^{k-k \delta-o(1)}\right)$, Time: $O\left(n^{\delta}\right)$

Space/time trade-off, Lower bound

Definition (k-Set Disjointness Problem)
Preprocess m sets $S_{1}, S_{2}, \ldots, S_{m}$ of total size $\sum_{i=1}^{m}\left|S_{i}\right|=N$ drawn from a universe U such that given ($i_{1}, i_{2}, \ldots, i_{k}$) we can quickly decide whether $\bigcap_{j=1}^{k} S_{i j}=\emptyset$.

Space/time trade-off, Lower bound

Definition (k-Set Disjointness Problem)
Preprocess m sets $S_{1}, S_{2}, \ldots, S_{m}$ of total size $\sum_{i=1}^{m}\left|S_{i}\right|=N$ drawn from a universe U such that given ($i_{1}, i_{2}, \ldots, i_{k}$) we can quickly decide whether $\bigcap_{j=1}^{k} S_{i j}=\emptyset$.

- Up to $\log N$ factors equivalent to the problem where every element appears in the same number of sets [BGPS21]

Space/time trade-off, Lower bound

Definition (k-Set Disjointness Problem)
Preprocess m sets $S_{1}, S_{2}, \ldots, S_{m}$ of total size $\sum_{i=1}^{m}\left|S_{i}\right|=N$ drawn from a universe U such that given ($i_{1}, i_{2}, \ldots, i_{k}$) we can quickly decide whether $\bigcap_{j=1}^{k} S_{i j}=\emptyset$.

- Up to $\log N$ factors equivalent to the problem where every element appears in the same number of sets [BGPS21]

Conjecture (Strong k-Set Disjointness Conjecture)
Any data structure for the k-Set Disjointness Problem that answers queries in time T must use $\tilde{\Omega}\left(N^{k} / T^{k}\right)$ space.

Space/time trade-off, Lower bound

$$
\begin{array}{ll}
S_{1}=\{1,3,4\} & \alpha_{1} \\
S_{2}=\{2\} & \alpha_{2} \\
S_{3}=\{1,2,3,4\} & \alpha_{3} \\
S_{4}=\{2,4\} & \alpha_{4} \\
S_{5}=\{1,3\} & \alpha_{5}
\end{array}
$$

Space/time trade-off, Lower bound

$$
\begin{array}{rlrl}
S_{1} & =\{1,3,4\} & \alpha_{1} \\
S_{2} & =\{2\} & \alpha_{2} \\
S_{3} & =\{1,2,3,4\} & \alpha_{3} \\
S_{4} & =\{2,4\} & \alpha_{4} \\
S_{5} & =\{1,3\} & \alpha_{5} \\
S=\underbrace{\alpha_{1} \alpha_{3} \alpha_{5}}_{1} & \$ \$ \underbrace{\alpha_{2} \alpha_{3} \alpha_{4}}_{2} \$ \$ \$ \underbrace{\alpha_{1} \alpha_{3} \alpha_{5}}_{3} \$ \$ \$ \underbrace{\alpha_{1} \alpha_{3} \alpha_{4}}_{4}
\end{array}
$$

Space/time trade-off, Lower bound

$$
\begin{array}{rlrl}
S_{1} & =\{1,3,4\} & \alpha_{1} \\
S_{2} & =\{2\} & \alpha_{2} \\
S_{3} & =\{1,2,3,4\} & \alpha_{3} \\
S_{4} & =\{2,4\} & \alpha_{4} \\
S_{5} & =\{1,3\} & \alpha_{5} \\
S=\underbrace{\alpha_{1} \alpha_{3} \alpha_{5}}_{1} & \$ \$ \underbrace{\alpha_{2} \alpha_{3} \alpha_{4}}_{2} \$ \$ \$ \underbrace{\alpha_{1} \alpha_{3} \alpha_{5}}_{3} \$ \$ \$ \underbrace{\alpha_{1} \alpha_{3} \alpha_{4}}_{4}
\end{array}
$$

$S_{1} \cap S_{4}=\emptyset ?$

Space/time trade-off, Lower bound

$$
\begin{array}{rlrl}
S_{1} & =\{1,3,4\} & \alpha_{1} \\
S_{2} & =\{2\} & \alpha_{2} \\
S_{3} & =\{1,2,3,4\} & \alpha_{3} \\
S_{4} & =\{2,4\} & \alpha_{4} \\
S_{5} & =\{1,3\} & \alpha_{5} \\
S=\underbrace{\alpha_{1} \alpha_{3} \alpha_{5}}_{1} & \$ \$ \underbrace{\alpha_{2} \alpha_{3} \alpha_{4}}_{2} \$ \$ \$ \underbrace{\alpha_{1} \alpha_{3} \alpha_{5}}_{3} \$ \$ \$ \underbrace{\alpha_{1} \alpha_{3} \alpha_{4}}_{4}
\end{array}
$$

$S_{1} \cap S_{4}=\emptyset ?$
$P_{1}=\alpha_{1} \alpha_{4}$

Space/time trade-off, Lower bound

$$
\begin{array}{rlrl}
S_{1} & =\{1,3,4\} & \alpha_{1} \\
S_{2} & =\{2\} & \alpha_{2} \\
S_{3} & =\{1,2,3,4\} & \alpha_{3} \\
S_{4} & =\{2,4\} & \alpha_{4} \\
S_{5} & =\{1,3\} & \alpha_{5} \\
S=\underbrace{\alpha_{1} \alpha_{3} \alpha_{5}}_{1} & \$ \$ \underbrace{\alpha_{2} \alpha_{3} \alpha_{4}}_{2} \$ \$ \$ \underbrace{\alpha_{1} \alpha_{3} \alpha_{5}}_{3} \$ \$ \$ \underbrace{\alpha_{1} \alpha_{3} \alpha_{4}}_{4}
\end{array}
$$

$S_{1} \cap S_{4}=\emptyset ?$
$P_{1}=\alpha_{1} \alpha_{4}$
$S_{2} \cap S_{5}=\emptyset ?$

Space/time trade-off, Lower bound

$$
\begin{array}{ll}
S_{1}=\{1,3,4\} & \alpha_{1} \\
S_{2}=\{2\} & \alpha_{2} \\
S_{3}=\{1,2,3,4\} & \alpha_{3} \\
S_{4}=\{2,4\} & \alpha_{4} \\
S_{5}=\{1,3\} & \alpha_{5}
\end{array}
$$

$S_{1} \cap S_{4}=\emptyset ?$

$$
P_{1}=\alpha_{1} \alpha_{4}
$$

$$
S_{2} \cap S_{5}=\emptyset ?
$$

$$
P_{2}=\alpha_{2} \alpha_{5}
$$

Space/time trade-off, upper bound

- Space $=O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time $=O(k \cdot \tau \cdot \log \log n)$

Space/time trade-off, upper bound

- Space $=O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time $=O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent

Space/time trade-off, upper bound

- Space $=O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time $=O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers

Space/time trade-off, upper bound

- Space $=O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time $=O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size $=$ $O(n))$

Space/time trade-off, upper bound

- Space $=O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time $=O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size $=$ $O(n))$
- If P contains non-frequent letter, "brute-force" using predecessor / successor

Space/time trade-off, upper bound

- Space $=O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time $=O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size $=$ $O(n))$
- If P contains non-frequent letter, "brute-force" using predecessor / successor

Space/time trade-off, upper bound

- Space $=O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time $=O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size $=$ $O(n))$
- If P contains non-frequent letter, "brute-force" using predecessor / successor
$P=$ ANANAS
$S=\underset{0}{\operatorname{BATMAN}} \mathrm{AND}_{10}$ ANNA $_{15}$ SING $\underset{20}{\text { NANANANA }} \underset{25}{\text { AND }} \underset{35}{\mathrm{EAT}} \underset{40}{\text { BANANAS }}$

Space/time trade-off, upper bound

- Space $=O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time $=O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size $=$ $O(n))$
- If P contains non-frequent letter, "brute-force" using predecessor / successor
$P=$ ANANAS

Space/time trade-off, upper bound

- Space $=O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time $=O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size $=$ $O(n))$
- If P contains non-frequent letter, "brute-force" using predecessor / successor
$P=$ ANANAS

Space/time trade-off, upper bound

- Space $=O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time $=O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size $=$ $O(n))$
- If P contains non-frequent letter, "brute-force" using predecessor / successor
$P=$ ANANAS

Space/time trade-off, upper bound

- Space $=O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time $=O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size $=$ $O(n))$
- If P contains non-frequent letter, "brute-force" using predecessor / successor
$P=$ ANANAS

Space/time trade-off, upper bound

- Space $=O\left(n+\left(\frac{n}{\tau}\right)^{k}\right)$, Time $=O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size $=$ $O(n))$
- If P contains non-frequent letter, "brute-force" using predecessor / successor
$P=$ ANANAS

Thank you!

Contact: teresa.anna.steiner@univie.ac.at

References

嗇 Alberto Apostolico and Mikhail J．Atallah．
Compact recognizers of episode sequences．
Inf．Comput．，174（2）：180－192， 2002.
嗇 Philip Bille，Inge Li Gørtz，Max Rishøj Pedersen，and Teresa Anna Steiner．
Gapped indexing for consecutive occurrences．
In Proc．32nd CPM，pages 10：1－10：19， 2021.
围 Gautam Das，Rudolf Fleischer，Leszek Gasieniec，Dimitrios Gunopulos，and Juha Kärkkäinen．
Episode matching．
In Proc．8th CPM，pages 12－27， 1997.
围 Massimo Equi，Veli Mäkinen，and Alexandru I．Tomescu．
Graphs cannot be indexed in polynomial time for sub－quadratic time string matching，unless SETH fails．

