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Longest common extensions in strings

Preprocess a given string s[1..n] for computing the longest common
prefix of s[i ..n] and s[j ..n].

bbababbaaaaababababaaabababababababbbabababab

i j

LCE(i , j) = 5
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What if there are multiple strings?

a a b a b b a a b b b a a a a b a b a a

b b a a b b a b a b b a b a
a

a b a a a a b

b a b b a b a a ab

b

a

b b a a b a a b
b

LCEPP(u1, v1,u2, v2) = 4
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Path-path queries
Given nodes u1, v1,u2, v2 such that u1 is an ancestor of v1 and u2 is an
ancestor of v2, report the longest matching prefix of paths u1 ; v1 and
u2 ; v2.

u1

v1

u2

v2

Without losing the generality, the paths are of the same length.
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Path-tree queries
Given nodes u1, v1,u2 such that u1 is an ancestor of v1, report the
longest matching prefix of paths u1 ; v1 and u2 ; v2, where v2 is a
descendant of u2.

u1

v1

u2

v2

Without losing the generality, edges outgoing from the same node
have distinct labels.
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Tree-tree queries
Given nodes u1,u2, report the longest matching prefix of paths
u1 ; v1 and u2 ; v2, where v1 is a descendant of u1 and v2 is a
descendant of u2.

u1

u2

v2
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Tree-tree queries
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Results

problem query space lowerbound
path-path O(log∗ n) O(n)

path-tree O((log log n)2) O(n) predecessor hard
tree-tree O(n/τ) O(n · τ) set-intersection hard
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Simple solution for path-path queries

We start with a simple O(1) query O(n log n) space solution. For every
k = 0,1, . . . , log n, we build a separate structure of size O(n) allowing
us to answer queries for paths of length 2k .

Structure for paths of length 2k

There are only n such paths. We sort them (lexicographically) and
store the longest common prefix between any two paths adjacent in
the sorted order. Longest common prefix of any two paths can be
computing with a range minimum query on the stored numbers.
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Simple solution for path-path queries
Now, given an arbitrary query where the paths are of (the same) length
`, we can reduce it to two queries where the paths are of length 2k ,
where k = blog `c.

u1

v1

u2

v2
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Reducing the space

The natural approach is to store just some of the paths of length 2k , for
every k . To choose which paths to store, we introduce the notion of
difference covers for trees.

Difference covers for trees
For any tree on n nodes and a parameter x , it is possible to mark 2n

x
nodes, so that for any u, v at depths ≥ x2, there exists ∆ ≤ x2 such
that the ∆-th ancestors of both u and v are marked.
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Difference covers for trees

2n
x marked nodes, ∆ ≤ x2

u

v
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Difference covers for trees

2n
x marked nodes, ∆ ≤ x2

u

v

∆

∆
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Reducing the space

Find a difference cover with x = log n. Then, for every
k = 0,1, . . . , log n preprocess all paths of length 2k ending at marked
nodes. Additionally, preprocess all paths of length log2 n.

Any query can be reduced in O(1) time to computing the longest
common prefix of two paths of length ≤ log2 n.
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Reducing the space
Compare prefixes of length log2 n.

u1

v1

u2

v2
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Reducing the space
Cover the remaining part with paths of length 2k .

u1

v1
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Reducing the space
Slide the first pair of paths up so that they end at marked nodes.

u1

v1

u2

v2
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Reducing the space
Process the second pair of paths similarly.

u1

v1

u2

v2
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Reducing the space

After O(n) preprocessing we can reduce any query to computing the
longest common prefix of two paths of length ≤ log2 n. Now the
reasoning can be iterated, so in the next step we get two paths of
length ≤ log2(log2 n), and so on.

The number of iterations is at most O(log∗ n), so after O(n log∗ n)
preprocessing we can answer any query in O(log∗ n) time.

Space can be decreased to O(n) by adding O(log∗ n) to the query
(which is absorbed anyway).
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Difference covers for trees

Generalizing the construction used for strings, the first step is to mark
every node at depth 0, x ,2x ,3x , . . ..

0

x

2x

3x

4x

5x

6x
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Difference covers for trees

Doesn’t quite work, because we cannot guarantee that there are n
x

such nodes.

0

x

2x

3x

4x

5x

6x
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Difference covers for trees

But marking every node at depth r , r + x , r + 2x , r + 3x , . . . is also
enough for our purposes, where r ∈ {0,1, . . . , x − 1}.

r

r + x

r + 2x

r + 3x

r + 4x

r + 5x

r
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Difference covers for trees

Trick
For at least one r ∈ {0,1, . . . , x − 1} the number of marked nodes is at
most n

x .

The construction essentially mimics the usual construction for strings,
repeating the above trick twice, hence the total number of marked
nodes is 2n

x .

Bille et al. LCE in trees July 1, 2015 16 / 20



Difference covers for trees

Trick
For at least one r ∈ {0,1, . . . , x − 1} the number of marked nodes is at
most n

x .

The construction essentially mimics the usual construction for strings,
repeating the above trick twice, hence the total number of marked
nodes is 2n

x .

Bille et al. LCE in trees July 1, 2015 16 / 20



Path-tree queries

Also uses difference covers for trees, but now there are log log n
iterations, and every of them needs predecessor search, hence the
query time is O((log log n)2).

Lowerbound
By reduction from the predecessor problem, we show that any
structure of size Õ(n) needs Ω(log log n) time to answer a query.
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Tree-tree queries

Completely different idea! Micro-macro decomposition into fragments
of size τ gives a trade-off between space and query.

Lowerbound
We show a reduction from the set-intersection problem, hence if a
popular folklore conjecture holds, answering the queries in constant
time requires Ω̃(n2) space.
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Open problems

1 Remove O(log∗ n) from the path-path complexity.
2 Decrease O((log log n)2) to O(log log n) for path-tree queries.
3 Reduce tree-tree queries to set-intersection queries.
4 Other applications of difference covers for trees?
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Questions?
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