
The Fine-Grained Complexity of Episode

Matching

June 24, 2022

Philip Bille, Inge Li Gørtz, Shay Mozes, Teresa Anna Steiner, Oren Weimann

Episode Matching

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

1

Episode Matching

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

• Find minimal substrings of S containing P as a subsequence

• The minimal substrings of S which contain P as a

subsequence are shown in blue: S [6, 16] and S [39, 44]
• We consider a version of the problem where the goal is to find

the length of the shortest substring of S containing P as a

subsequence

2

Episode Matching

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

• Find minimal substrings of S containing P as a subsequence

• The minimal substrings of S which contain P as a

subsequence are shown in blue: S [6, 16] and S [39, 44]

• We consider a version of the problem where the goal is to find

the length of the shortest substring of S containing P as a

subsequence

2

Teresa
Bleistift

Episode Matching

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

• Find minimal substrings of S containing P as a subsequence

• The minimal substrings of S which contain P as a

subsequence are shown in blue: S [6, 16] and S [39, 44]
• We consider a version of the problem where the goal is to find

the length of the shortest substring of S containing P as a

subsequence

2

Complexities - Algorithms

• |P | = m, |S | = n

• (Old) upper bound: O (nm/log n) (Das et al. [DFG+97])

• This work: no O (nm1−𝜖) or O (n1−𝜖m) algorithm assuming

OVH

3

Complexities - Algorithms

• |P | = m, |S | = n

• (Old) upper bound: O (nm/log n) (Das et al. [DFG+97])

• This work: no O (nm1−𝜖) or O (n1−𝜖m) algorithm assuming

OVH

3

Complexities - Algorithms

• |P | = m, |S | = n

• (Old) upper bound: O (nm/log n) (Das et al. [DFG+97])

• This work: no O (nm1−𝜖) or O (n1−𝜖m) algorithm assuming

OVH

3

Complexities - Data structures

• Our OV reduction + Equi et al. [EMT21]: polynomial time

preprocessing does not help

• Time/Space tradeoffs:

space time

[AA02] O (n) O (∑m
i=1 dist occ (Pi) · i)

This work O (n +
(n
𝜏

)k) O (k · 𝜏 · log log n) m = k fixed

This work Ω(nk−k 𝛿−o (1)) O (n𝛿) m = k fixed

• dist occ (Pi) is the number of distinct minimal substrings

containing P [1] . . .P [i] as a subsequence

• Conditional lower bound based on hardness of k−Set
Disjointness

4

Complexities - Data structures

• Our OV reduction + Equi et al. [EMT21]: polynomial time

preprocessing does not help

• Time/Space tradeoffs:

space time

[AA02] O (n) O (∑m
i=1 dist occ (Pi) · i)

This work O (n +
(n
𝜏

)k) O (k · 𝜏 · log log n) m = k fixed

This work Ω(nk−k 𝛿−o (1)) O (n𝛿) m = k fixed

• dist occ (Pi) is the number of distinct minimal substrings

containing P [1] . . .P [i] as a subsequence

• Conditional lower bound based on hardness of k−Set
Disjointness

4

Complexities - Data structures

• Our OV reduction + Equi et al. [EMT21]: polynomial time

preprocessing does not help

• Time/Space tradeoffs:

space time

[AA02] O (n) O (∑m
i=1 dist occ (Pi) · i)

This work O (n +
(n
𝜏

)k) O (k · 𝜏 · log log n) m = k fixed

This work Ω(nk−k 𝛿−o (1)) O (n𝛿) m = k fixed

• dist occ (Pi) is the number of distinct minimal substrings

containing P [1] . . .P [i] as a subsequence

• Conditional lower bound based on hardness of k−Set
Disjointness

4

Complexities - Data structures

• Our OV reduction + Equi et al. [EMT21]: polynomial time

preprocessing does not help

• Time/Space tradeoffs:

space time

[AA02] O (n) O (∑m
i=1 dist occ (Pi) · i)

This work O (n +
(n
𝜏

)k) O (k · 𝜏 · log log n) m = k fixed

This work Ω(nk−k 𝛿−o (1)) O (n𝛿) m = k fixed

• dist occ (Pi) is the number of distinct minimal substrings

containing P [1] . . .P [i] as a subsequence

• Conditional lower bound based on hardness of k−Set
Disjointness

4

Complexities - Data structures

• Our OV reduction + Equi et al. [EMT21]: polynomial time

preprocessing does not help

• Time/Space tradeoffs:

space time

[AA02] O (n) O (∑m
i=1 dist occ (Pi) · i)

This work O (n +
(n
𝜏

)k) O (k · 𝜏 · log log n) m = k fixed

This work Ω(nk−k 𝛿−o (1)) O (n𝛿) m = k fixed

• dist occ (Pi) is the number of distinct minimal substrings

containing P [1] . . .P [i] as a subsequence

• Conditional lower bound based on hardness of k−Set
Disjointness

4

Complexities - Data structures

• Our OV reduction + Equi et al. [EMT21]: polynomial time

preprocessing does not help

• Time/Space tradeoffs:

space time

[AA02] O (n) O (∑m
i=1 dist occ (Pi) · i)

This work O (n +
(n
𝜏

)k) O (k · 𝜏 · log log n) m = k fixed

This work Ω(nk−k 𝛿−o (1)) O (n𝛿) m = k fixed

• dist occ (Pi) is the number of distinct minimal substrings

containing P [1] . . .P [i] as a subsequence

• Conditional lower bound based on hardness of k−Set
Disjointness

4

Complexities - Special case |P | = 2

• This work: Faster preprocessing for decision version using

min-plus matrix multiplication

5

Orthogonal Vectors

• Two sets A,B of d-dimensional, binary vectors, each set has

size n

• Problem: Decide if there is a vector in A that is orthogonal to

a vector in B

• OVH: There is no algorithm running in time O (n2−𝜖 poly(d))

6

OV→ Episode Matching

• build P from B: for b ∈ B, seperate each coordinate by new

letter x

eg: 101 → 1x0x1

• concatenate and separate by new letter y

eg: B = {101, 111, 110},
P = 1x0x1y1x1x1y1x1x0

• Length of P = O (nd)

7

OV→ Episode Matching

• build P from B: for b ∈ B, seperate each coordinate by new

letter x

eg: 101 → 1x0x1

• concatenate and separate by new letter y

eg: B = {101, 111, 110},
P = 1x0x1y1x1x1y1x1x0

• Length of P = O (nd)

7

OV→ Episode Matching

• build P from B: for b ∈ B, seperate each coordinate by new

letter x

eg: 101 → 1x0x1

• concatenate and separate by new letter y

eg: B = {101, 111, 110},
P = 1x0x1y1x1x1y1x1x0

• Length of P = O (nd)

7

OV→ Episode Matching

• build S from A: for a ∈ A,

0 → 01

1 → 00

separate each coordinate by letter x

eg: 100 → 00x01x01

• let b1 = 010, b2 = 110, a = 100

• b1 and a are orthogonal

• 0x1x0 is a subsequence of 00x01x01

• b2 and a are not orthogonal

• 1x1x0 is not a subsequence of 00x01x01

8

OV→ Episode Matching

• build S from A: for a ∈ A,

0 → 01

1 → 00

separate each coordinate by letter x

eg: 100 → 00x01x01

• let b1 = 010, b2 = 110, a = 100

• b1 and a are orthogonal

• 0x1x0 is a subsequence of 00x01x01

• b2 and a are not orthogonal

• 1x1x0 is not a subsequence of 00x01x01

8

OV→ Episode Matching

• build S from A: for a ∈ A,

0 → 01

1 → 00

separate each coordinate by letter x

eg: 100 → 00x01x01

• let b1 = 010, b2 = 110, a = 100

• b1 and a are orthogonal

• 0x1x0 is a subsequence of 00x01x01

• b2 and a are not orthogonal

• 1x1x0 is not a subsequence of 00x01x01

8

OV→ Episode Matching

• build S from A: for a ∈ A,

0 → 01

1 → 00

separate each coordinate by letter x

eg: 100 → 00x01x01

• let b1 = 010, b2 = 110, a = 100

• b1 and a are orthogonal

• 0x1x0 is a subsequence of 00x01x01

• b2 and a are not orthogonal

• 1x1x0 is not a subsequence of 00x01x01

8

OV→ Episode Matching

• build S from A: for a ∈ A,

0 → 01

1 → 00

separate each coordinate by letter x

eg: 100 → 00x01x01

• let b1 = 010, b2 = 110, a = 100

• b1 and a are orthogonal

• 0x1x0 is a subsequence of 00x01x01

• b2 and a are not orthogonal

• 1x1x0 is not a subsequence of 00x01x01

8

OV→ Episode Matching

• build S from A: for a ∈ A,

0 → 01

1 → 00

separate each coordinate by letter x

eg: 100 → 00x01x01

• let b1 = 010, b2 = 110, a = 100

• b1 and a are orthogonal

• 0x1x0 is a subsequence of 00x01x01

• b2 and a are not orthogonal

• 1x1x0 is not a subsequence of 00x01x01

8

OV→ Episode Matching

• build S from A: for a ∈ A,

0 → 01

1 → 00

separate each coordinate by letter x

eg: 100 → 00x01x01

• let b1 = 010, b2 = 110, a = 100

• b1 and a are orthogonal

• 0x1x0 is a subsequence of 00x01x01

• b2 and a are not orthogonal

• 1x1x0 is not a subsequence of 00x01x01

8

OV→ Episode Matching

a s(a) b p(b)

010 01x00x01 010 0x1x0

• to build S as follows:

• let z be the d-dimensional 0 vector

• ⇒ s (z) = 01x01x . . . x01

• S =

s (a1)ys (z)ys (a2)ys (z)y . . . s (an)ys (z)ys (a1)ys (z)y . . . s (n)
• Length of S = O (nd)
• |P | |S |1−𝜖 = O (n2−𝜖 d2−𝜖)

|P |1−𝜖 |S | = O (n2−𝜖 d2−𝜖)

9

OV→ Episode Matching

a s(a) b p(b)

010 01x00x01 010 0x1x0

• to build S as follows:

• let z be the d-dimensional 0 vector

• ⇒ s (z) = 01x01x . . . x01

• S =

s (a1)ys (z)ys (a2)ys (z)y . . . s (an)ys (z)ys (a1)ys (z)y . . . s (n)
• Length of S = O (nd)
• |P | |S |1−𝜖 = O (n2−𝜖 d2−𝜖)

|P |1−𝜖 |S | = O (n2−𝜖 d2−𝜖)

9

OV→ Episode Matching

a s(a) b p(b)

010 01x00x01 010 0x1x0

• to build S as follows:

• let z be the d-dimensional 0 vector

• ⇒ s (z) = 01x01x . . . x01

• S =

s (a1)ys (z)ys (a2)ys (z)y . . . s (an)ys (z)ys (a1)ys (z)y . . . s (n)
• Length of S = O (nd)
• |P | |S |1−𝜖 = O (n2−𝜖 d2−𝜖)

|P |1−𝜖 |S | = O (n2−𝜖 d2−𝜖)

9

OV→ Episode Matching

a s(a) b p(b)

010 01x00x01 010 0x1x0

• to build S as follows:

• let z be the d-dimensional 0 vector

• ⇒ s (z) = 01x01x . . . x01

• S =

s (a1)ys (z)ys (a2)ys (z)y . . . s (an)ys (z)ys (a1)ys (z)y . . . s (n)

• Length of S = O (nd)
• |P | |S |1−𝜖 = O (n2−𝜖 d2−𝜖)

|P |1−𝜖 |S | = O (n2−𝜖 d2−𝜖)

9

OV→ Episode Matching

a s(a) b p(b)

010 01x00x01 010 0x1x0

• to build S as follows:

• let z be the d-dimensional 0 vector

• ⇒ s (z) = 01x01x . . . x01

• S =

s (a1)ys (z)ys (a2)ys (z)y . . . s (an)ys (z)ys (a1)ys (z)y . . . s (n)
• Length of S = O (nd)

• |P | |S |1−𝜖 = O (n2−𝜖 d2−𝜖)
|P |1−𝜖 |S | = O (n2−𝜖 d2−𝜖)

9

OV→ Episode Matching

a s(a) b p(b)

010 01x00x01 010 0x1x0

• to build S as follows:

• let z be the d-dimensional 0 vector

• ⇒ s (z) = 01x01x . . . x01

• S =

s (a1)ys (z)ys (a2)ys (z)y . . . s (an)ys (z)ys (a1)ys (z)y . . . s (n)
• Length of S = O (nd)
• |P | |S |1−𝜖 = O (n2−𝜖 d2−𝜖)

|P |1−𝜖 |S | = O (n2−𝜖 d2−𝜖)

9

OV→ Episode Matching

a s(a) b p(b) z s(z)

010 01x00x01 010 0x1x0 000 01x01x01

No orthogonal vectors:

y s (z) y s (ai−1) y s (z) y s (ai) y s (z) y s (ai+1) y s (z) y

y p(bj−1) y p(bj) y p(bj+1) y p(bj+2) y

10

OV→ Episode Matching

a s(a) b p(b) z s(z)

010 01x00x01 010 0x1x0 000 01x01x01

ai , bj orthogonal:

y s (z) y s (ai−1) y s (z) y s (ai) y s (z) y s (ai+1) y s (z) y

y p(bj−2) y p(bj−1) y p(bj) y p(bj+1) y p(bj+2) y

11

OV→ Episode Matching

S = s (a1)ys (z)ys (a2)ys (z)y . . . s (an)ys (z)ys (a1)ys (z)y . . . s (an)

• ai ⊥ bj

• j < i : “overflow” to the right

• j > i : “overflow” to the left

12

OV→ Episode Matching

S = s (a1)ys (z)ys (a2)ys (z)y . . . s (an)ys (z)ys (a1)ys (z)y . . . s (an)

• ai ⊥ bj

• j < i : “overflow” to the right

• j > i : “overflow” to the left

13

Teresa
Bleistift

OV→ Episode Matching

S = s (a1)ys (z)ys (a2)ys (z)y . . . s (an)ys (z)ys (a1)ys (z)y . . . s (an)

• ai ⊥ bj

• j < i : “overflow” to the right

• j > i : “overflow” to the left

14

Teresa
Bleistift

Teresa
Bleistift

Binary alphabet

• replace x and y by binary gadgets

15

Space/time trade-off

• |P | = k fixed at preprocessing

• Upper bound: Space: O (n +
(n
𝜏

)k), Time: O (k · 𝜏 · log log n)
m = k

• Conditional lower bound: Space: Ω(nk−k 𝛿−o (1)), Time: O (n𝛿)

16

Space/time trade-off, Lower bound

Definition (k-Set Disjointness Problem)
Preprocess m sets S1, S2, . . . , Sm of total size

∑m
i=1 |Si | = N drawn

from a universe U such that given (i1, i2, . . . , ik) we can quickly

decide whether
⋂k

j=1 Sij = ∅.

• Up to logN factors equivalent to the problem where every

element appears in the same number of sets [BGPS21]

Conjecture (Strong k-Set Disjointness Conjecture)

Any data structure for the k-Set Disjointness Problem that

answers queries in time T must use Ω̃
(
Nk/T k

)
space.

17

Space/time trade-off, Lower bound

Definition (k-Set Disjointness Problem)
Preprocess m sets S1, S2, . . . , Sm of total size

∑m
i=1 |Si | = N drawn

from a universe U such that given (i1, i2, . . . , ik) we can quickly

decide whether
⋂k

j=1 Sij = ∅.

• Up to logN factors equivalent to the problem where every

element appears in the same number of sets [BGPS21]

Conjecture (Strong k-Set Disjointness Conjecture)

Any data structure for the k-Set Disjointness Problem that

answers queries in time T must use Ω̃
(
Nk/T k

)
space.

17

Space/time trade-off, Lower bound

Definition (k-Set Disjointness Problem)
Preprocess m sets S1, S2, . . . , Sm of total size

∑m
i=1 |Si | = N drawn

from a universe U such that given (i1, i2, . . . , ik) we can quickly

decide whether
⋂k

j=1 Sij = ∅.

• Up to logN factors equivalent to the problem where every

element appears in the same number of sets [BGPS21]

Conjecture (Strong k-Set Disjointness Conjecture)

Any data structure for the k-Set Disjointness Problem that

answers queries in time T must use Ω̃
(
Nk/T k

)
space.

17

Space/time trade-off, Lower bound

S1 = {1, 3, 4} 𝛼1

S2 = {2} 𝛼2

S3 = {1, 2, 3, 4} 𝛼3

S4 = {2, 4} 𝛼4

S5 = {1, 3} 𝛼5

S = 𝛼1𝛼3𝛼5︸ ︷︷ ︸
1

$$$ 𝛼2𝛼3𝛼4︸ ︷︷ ︸
2

$$$ 𝛼1𝛼3𝛼5︸ ︷︷ ︸
3

$$$ 𝛼1𝛼3𝛼4︸ ︷︷ ︸
4

S1 ∩ S4 = ∅?
P1 = 𝛼1𝛼4

S2 ∩ S5 = ∅?
P2 = 𝛼2𝛼5

18

Space/time trade-off, Lower bound

S1 = {1, 3, 4} 𝛼1

S2 = {2} 𝛼2

S3 = {1, 2, 3, 4} 𝛼3

S4 = {2, 4} 𝛼4

S5 = {1, 3} 𝛼5

S = 𝛼1𝛼3𝛼5︸ ︷︷ ︸
1

$$$ 𝛼2𝛼3𝛼4︸ ︷︷ ︸
2

$$$ 𝛼1𝛼3𝛼5︸ ︷︷ ︸
3

$$$ 𝛼1𝛼3𝛼4︸ ︷︷ ︸
4

S1 ∩ S4 = ∅?
P1 = 𝛼1𝛼4

S2 ∩ S5 = ∅?
P2 = 𝛼2𝛼5

18

Space/time trade-off, Lower bound

S1 = {1, 3, 4} 𝛼1

S2 = {2} 𝛼2

S3 = {1, 2, 3, 4} 𝛼3

S4 = {2, 4} 𝛼4

S5 = {1, 3} 𝛼5

S = 𝛼1𝛼3𝛼5︸ ︷︷ ︸
1

$$$ 𝛼2𝛼3𝛼4︸ ︷︷ ︸
2

$$$ 𝛼1𝛼3𝛼5︸ ︷︷ ︸
3

$$$ 𝛼1𝛼3𝛼4︸ ︷︷ ︸
4

S1 ∩ S4 = ∅?

P1 = 𝛼1𝛼4

S2 ∩ S5 = ∅?
P2 = 𝛼2𝛼5

18

Space/time trade-off, Lower bound

S1 = {1, 3, 4} 𝛼1

S2 = {2} 𝛼2

S3 = {1, 2, 3, 4} 𝛼3

S4 = {2, 4} 𝛼4

S5 = {1, 3} 𝛼5

S = 𝛼1𝛼3𝛼5︸ ︷︷ ︸
1

$$$ 𝛼2𝛼3𝛼4︸ ︷︷ ︸
2

$$$ 𝛼1𝛼3𝛼5︸ ︷︷ ︸
3

$$$ 𝛼1𝛼3𝛼4︸ ︷︷ ︸
4

S1 ∩ S4 = ∅?
P1 = 𝛼1𝛼4

S2 ∩ S5 = ∅?
P2 = 𝛼2𝛼5

18

Space/time trade-off, Lower bound

S1 = {1, 3, 4} 𝛼1

S2 = {2} 𝛼2

S3 = {1, 2, 3, 4} 𝛼3

S4 = {2, 4} 𝛼4

S5 = {1, 3} 𝛼5

S = 𝛼1𝛼3𝛼5︸ ︷︷ ︸
1

$$$ 𝛼2𝛼3𝛼4︸ ︷︷ ︸
2

$$$ 𝛼1𝛼3𝛼5︸ ︷︷ ︸
3

$$$ 𝛼1𝛼3𝛼4︸ ︷︷ ︸
4

S1 ∩ S4 = ∅?
P1 = 𝛼1𝛼4

S2 ∩ S5 = ∅?

P2 = 𝛼2𝛼5

18

Space/time trade-off, Lower bound

S1 = {1, 3, 4} 𝛼1

S2 = {2} 𝛼2

S3 = {1, 2, 3, 4} 𝛼3

S4 = {2, 4} 𝛼4

S5 = {1, 3} 𝛼5

S = 𝛼1𝛼3𝛼5︸ ︷︷ ︸
1

$$$ 𝛼2𝛼3𝛼4︸ ︷︷ ︸
2

$$$ 𝛼1𝛼3𝛼5︸ ︷︷ ︸
3

$$$ 𝛼1𝛼3𝛼4︸ ︷︷ ︸
4

S1 ∩ S4 = ∅?
P1 = 𝛼1𝛼4

S2 ∩ S5 = ∅?
P2 = 𝛼2𝛼5

18

Space/time trade-off, upper bound

• Space=O (n +
(n
𝜏

)k), Time= O (k · 𝜏 · log log n)

• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))
• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

19

Space/time trade-off, upper bound

• Space=O (n +
(n
𝜏

)k), Time= O (k · 𝜏 · log log n)
• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))
• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

19

Space/time trade-off, upper bound

• Space=O (n +
(n
𝜏

)k), Time= O (k · 𝜏 · log log n)
• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))
• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

19

Space/time trade-off, upper bound

• Space=O (n +
(n
𝜏

)k), Time= O (k · 𝜏 · log log n)
• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))

• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

19

Space/time trade-off, upper bound

• Space=O (n +
(n
𝜏

)k), Time= O (k · 𝜏 · log log n)
• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))
• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

19

Space/time trade-off, upper bound

• Space=O (n +
(n
𝜏

)k), Time= O (k · 𝜏 · log log n)
• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))
• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

19

Space/time trade-off, upper bound

• Space=O (n +
(n
𝜏

)k), Time= O (k · 𝜏 · log log n)
• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))
• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

19

Space/time trade-off, upper bound

• Space=O (n +
(n
𝜏

)k), Time= O (k · 𝜏 · log log n)
• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))
• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

20

Space/time trade-off, upper bound

• Space=O (n +
(n
𝜏

)k), Time= O (k · 𝜏 · log log n)
• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))
• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

21

Space/time trade-off, upper bound

• Space=O (n +
(n
𝜏

)k), Time= O (k · 𝜏 · log log n)
• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))
• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

22

Space/time trade-off, upper bound

• Space=O (n +
(n
𝜏

)k), Time= O (k · 𝜏 · log log n)
• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))
• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

23

Space/time trade-off, upper bound

• Space=O (n +
(n
𝜏

)k), Time= O (k · 𝜏 · log log n)
• Call letters appearing more than 𝜏 times frequent

• For all k−tuples of frequent letters precompute answers

• Have a predecessor data structure for each letter (total size =

O (n))
• If P contains non-frequent letter, “brute-force” using

predecessor / successor

P = ANANAS

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

24

Thank you!

Contact: teresa.anna.steiner@univie.ac.at

25

References

Alberto Apostolico and Mikhail J. Atallah.

Compact recognizers of episode sequences.

Inf. Comput., 174(2):180–192, 2002.

Philip Bille, Inge Li Gørtz, Max Rishøj Pedersen, and

Teresa Anna Steiner.

Gapped indexing for consecutive occurrences.

In Proc. 32nd CPM, pages 10:1–10:19, 2021.

Gautam Das, Rudolf Fleischer, Leszek Gasieniec, Dimitrios

Gunopulos, and Juha Kärkkäinen.

Episode matching.

In Proc. 8th CPM, pages 12–27, 1997.

Massimo Equi, Veli Mäkinen, and Alexandru I. Tomescu.

Graphs cannot be indexed in polynomial time for

sub-quadratic time string matching, unless SETH fails.

In Proc. 27th SOFSEM, volume 12607, pages 608–622, 2021.

26

