
On the Fine-Grained Complexity
of Parity Problems

Amir Abboud
Shon Feller

Oren Weimann

Start with a popular conjecture:
Problem X cannot be solved in O 𝑛!"# time.

Reduce problem X to your problem in O 𝑛!"# time.

Your problem cannot be solved in O 𝑛!"# time.

Conditional Lower Bounds

Input: An edge-weighted graph 𝐺.
Output: Return all distances 𝑑(𝑢, 𝑣) in 𝐺.

No 𝑂(𝑛$"#) algorithm for any 𝜀 > 0

Input: An edge-weighted graph 𝐺.
Output: Is there a triangle in 𝐺 with total negative weight?

NWT can be solved in 𝑂(𝑛$"#) iff APSP can be solved in 𝑂(𝑛$"#!) [Vassilevska-Williams,Williams ‘10]

All Pairs Shortest Paths (APSP)

Negative Weight Triangle (NWT)

Subcubic
equivalent

Input: An edge-weighted graph 𝐺.
Output: Return all distances 𝑑(𝑢, 𝑣) in 𝐺.

No 𝑂(𝑛$"#) algorithm for any 𝜀 > 0

Input: An edge-weighted graph 𝐺.
Output: Is there a triangle in 𝐺 with total negative weight?

NWT can be solved in 𝑂(𝑛$"#) iff APSP can be solved in 𝑂(𝑛$"#!) [Vassilevska-Williams,Williams ‘10]

All Pairs Shortest Paths (APSP)

3-SUM
Input: A list 𝐴[1. . 𝑛] of 𝑛 integers.
Output: Are there 𝑖, 𝑗, 𝑘 s.t 𝐴 𝑖 + 𝐴 𝑗 + 𝐴 𝑘 = 0

No 𝑂(𝑛%"#) algorithm for any 𝜀 > 0

Negative Weight Triangle (NWT)

Min-Plus Convolution
Input: Two lists 𝐴 1. . 𝑛 , 𝐵 1. . 𝑛 of 𝑛 integers each.
Output: Return vector 𝐶 where 𝐶 𝑘 = min

&'()*
𝐴 𝑖 + 𝐵[𝑗]

No 𝑂 𝑛%"# algorithm for any 𝜀 > 0. If APSP can be solved in 𝑂(𝑛$"#) or 3-SUM can be solved in
𝑂(𝑛%"#) then Min-Plus Convolution can be solved in 𝑂(𝑛%"#!). [Bremner et al. ‘12], [Cygan et al. ‘17]

Subcubic
equivalent

Known results in fine-grained complexity

• Problems subcubic-equivalent to APSP:
NWT, Min-Plus Product, Radius, Median, Maximum 2D Subarray, Metricity Testing,
Wiener Index, Second Shortest Path, …

• Problems subquadratic-equivalent to Min-Plus Convolution:
0/1 Knapsack, Maximum Consecutive Subsums, Approximation of Subsets Sums, …

• 3-SUM based conditional lower bounds for problems in computational geometry,
dynamic problems, …

Our results

• We consider the parity versions of classical problems studied in fine-grained complexity.

• We show that for many classical problems finding the exact solution is as hard as
finding its parity.

• Parity computation: Is the solution even or odd?
Diameter parity: Return whether the diameter is even or odd.

• Parity counting: Is the number of solutions even or odd?
NWT parity: Return whether the number of negative triangles is even or odd.

APSP-related results:
ComplexityProblem

Parity is Subcubic Equivalent to APSPAPSP

Subcubic Equivalent to APSP,
Parity is Subcubic Equivalent to APSP

Median

Subcubic Equivalent to APSP,
Parity is Subcubic Equivalent to APSP

Radius

Subcubic Equivalent to APSP,
Parity is Subcubic Equivalent to APSP

Sum of
Eccentricities

Subcubic Equivalent to APSP,
Approximation is Subcubic Equivalent to
Diameter under randomized reductions,
Parity is Subcubic Equivalent to APSP

Integer
Betweenness

Centrality

Subcubic Equivalent to APSP,
Parity is Subcubic Equivalent to APSP

Second
Shortest

Path

Subcubic Equivalent to APSP,
Parity is Subcubic Equivalent to APSP

Weiner
index

ComplexityProblem

Subcubic Equivalent to APSP,
Parity is Subcubic Equivalent to

APSP

Maximum
Subarray

Subcubic Equivalent to APSP,
Parity is Subcubic Equivalent to

APSP

Min-plus
matrix

multiplication

Subcubic Equivalent to APSP,
Parity is Subcubic Equivalent to

APSP

Replacement
Paths

Subcubic Equivalent to APSP,
Approximation counting is equivalent
to APSP under randomized reductions

Vertex parity is Subcubic
Equivalent to APSP, Randomized

reductions from APSP and 3SUM to
parity counting

Negative
Weight
Triangle

Reductions from APSP and 3SUM,
Randomized reduction to parity

counting and vertex parity

Zero Weight
Triangle

APSP-related results:
Our results (in bold)

ComplexityProblem
Parity is Subcubic Equivalent to

Diameter
Diameter

Reductions to APSP and 3SUM,
Parity is subqudartic equivalent

to Min-plus convolution

Min-plus
convolution

Subquadratic equivalent to Min-
plus convolution under
randomized reductions

Parity is subquadratic equivalent
to Min-plus convolution

0/1-Knapsack

Subcubic Equivalent to Diameter,
Parity is Subcubic Equivalent to

Diameter

Reach
Centrality

ComplexityProblem
Reduction from Co-Negative

Triangle to parity
Maximum
Row Sum

Subquadratic equivalent to Min- plus
convolution under randomized

reductions
Parity is subqudartic equivalent to

Min-plus convolution

Tree sparsity

Subcubic Equivalent to Diameter,
Parity is Subcubic Equivalent to

Diameter

Maximum
Consecutive

Subsums
Reduction to Diameter,

Reduction to Maximum Row Sum Parity
Co-Negative

Triangle

Our results (in bold)
Other results:

Input: An edge-weighted graph.
Output: The parity of the number of vertices belonging to a negative triangle.

Negative Triangle Vertex Parity (NTVP)

−2
−3

−1

0
1

2

4

3

5

−3

−3

−1

−2
−3

−1

0
1

2

4

3

5

−3

−3

−1

Negative Triangle Vertex Parity (NTVP)
Input: An edge-weighted graph.
Output: The parity of the number of vertices belonging to a negative triangle.

−2
−3

−1

0
1

2

4

3

5

−3

−3

−1

Negative Triangle Vertex Parity (NTVP)
Input: An edge-weighted graph.
Output: The parity of the number of vertices belonging to a negative triangle.

−2
−3

−1

0
1

2

4

3

5

−3

−3

−1

Negative Triangle Vertex Parity (NTVP)
Input: An edge-weighted graph.
Output: The parity of the number of vertices belonging to a negative triangle.

Input: An edge-weighted graph.
Output: The parity of the number of vertices belonging to a negative triangle.

−2
−3

−1

0
1

2

4

3

5

−3

−3

−1

Parity = 0 (even)

Negative Triangle Vertex Parity (NTVP)

Reducing NWT to NTVP:

● Choose a subset of vertices 𝑉+ ⊆ 𝑉 uniformly.

Negative Triangle Vertex Parity (NTVP)

Negative Triangle Vertex Parity (NTVP)
Reducing NWT to NTVP:

● Choose a subset of vertices 𝑉+ ⊆ 𝑉 uniformly.

𝑉!

Reducing NWT to NTVP:

● Choose a subset of vertices 𝑉+ ⊆ 𝑉 uniformly.

● For every 𝑣+ ∈ 𝑉+ add a copy 𝑣% ∈ 𝑉%

Negative Triangle Vertex Parity (NTVP)

𝑉!

Negative Triangle Vertex Parity (NTVP)
Reducing NWT to NTVP:

● Choose a subset of vertices 𝑉+ ⊆ 𝑉 uniformly.

● For every 𝑣+ ∈ 𝑉+ add a copy 𝑣% ∈ 𝑉%

𝑉! 𝑉"

Reducing NWT to NTVP:

● Choose a subset of vertices 𝑉+ ⊆ 𝑉 uniformly.

● For every 𝑣+ ∈ 𝑉+ add a copy 𝑣% ∈ 𝑉%
● For every (𝑢+, 𝑣+) ∈ 𝑉+×𝑉+ add (𝑢%, 𝑣%) ∈ 𝑉%×𝑉%

Negative Triangle Vertex Parity (NTVP)

𝑉! 𝑉"

Negative Triangle Vertex Parity (NTVP)

𝑉! 𝑉"

Reducing NWT to NTVP:

● Choose a subset of vertices 𝑉+ ⊆ 𝑉 uniformly.

● For every 𝑣+ ∈ 𝑉+ add a copy 𝑣% ∈ 𝑉%
● For every (𝑢+, 𝑣+) ∈ 𝑉+×𝑉+ add (𝑢%, 𝑣%) ∈ 𝑉%×𝑉%

Negative Triangle Vertex Parity (NTVP)

𝑉! 𝑉"

Reducing NWT to NTVP:

● Choose a subset of vertices 𝑉+ ⊆ 𝑉 uniformly.

● For every 𝑣+ ∈ 𝑉+ add a copy 𝑣% ∈ 𝑉%
● For every (𝑢+, 𝑣+) ∈ 𝑉+×𝑉+ add (𝑢%, 𝑣%) ∈ 𝑉%×𝑉%

𝑉 = 𝑉 \ V!

Reducing NWT to NTVP:

● Choose a subset of vertices 𝑉+ ⊆ 𝑉 uniformly.

● For every 𝑣+ ∈ 𝑉+ add a copy 𝑣% ∈ 𝑉%
● For every (𝑢+, 𝑣+) ∈ 𝑉+×𝑉+ add (𝑢%, 𝑣%) ∈ 𝑉%×𝑉%

● For every (𝑢+, 𝑣) ∈ 𝑉+×𝑉, add (𝑢%, 𝑣) ∈ 𝑉%×𝑉

Negative Triangle Vertex Parity (NTVP)

𝑉! 𝑉"

𝑉 = 𝑉 \ V!

Reducing NWT to NTVP:

● Choose a subset of vertices 𝑉+ ⊆ 𝑉 uniformly.

● For every 𝑣+ ∈ 𝑉+ add a copy 𝑣% ∈ 𝑉%
● For every (𝑢+, 𝑣+) ∈ 𝑉+×𝑉+ add (𝑢%, 𝑣%) ∈ 𝑉%×𝑉%

● For every (𝑢+, 𝑣) ∈ 𝑉+×𝑉, add (𝑢%, 𝑣) ∈ 𝑉%×𝑉

Negative Triangle Vertex Parity (NTVP)

𝐺′

𝑉! 𝑉"

𝑉 = 𝑉 \ V!

● 𝑣 ∈ 𝑉 is in a negative triangle in 𝐺′ iff 𝑣 is in a negative triangle in 𝐺.

● NTVP 𝐺, is the NTVP of all vertices in K𝑉.

Negative Triangle Vertex Parity (NTVP)

𝑉! 𝑉"

● 𝑣+ ∈ 𝑉+ is in a negative triangle iff 𝑣% ∈ 𝑉% is in a negative triangle

● Vertices in 𝑉+ and 𝑉% do not affect NTVP(𝐺,).

If 𝐺 has a negative triangle:
Pr(𝑁𝑇𝑉𝑃 𝐺, = 0) is 0.5

Otherwise:
Pr 𝑁𝑇𝑉𝑃 𝐺, = 0 is 1

𝐺′ 𝑉 = 𝑉 \ V!

𝐴𝑃𝑆𝑃 𝑁𝑊𝑇 𝑁𝑇𝑉𝑃

𝐼𝑛𝑡𝑒𝑔𝑒𝑟
𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠
Centrality
𝑝𝑎𝑟𝑖𝑡𝑦

𝑊𝑒𝑖𝑛𝑒𝑟
𝑖𝑛𝑑𝑒𝑥
𝑝𝑎𝑟𝑖𝑡𝑦

𝑆𝑢𝑚 𝑜𝑓
𝑒𝑐𝑐𝑒𝑛𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑒𝑠

𝑝𝑎𝑟𝑖𝑡𝑦

𝐴𝑃𝑆𝑃 𝑁𝑊𝑇 𝑁𝑇𝑉𝑃

𝐼𝑛𝑡𝑒𝑔𝑒𝑟
𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠
Centrality
𝑝𝑎𝑟𝑖𝑡𝑦

𝑊𝑒𝑖𝑛𝑒𝑟
𝑖𝑛𝑑𝑒𝑥
𝑝𝑎𝑟𝑖𝑡𝑦

𝑆𝑢𝑚 𝑜𝑓
𝑒𝑐𝑐𝑒𝑛𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑒𝑠

𝑝𝑎𝑟𝑖𝑡𝑦

Subcubic equivalent:

Negative Weight Triangle (NWT)

A more natural parity version of NWT:
Parity of the number of negative triangles.

APSP-equivalent:

Counting up to 𝑂(𝑛%...) negative
triangles. [VV Williams, R Williams ‘10]

Approximate counting of negative triangles.
[Dell, Lapinskas ‘17]

Is Negative Triangle Counting subcubic
equivalent to APSP? Parity counting?

Negative Weight Triangle & Zero Weight Triangle

Negative Weight Triangle (NWT)

A more natural parity version of NWT:
Parity of the number of negative triangles.

APSP-equivalent:

Counting up to 𝑂(𝑛%...) negative
triangles. [VV Williams, R Williams ‘10]

Approximate counting of negative triangles.
[Dell, Lapinskas ‘17]

Is Negative Triangle Counting subcubic
equivalent to APSP? Parity counting?

Zero Weight Triangle (ZWT)

Input: An edge-weighted graph 𝐺.
Output: Is there a triangle in 𝐺 with total
weight zero?

Reduction from 3-SUM to ZWT.
Reduction from APSP to ZWT.
[VV Williams, R Williams ‘13]

Solving ZWT in 𝑂 𝑛$"# → breakthrough.

Reducing ZWT to NWT → breakthrough.

Negative Weight Triangle & Zero Weight Triangle

Intuition: ZWT is generally harder than NWT

We show: Counting ZWTs reduces to counting NWTs

We show: Parity counting ZWTs reduces to parity counting NWTs

Negative Weight Triangle & Zero Weight Triangle

Intuition: ZWT is generally harder than NWT

We show: Counting ZWTs reduces to counting NWTs

Proof:

(1) Compute the number of triangles in time 𝑂 𝑛/ = 𝑂 𝑛%.$0

(2) Compute the number of negative triangles, using an NWT counting algorithm.

(3) Compute the number of positive triangles, using an NWT counting algorithm.

(4) The number of zero weight triangles is (1) – (2) – (3).

Negative Weight Triangle & Zero Weight Triangle

● Counting NWTs is (conditionally) harder than NWT:
Reduction from counting NWT to NWT → breakthrough.

● In the paper:
Reduction from ZWT to ZWT parity counting.

● So there is also no reduction from NWT parity to NWT (conditioned)

Negative Weight Triangle & Zero Weight Triangle

● Min-plus convolution:
Input: Two lists 𝐴 1. . 𝑛 , 𝐵 1. . 𝑛 of 𝑛 integers each.
Output: Return a list 𝐶 s.t 𝐶 𝑘 = min

&'()*
𝐴 𝑖 + 𝐵[𝑗]

The min-plus convolution class

● Min-plus convolution:
Input: Two lists 𝐴 1. . 𝑛 , 𝐵 1. . 𝑛 of 𝑛 integers each.
Output: Return a list 𝐶 s.t 𝐶 𝑘 = min

&'()*
𝐴 𝑖 + 𝐵[𝑗]

● Knapsack:
Input: 𝑛 items (𝑤& , 𝑣&), target weight 𝑡
Output: 𝑚𝑎𝑥 ∑&∈2 𝑣& ∑&∈2𝑤& ≤ 𝑡}

● Super-additivity:
Input: List 𝐴 of 𝑛 integers
Output: Check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

The min-plus convolution class
[Cygan et al. ’17]
The following are equivalent:

𝑂(𝑛%"#) Min-plus convolution

𝑂((𝑛 + 𝑡)%"#!) Knapsack

𝑂(𝑛%"#!!) Super-additivity

Knapsack is subquadratic equivalent to Knapsack Parity (and Min-plus convolution)

Proof: Modify original reduction [Cygan et al. ‘17] from Super-Additivity to Knapsack

Set 𝐴 𝑖 ← 𝐴 𝑖 +𝑊 ⋅ 𝑖 for large enough 𝑊 , so 0 = 𝐴 0 < 𝐴 1 < ⋯ < 𝐴 𝑛 − 1 .

Super-Additivity to Knapsack Parity
check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑎𝑙𝑢𝑒

Super-Additivity to Knapsack Parity
check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

𝑇𝑦𝑝𝑒 𝐵:
𝑖 ≠ 1: 2𝑛 − 1 − 𝑖, 2 𝑊 − 𝐴 𝑖
𝑖 = 1: (2𝑛 − 1 − 1,2 𝑊 − 𝐴 𝑖 + 1)

𝑇𝑦𝑝𝑒 𝐴: (𝑖, 2𝐴[𝑖])

𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑎𝑙𝑢𝑒

2𝑛 − 1

Super-Additivity to Knapsack Parity
check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

𝑇𝑦𝑝𝑒 𝐵:
𝑖 ≠ 1: 2𝑛 − 1 − 𝑖, 2 𝑊 − 𝐴 𝑖
𝑖 = 1: (2𝑛 − 1 − 1,2 𝑊 − 𝐴 𝑖 + 1)

𝑇𝑦𝑝𝑒 𝐴: (𝑖, 2𝐴[𝑖])

Target weight: 𝑡 = 2𝑛 − 1

Target weight: 𝑡 = 2𝑛 − 1

Possible solution: 1,2𝐴[1] , 2𝑛 − 1 − 1,2 𝑊 − 𝐴 1 + 1 . Value = 2𝑊 + 1

Claim: 𝐴 is super-Additive iff the solution for Knapsack is odd

Super-Additivity to Knapsack Parity
check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑎𝑙𝑢𝑒

2𝑛 − 1 2𝑊 + 1
𝑇𝑦𝑝𝑒 𝐵:
𝑖 ≠ 1: 2𝑛 − 1 − 𝑖, 2 𝑊 − 𝐴 𝑖
𝑖 = 1: (2𝑛 − 1 − 1,2 𝑊 − 𝐴 𝑖 + 1)

𝑇𝑦𝑝𝑒 𝐴: (𝑖, 2𝐴[𝑖])

Target weight: 𝑡 = 2𝑛 − 1

Optimal solution has 1 Type B item:

0 Type B items: Value is at most ∑& 2𝐴[𝑖] < 2𝑊

Super-Additivity to Knapsack Parity
check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑎𝑙𝑢𝑒

2𝑛 − 1 2𝑊 + 1

Possible solution: 1,2𝐴[1] , 2𝑛 − 1 − 1,2 𝑊 − 𝐴 1 + 1 . Value = 2𝑊 + 1

Claim: 𝐴 is super-Additive iff the solution for Knapsack is odd

𝑇𝑦𝑝𝑒 𝐵:
𝑖 ≠ 1: 2𝑛 − 1 − 𝑖, 2 𝑊 − 𝐴 𝑖
𝑖 = 1: (2𝑛 − 1 − 1,2 𝑊 − 𝐴 𝑖 + 1)

𝑇𝑦𝑝𝑒 𝐴: (𝑖, 2𝐴[𝑖])

Target weight: 𝑡 = 2𝑛 − 1

Optimal solution has 1 Type B item:

0 Type B items: Value is at most ∑& 2𝐴[𝑖] < 2𝑊

2 Type B items: Weight exceeds 2𝑛 − 1

Super-Additivity to Knapsack Parity
check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑎𝑙𝑢𝑒

2𝑛 − 1 2𝑊 + 1

𝑛

Possible solution: 1,2𝐴[1] , 2𝑛 − 1 − 1,2 𝑊 − 𝐴 1 + 1 . Value = 2𝑊 + 1

Claim: 𝐴 is super-Additive iff the solution for Knapsack is odd

𝑇𝑦𝑝𝑒 𝐵:
𝑖 ≠ 1: 2𝑛 − 1 − 𝑖, 2 𝑊 − 𝐴 𝑖
𝑖 = 1: (2𝑛 − 1 − 1,2 𝑊 − 𝐴 𝑖 + 1)

𝑇𝑦𝑝𝑒 𝐴: (𝑖, 2𝐴[𝑖])

Target weight: 𝑡 = 2𝑛 − 1

Super-Additivity to Knapsack Parity
check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑎𝑙𝑢𝑒

2𝑛 − 1 2𝑊 + 1

2𝐴[𝑖] + 2𝐴[𝑗]𝑖 + 𝑗

If A is super-additive:

Optimal solution has 1 Type A item: Replace 𝑖,2𝐴 𝑖 ,(𝑗,2𝐴 𝑗) with (𝑖 + 𝑗,2𝐴 𝑖 + 𝑗)

𝑇𝑦𝑝𝑒 𝐵:
𝑖 ≠ 1: 2𝑛 − 1 − 𝑖, 2 𝑊 − 𝐴 𝑖
𝑖 = 1: (2𝑛 − 1 − 1,2 𝑊 − 𝐴 𝑖 + 1)

𝑇𝑦𝑝𝑒 𝐴: (𝑖, 2𝐴[𝑖])

Target weight: 𝑡 = 2𝑛 − 1

Super-Additivity to Knapsack Parity
check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑎𝑙𝑢𝑒

2𝑛 − 1 2𝑊 + 1

2𝐴[𝑖] + 2𝐴[𝑗]𝑖 + 𝑗

If A is super-additive:

Optimal solution has 1 Type A item: Replace 𝑖,2𝐴 𝑖 ,(𝑗,2𝐴 𝑗) with (𝑖 + 𝑗,2𝐴 𝑖 + 𝑗)

2𝐴[𝑖 + 𝑗]

𝑇𝑦𝑝𝑒 𝐵:
𝑖 ≠ 1: 2𝑛 − 1 − 𝑖, 2 𝑊 − 𝐴 𝑖
𝑖 = 1: (2𝑛 − 1 − 1,2 𝑊 − 𝐴 𝑖 + 1)

𝑇𝑦𝑝𝑒 𝐴: (𝑖, 2𝐴[𝑖])

Target weight: 𝑡 = 2𝑛 − 1

Super-Additivity to Knapsack Parity
check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑎𝑙𝑢𝑒

2𝑛 − 1 2𝑊 + 1
2𝑊

If A is super-additive:

Optimal solution has 1 Type A item: Replace 𝑖,2𝐴 𝑖 ,(𝑗,2𝐴 𝑗) with (𝑖 + 𝑗,2𝐴 𝑖 + 𝑗)

Optimal solution has 1 Type A item and 1 type B item: (𝑘, 2𝐴[𝑘]), 2𝑛 − 1 − 𝑘,2 𝑊 − 𝐴 𝑘

Unless 𝑘 = 1 → Optimal solution is odd

𝑇𝑦𝑝𝑒 𝐵:
𝑖 ≠ 1: 2𝑛 − 1 − 𝑖, 2 𝑊 − 𝐴 𝑖
𝑖 = 1: (2𝑛 − 1 − 1,2 𝑊 − 𝐴 𝑖 + 1)

𝑇𝑦𝑝𝑒 𝐴: (𝑖, 2𝐴[𝑖])

Target weight: 𝑡 = 2𝑛 − 1

If A is not super-additive:
For some 𝑖,𝑗 we have 𝐴 𝑖 + A j > A[i + j]

Super-Additivity to Knapsack Parity
check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑎𝑙𝑢𝑒

2𝑛 − 1 2𝑊 + 1
𝑇𝑦𝑝𝑒 𝐵:
𝑖 ≠ 1: 2𝑛 − 1 − 𝑖, 2 𝑊 − 𝐴 𝑖
𝑖 = 1: (2𝑛 − 1 − 1,2 𝑊 − 𝐴 𝑖 + 1)

𝑇𝑦𝑝𝑒 𝐴: (𝑖, 2𝐴[𝑖])

Target weight: 𝑡 = 2𝑛 − 1

Super-Additivity to Knapsack Parity
check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑎𝑙𝑢𝑒

2𝑛 − 1 2𝑊 + 1

𝑖
𝑖 + 𝑗

2𝐴[𝑖]
2𝐴 𝑖 + 2𝐴[𝑗]

Solution with value larger than 2𝑊 + 1:
𝑖, 2𝐴 𝑖 , 𝑗, 2𝐴 𝑗 , (2𝑛 − 1 − 𝑖 + 𝑗 , 2 𝑊 − 𝐴 𝑖 + 𝑗)

If A is not super-additive:
For some 𝑖,𝑗 we have 𝐴 𝑖 + A j > A[i + j]

𝑇𝑦𝑝𝑒 𝐵:
𝑖 ≠ 1: 2𝑛 − 1 − 𝑖, 2 𝑊 − 𝐴 𝑖
𝑖 = 1: (2𝑛 − 1 − 1,2 𝑊 − 𝐴 𝑖 + 1)

𝑇𝑦𝑝𝑒 𝐴: (𝑖, 2𝐴[𝑖])

Target weight: 𝑡 = 2𝑛 − 1

Super-Additivity to Knapsack Parity
check if ∀𝑖, 𝑗 : 𝐴 𝑖 + 𝐴 𝑗 ≤ 𝐴 𝑖 + 𝑗

𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑎𝑙𝑢𝑒

2𝑛 − 1 2𝑊 + 1

𝑖
𝑖 + 𝑗

2𝐴[𝑖]
2𝐴 𝑖 + 2𝐴[𝑗]

Solution with value larger than 2𝑊 + 1:
𝑖, 2𝐴 𝑖 , 𝑗, 2𝐴 𝑗 , (2𝑛 − 1 − 𝑖 + 𝑗 , 2 𝑊 − 𝐴 𝑖 + 𝑗)

→ Maximum value = 2𝑊 + 1If we use Type B item for 𝑖 = 1

Optimal solution does not this item → The optimal solution is even

If A is not super-additive:
For some 𝑖,𝑗 we have 𝐴 𝑖 + A j > A[i + j]

𝑇𝑦𝑝𝑒 𝐵:
𝑖 ≠ 1: 2𝑛 − 1 − 𝑖, 2 𝑊 − 𝐴 𝑖
𝑖 = 1: (2𝑛 − 1 − 1,2 𝑊 − 𝐴 𝑖 + 1)

𝑇𝑦𝑝𝑒 𝐴: (𝑖, 2𝐴[𝑖])

