Fast RNA Structure Alignment for Crossing Input Structures

Rolf Backofen
Gad M. Landau
Mathias Möhl
Dekel Tsur
Oren Weimann

String Edit Distance

CombinatorialOptimisation
OptimatorialCombinisation

String Edit Distance

CombinatorialOptimisatio
OptimatorialCombinisatio

String Edit Distance

String Edit Distance

CombinatorialOptimisation
OptimatorialCombinisation

String Edit Distance

Combina
 OptimatorialCombinisatio

Every two prefixes

String Edit Distance

Combina
 OptimatorialCombinisatio

Every two prefixes

String Edit Distance

Every two infixes

String Edit Distance

CombinatorialOptimisation
 OptimatorialCombinisation

Every two infixes

String Edit Distance

CombinatorialOptimisation
OptimatorialCombinisation

Every two infixes

RNA Edit Distance

AGCUCAGGAUGUCAGUGAC
GCUGCGAUCGCGACUGGUA

RNA Edit Distance

GCUGCGAUCGCGACUGGUA

RNA Edit Distance

Additional edit operations:

RNA Edit Distance

Additional edit operations: Arc Deletion / Insertion

RNA Edit Distance

Additional edit operations: Arc Deletion / Insertion

RNA Edit Distance

Additional edit operations:

RNA Edit Distance

Additional edit operations: Arc Match / Relabel

RNA Edit Distance

Additional edit operations: Arc Match / Relabel

RNA Edit Distance

RNA Edit Distance

Consensus Structure

RNA Edit Distance

Consensus Structure

RNA Edit Distance

Consensus Structure

RNA Edit Distance

Arbitrary Consensus Structure:
NP-hard

RNA Edit Distance

[Jiang et al. 2002]
Anbitmary Consensus Structure: $\quad \mathrm{O}\left(n^{4}\right)$
Non-crossing

Non-Crossing Consensus

[Jiang et al. 2002]
Anbiturary Consensus Structure:
$\mathrm{O}\left(n^{4}\right)$
Non-crossing

Non-Crossing Consensus

[Jiang et al. 2002]
Anbitenay Consensus Structure:
Non-crossing

Non-Crossing Consensus

GAUGUCAGUGA

 Every two infixes
 $\Rightarrow \mathrm{O}\left(n^{4}\right)$

Non-Crossing Consensus

GAUGUCAGUGAC

 Every two infixes
 $\Rightarrow \mathrm{O}\left(n^{4}\right)$

Non-Crossing Consensus

Non-Crossing Consensus

Arc Match / Relabel

Non-Crossing Consensus

Arc Match / Relabel

Non-Crossing Consensus

GAUGUCAGUGAC

Arc Match / Relabel

Non-Crossing Consensus

Arc Match / Relabel

Non-Crossing Consensus

Character Match / Relabel

Non-Crossing Consensus

Character Match / Relabel

Non-Crossing Consensus

GAUGUCAGUGAC
 CGAUCGCGACUGGU

Character Match / Relabel

Non-Crossing Consensus

GAUGUCAGUGAC
 CGAUCGCGACUGGU

Character Match / Relabel

Non-Crossing Consensus

Character Deletion / Insertion

Non-Crossing Inputs

Non-Crossing Inputs = Tree Edit distance

Non-Crossing Inputs = Tree Edit distance

$\mathrm{O}\left(n^{6}\right) \quad[$ Tai 1979]
$\mathrm{O}\left(n^{4}\right) \quad$ [Shasha, Zhang 1989]
$\mathrm{O}\left(n^{3} \log n\right) \quad$ [Klein 1998] [Dulucq, Touzet 2003] [Bille 2005]
$\mathrm{O}\left(n^{3}\right) \quad[$ Demaine, Mozes, Rossman, W, 2007]

Non-Crossing Inputs = Tree Edit distance

$\mathrm{O}\left(n^{3} \log n\right) \quad$ [Klein 1998]

Non-Crossing Inputs = Tree Edit distance

$\mathrm{O}\left(n^{3} \log n\right) \quad[$ Klein 1998]

Non-Crossing Inputs = Tree Edit distance

Our Result: d-crossing inputs

Our Result: d-crossing inputs

Our Result: d-crossing inputs

$\mathrm{O}\left(d n^{3} \log n\right)$

Our Result: d-crossing inputs

$\mathrm{O}\left(d n^{3} \log n\right) \quad$ Vs. $\mathrm{O}\left(n^{4}\right)$

Our Result: d-crossing inputs

$\mathrm{O}\left(d n^{3} \log n\right)$

Our Result: d-crossing inputs

$$
\mathrm{O}\left(d n^{3} \log n\right)=n^{2} \times d n \log n
$$

Our Result: d-crossing inputs

$\mathrm{O}\left(d n^{3} \log n\right)=n^{2} \times d n \log n$

The Algorithm

The Algorithm

The Algorithm

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$

The Algorithm

AGCUCAGGAUGUCAGUGACGA

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster

The Algorithm

$A G C U C A G G A U G U C A G U G A C$ GA
I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

The Algorithm

$A G C U C A G G A U G U C A G U G A C G A$

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs + its extension by d to both left and right

The Algorithm

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

The Algorithm

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

The Algorithm

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

The Algorithm

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work?

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work?

$$
>2 d
$$

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work?

$$
>2 d
$$

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work?

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work?

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work?

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work?

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work?

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work?

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work?

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work?

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work?

I. Compute every infix of length $<2 d$ in $\mathrm{O}\left(d n^{3}\right)$
2. Pick largest arc in every cluster
3. Recursively compute infix below these arcs

+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Thank You! and happy birthday CPM

