The Fine-Grained Complexity of Episode Matching

June 24, 2022

Philip Bille, Inge Li Gørtz, Shay Mozes, Teresa Anna Steiner, Oren Weimann

P = ANANAS

P = ANANAS $S = \underset{0}{\text{BATMAN}} \underset{10}{\text{AND}} \underset{15}{\text{AND}} \underset{20}{\text{ANNA}} \underset{25}{\text{NANANANA}} \underset{30}{\text{AND}} \underset{35}{\text{EAT}} \underset{40}{\text{BANANAS}}$

• Find minimal substrings of S containing P as a subsequence

- Find minimal substrings of S containing P as a subsequence
- The minimal substrings of *S* which contain *P* as a subsequence are shown in blue: *S*[6,16] and *S*[39,44]

P = ANANAS

- $S = \underset{0}{\text{BATMAN}} \underset{10}{\text{AND}} \underset{15}{\text{ANNA}} \underset{20}{\text{SING}} \underset{25}{\text{NANAN}} \underset{30}{\text{AND}} \underset{35}{\text{EAT}} \underset{40}{\text{BANAAS}}$
 - Find minimal substrings of S containing P as a subsequence
 - The minimal substrings of *S* which contain *P* as a subsequence are shown in blue: *S*[6,16] and *S*[39,44]
 - We consider a version of the problem where the goal is to find the *length* of the shortest substring of *S* containing *P* as a subsequence

•
$$|P| = m, |S| = n$$

- |P| = m, |S| = n
- (Old) upper bound: $O(nm/\log n)$ (Das et al. [DFG+97])

- |P| = m, |S| = n
- (Old) upper bound: $O(nm/\log n)$ (Das et al. [DFG⁺97])
- This work: no $O(nm^{1-\epsilon})$ or $O(n^{1-\epsilon}m)$ algorithm assuming OVH

Complexities - Data structures

• Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help

Complexities - Data structures

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

Complexities - Data structures

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

	space	time	
[AA02]	<i>O</i> (<i>n</i>)	$O(\sum_{i=1}^{m} dist_{-}occ(P_i) \cdot i)$	
This work	$O(n + \left(\frac{n}{\tau}\right)^k)$	$O(k \cdot \tau \cdot \log \log n)$	m = k fixed
This work	$\Omega(n^{k-k\delta-o(1)})$	$O(n^{\delta})$	m = k fixed

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

	space	time	
[AA02]	<i>O</i> (<i>n</i>)	$O(\sum_{i=1}^{m} dist_{-}occ(P_i) \cdot i)$	
This work	$O(n + \left(\frac{n}{\tau}\right)^k)$	$O(k \cdot \tau \cdot \log \log n)$	m = k fixed
This work	$\Omega(n^{k-k\delta-o(1)})$	$O(n^{\delta})$	m = k fixed

 dist_occ(P_i) is the number of distinct minimal substrings containing P[1]...P[i] as a subsequence

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

	space	time	
[AA02]	<i>O</i> (<i>n</i>)	$O(\sum_{i=1}^{m} dist_{-}occ(P_i) \cdot i)$	
This work	$O(n + \left(\frac{n}{\tau}\right)^k)$	$O(k \cdot \tau \cdot \log \log n)$	m = k fixed
This work	$\Omega(n^{k-k\delta-o(1)})$	$O(n^{\delta})$	m = k fixed

- dist_occ(P_i) is the number of distinct minimal substrings containing P[1]...P[i] as a subsequence
- Conditional lower bound based on hardness of k-Set Disjointness

• This work: Faster preprocessing for decision version using min-plus matrix multiplication

- Two sets *A*,*B* of *d*-dimensional, binary vectors, each set has size *n*
- Problem: Decide if there is a vector in A that is orthogonal to a vector in B
- OVH: There is no algorithm running in time $O(n^{2-\epsilon} \operatorname{poly}(d))$

build P from B: for b ∈ B, seperate each coordinate by new letter x

eg: $101 \rightarrow 1x0x1$

build P from B: for b ∈ B, seperate each coordinate by new letter x

eg: $101 \rightarrow 1x0x1$

 concatenate and separate by new letter y eg: B = {101, 111, 110}, P = 1x0x1y1x1x1y1x1x0 build P from B: for b ∈ B, seperate each coordinate by new letter x

eg: $101 \rightarrow 1x0x1$

- concatenate and separate by new letter y eg: B = {101, 111, 110}, P = 1x0x1y1x1x1y1x1x0
- Length of P = O(nd)

• build S from A: for $a \in A$,

 $\begin{array}{c} 0 \rightarrow 01 \\ 1 \rightarrow 00 \end{array}$

• build S from A: for $a \in A$,

 $\begin{array}{c} 0 \rightarrow 01 \\ 1 \rightarrow 00 \end{array}$

• build S from A: for $a \in A$,

 $0 \rightarrow 01$ $1 \rightarrow 00$

• let
$$b_1 = 010$$
, $b_2 = 110$, $a = 100$

• build S from A: for $a \in A$,

 $\begin{array}{c} 0 \rightarrow 01 \\ 1 \rightarrow 00 \end{array}$

- let $b_1 = 010$, $b_2 = 110$, a = 100
- b_1 and a are orthogonal

• build S from A: for $a \in A$,

 $0 \rightarrow 01$ $1 \rightarrow 00$

- let $b_1 = 010$, $b_2 = 110$, a = 100
- *b*₁ and *a* are orthogonal
- 0x1x0 is a subsequence of 00x01x01

• build S from A: for $a \in A$,

 $0 \rightarrow 01$ $1 \rightarrow 00$

- let $b_1 = 010$, $b_2 = 110$, a = 100
- *b*₁ and *a* are orthogonal
- 0x1x0 is a subsequence of 00x01x01
- *b*₂ and *a* are not orthogonal

• build S from A: for $a \in A$,

 $0 \rightarrow 01$ $1 \rightarrow 00$

- let $b_1 = 010$, $b_2 = 110$, a = 100
- *b*₁ and *a* are orthogonal
- 0x1x0 is a subsequence of 00x01x01
- *b*₂ and *a* are not orthogonal
- 1x1x0 is not a subsequence of 00x01x01

а	a s(a)		p(b)
010	01x00x01	010	0x1x0

• to build S as follows:

а	a s(a)		p(b)
010	01x00x01	010	0 x 1 x 0

- to build S as follows:
- let z be the d-dimensional 0 vector

a s(a)		b	p(b)
010	01x00x01	010	0x1x0

- to build S as follows:
- let z be the d-dimensional 0 vector
- \Rightarrow $s(z) = 01 \times 01 \times \dots \times 01$

а	a s(a)		p(b)
010	01x00x01	010	0 x 1 x 0

- to build S as follows:
- let z be the d-dimensional 0 vector
- \Rightarrow s(z) = 01x01x...x01
- *S* =

 $s(a_1)ys(z)ys(a_2)ys(z)y\dots s(a_n)ys(z)ys(a_1)ys(z)y\dots s(n)$

a s(a)		b	p(b)
010	01x00x01	010	0x1x0

- to build S as follows:
- let z be the d-dimensional 0 vector
- \Rightarrow s(z) = 01x01x...x01
- *S* =

 $s(a_1)ys(z)ys(a_2)ys(z)y\dots s(a_n)ys(z)ys(a_1)ys(z)y\dots s(n)$

• Length of S = O(nd)

a s(a)		b	p(b)
010	01x00x01	010	0x1x0

- to build S as follows:
- let z be the d-dimensional 0 vector
- \Rightarrow s(z) = 01x01x...x01
- *S* =

 $s(a_1)ys(z)ys(a_2)ys(z)y\ldots s(a_n)ys(z)ys(a_1)ys(z)y\ldots s(n)$

- Length of S = O(nd)
- $|P||S|^{1-\epsilon} = O(n^{2-\epsilon}d^{2-\epsilon})$ $|P|^{1-\epsilon}|S| = O(n^{2-\epsilon}d^{2-\epsilon})$

а	s(a)	b	p(b)	z	s(z)
010	01x00x01	010	0x1x0	000	01 <i>x</i> 01 <i>x</i> 01

No orthogonal vectors:

а	s(a)	b	p(b)	z	s(z)
010	01x00x01	010	0x1x0	000	01x01x01

a_i, *b_j* orthogonal:

$S = s(a_1)ys(z)ys(a_2)ys(z)y\dots s(a_n)ys(z)ys(a_1)ys(z)y\dots s(a_n)$

- $a_i \perp b_j$
- j < i: "overflow" to the right
- j > i: "overflow" to the left

$$s = s(a_1)ys(z)ys(a_2)ys(z)y \dots s(a_n)ys(z)ys(a_1)ys(z)y \dots s(a_n)$$

- $a_i \perp b_j$
- j < i: "overflow" to the right
- j > i: "overflow" to the left

$$s = s(a_1)ys(z)ys(a_2)ys(z)y \dots s(a_n)ys(z)ys(a_1)ys(z)y \dots s(a_n)$$

- $a_i \perp b_j$
- j < i: "overflow" to the right
- j > i: "overflow" to the left

• replace x and y by binary gadgets

- |P| = k fixed at preprocessing
- Upper bound: Space: $O(n + (\frac{n}{\tau})^k)$, Time: $O(k \cdot \tau \cdot \log \log n)$ m = k
- Conditional lower bound: Space: $\Omega(n^{k-k\delta-o(1)})$, Time: $O(n^{\delta})$

Definition (*k*-**Set Disjointness Problem)** Preprocess *m* sets S_1, S_2, \ldots, S_m of total size $\sum_{i=1}^m |S_i| = N$ drawn from a universe *U* such that given (i_1, i_2, \ldots, i_k) we can quickly decide whether $\bigcap_{j=1}^k S_{i_j} = \emptyset$.

Definition (*k***-Set Disjointness Problem)** Preprocess *m* sets S_1, S_2, \ldots, S_m of total size $\sum_{i=1}^m |S_i| = N$ drawn from a universe *U* such that given (i_1, i_2, \ldots, i_k) we can quickly decide whether $\bigcap_{j=1}^k S_{i_j} = \emptyset$.

• Up to log *N* factors equivalent to the problem where every element appears in the same number of sets [BGPS21]

Definition (*k***-Set Disjointness Problem)** Preprocess *m* sets S_1, S_2, \ldots, S_m of total size $\sum_{i=1}^m |S_i| = N$ drawn from a universe *U* such that given (i_1, i_2, \ldots, i_k) we can quickly decide whether $\bigcap_{j=1}^k S_{i_j} = \emptyset$.

• Up to log *N* factors equivalent to the problem where every element appears in the same number of sets [BGPS21]

Conjecture (Strong *k*-Set Disjointness Conjecture)

Any data structure for the k-Set Disjointness Problem that answers queries in time T must use $\tilde{\Omega}(N^k/T^k)$ space.

$$\begin{array}{ll} S_1 = \{1,3,4\} & \alpha_1 \\ S_2 = \{2\} & \alpha_2 \\ S_3 = \{1,2,3,4\} & \alpha_3 \\ S_4 = \{2,4\} & \alpha_4 \\ S_5 = \{1,3\} & \alpha_5 \end{array}$$

$$\begin{array}{ll} S_1 = \{1,3,4\} & \alpha_1 \\ S_2 = \{2\} & \alpha_2 \\ S_3 = \{1,2,3,4\} & \alpha_3 \\ S_4 = \{2,4\} & \alpha_4 \\ S_5 = \{1,3\} & \alpha_5 \end{array}$$

$$\begin{array}{ll} S_1 = \{1,3,4\} & \alpha_1 \\ S_2 = \{2\} & \alpha_2 \\ S_3 = \{1,2,3,4\} & \alpha_3 \\ S_4 = \{2,4\} & \alpha_4 \\ S_5 = \{1,3\} & \alpha_5 \end{array}$$

$$\begin{array}{ll} S_1 = \{1,3,4\} & \alpha_1 \\ S_2 = \{2\} & \alpha_2 \\ S_3 = \{1,2,3,4\} & \alpha_3 \\ S_4 = \{2,4\} & \alpha_4 \\ S_5 = \{1,3\} & \alpha_5 \end{array}$$

$$\begin{array}{ll} S_1 = \{1,3,4\} & \alpha_1 \\ S_2 = \{2\} & \alpha_2 \\ S_3 = \{1,2,3,4\} & \alpha_3 \\ S_4 = \{2,4\} & \alpha_4 \\ S_5 = \{1,3\} & \alpha_5 \end{array}$$

$$P_1 = \alpha_1 \alpha_4$$
$$S_2 \cap S_5 = \emptyset?$$

$$\begin{array}{ll} S_1 = \{1,3,4\} & \alpha_1 \\ S_2 = \{2\} & \alpha_2 \\ S_3 = \{1,2,3,4\} & \alpha_3 \\ S_4 = \{2,4\} & \alpha_4 \\ S_5 = \{1,3\} & \alpha_5 \end{array}$$

 $S_1 \cap S_4 = \emptyset?$ $P_1 = \alpha_1 \alpha_4$ $S_2 \cap S_5 = \emptyset?$ $P_2 = \alpha_2 \alpha_5$

• Space=
$$O(n + \left(\frac{n}{\tau}\right)^k)$$
, Time= $O(k \cdot \tau \cdot \log \log n)$

- Space= $O(n + \left(\frac{n}{\tau}\right)^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times *frequent*

- Space= $O(n + \left(\frac{n}{\tau}\right)^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times *frequent*
- For all *k*-tuples of frequent letters precompute answers

- Space= $O(n + \left(\frac{n}{\tau}\right)^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times *frequent*
- For all *k*-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = O(n))

- Space= $O(n + \left(\frac{n}{\tau}\right)^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times *frequent*
- For all *k*-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = O(n))
- If *P* contains non-frequent letter, "brute-force" using predecessor / successor

- Space= $O(n + \left(\frac{n}{\tau}\right)^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times *frequent*
- For all *k*-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = O(n))
- If *P* contains non-frequent letter, "brute-force" using predecessor / successor

- Space= $O(n + \left(\frac{n}{\tau}\right)^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times *frequent*
- For all *k*-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = O(n))
- If *P* contains non-frequent letter, "brute-force" using predecessor / successor

P = ANANAS

- Space= $O(n + \left(\frac{n}{\tau}\right)^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times *frequent*
- For all *k*-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = O(n))
- If *P* contains non-frequent letter, "brute-force" using predecessor / successor

P = ANANAS

- Space= $O(n + \left(\frac{n}{\tau}\right)^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times *frequent*
- For all *k*-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = O(n))
- If *P* contains non-frequent letter, "brute-force" using predecessor / successor

P = ANANAS

- Space= $O(n + \left(\frac{n}{\tau}\right)^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times *frequent*
- For all *k*-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = O(n))
- If *P* contains non-frequent letter, "brute-force" using predecessor / successor

P = ANANAS

- Space= $O(n + \left(\frac{n}{\tau}\right)^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times *frequent*
- For all *k*-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = O(n))
- If *P* contains non-frequent letter, "brute-force" using predecessor / successor

P = ANANAS

- Space= $O(n + \left(\frac{n}{\tau}\right)^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times *frequent*
- For all *k*-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = O(n))
- If *P* contains non-frequent letter, "brute-force" using predecessor / successor

P = ANANAS

Thank you!

Contact: teresa.anna.steiner@univie.ac.at

References

- Alberto Apostolico and Mikhail J. Atallah.
 Compact recognizers of episode sequences. Inf. Comput., 174(2):180–192, 2002.
- Philip Bille, Inge Li Gørtz, Max Rishøj Pedersen, and Teresa Anna Steiner.

Gapped indexing for consecutive occurrences. In *Proc. 32nd CPM*, pages 10:1–10:19, 2021.

Gautam Das, Rudolf Fleischer, Leszek Gasieniec, Dimitrios Gunopulos, and Juha Kärkkäinen.

Episode matching.

In Proc. 8th CPM, pages 12-27, 1997.

Massimo Equi, Veli Mäkinen, and Alexandru I. Tomescu. Graphs cannot be indexed in polynomial time for sub-quadratic time string matching, unless SETH fails.

26