
Theoretical Computer Science 638 (2016) 98–107
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Longest common extensions in trees ✩

Philip Bille 1, Paweł Gawrychowski 2, Inge Li Gørtz, Gad M. Landau 3,
Oren Weimann ∗,4

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 March 2015
Received in revised form 30 June 2015
Accepted 9 August 2015
Available online 12 August 2015

Keywords:
Longest common prefix
Suffix tree of a tree
Pattern matching in trees

The longest common extension (LCE) of two indices in a string is the length of the longest
identical substrings starting at these two indices. The LCE problem asks to preprocess a
string into a compact data structure that supports fast LCE queries.
In this paper we generalize the LCE problem to trees and suggest a few applications of LCE
in trees to tries and XML databases. Given a labeled and rooted tree T of size n, the goal
is to preprocess T into a compact data structure that support the following LCE queries
between subpaths and subtrees in T . Let v1, v2, w1, and w2 be nodes of T such that w1
and w2 are descendants of v1 and v2 respectively.

• LCEPP(v1, w1, v2, w2): (path–path LCE) return the longest common prefix of the paths
v1 � w1 and v2 � w2.

• LCEPT(v1, w1, v2): (path–tree LCE) return maximal path–path LCE of the path v1 � w1
and any path from v2 to a descendant leaf.

• LCETT(v1, v2): (tree–tree LCE) return a maximal path–path LCE of any pair of paths
from v1 and v2 to descendant leaves.

We present the first non-trivial bounds for supporting these queries. For LCEPP queries, we
present a linear-space solution with O (log∗ n) query time. For LCEPT queries, we present
a linear-space solution with O ((log logn)2) query time, and complement this with a lower
bound showing that any path–tree LCE structure of size O (n polylog(n)) must necessarily
use �(log logn) time to answer queries. For LCETT queries, we present a time-space trade-
off, that given any parameter τ , 1 ≤ τ ≤ n, leads to an O (nτ) space and O (n/τ) query-time
solution (all of these bounds hold on a standard unit-cost RAM model with logarithmic
word size). This is complemented with a reduction from the set intersection problem
implying that a fast linear space solution is not likely to exist.

© 2015 Elsevier B.V. All rights reserved.

✩ A preliminary version of this paper appeared in the Proceedings of the 26th Annual symposium on Combinatorial Pattern Matching, 2015.

* Corresponding author.
E-mail addresses: phbi@dtu.dk (P. Bille), gawry@mimuw.edu.pl (P. Gawrychowski), inge@dtu.dk (I.L. Gørtz), oren@cs.haifa.ac.il (O. Weimann).

1 Partially supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-00178) and the Danish National Advanced Technology Foundation.
2 Work done while the author held a post-doctoral position at the Warsaw Center of Mathematics and Computer Science.
3 Partially supported by the Israel Science Foundation grant 571/14, the United States–Israel Binational Science Foundation grant 2014028, and DFG.
4 Partially supported by the Israel Science Foundation grant 794/13.
http://dx.doi.org/10.1016/j.tcs.2015.08.009
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.08.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:phbi@dtu.dk
mailto:gawry@mimuw.edu.pl
mailto:inge@dtu.dk
mailto:oren@cs.haifa.ac.il
http://dx.doi.org/10.1016/j.tcs.2015.08.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.08.009&domain=pdf

P. Bille et al. / Theoretical Computer Science 638 (2016) 98–107 99
Fig. 1. LCE in trees. LCEPP(v1, w1, v2, w2) is the path “ab”, LCEPT (v1, w1, v2) is the path “abc”, and LCETT (v1, v2) is the path “acad”.

1. Introduction

Given a string S , the longest common extension (LCE) of two indices is the length of the longest identical substring start-
ing at these indices. The longest common extension problem (LCE problem) is to preprocess S into a compact data structure
supporting fast LCE queries. The LCE problem is a well-studied basic primitive [12,26,13,11,18] with a wide range of ap-
plications in problems such as approximate string matching, finding exact and approximate tandem repeats, and finding
palindromes [5,16,30,32,24,29,28,31]. The classic textbook solution to the LCE problem on strings combines a suffix tree
with a nearest common ancestor (NCA) data structure leading to a linear space and constant query-time solution [23].

In this paper we study generalizations of the LCE problem to trees. The goal is to preprocess an edge-labeled, rooted
tree T to support the various LCE queries between paths in T . Here a path starts at a node v and ends at a descendant of
v , and the LCEs are on the strings obtained by concatenating the characters on the edges of the path from top to bottom
(each edge contains a single character). We consider path–path LCE queries between two specified paths in T , path–tree
LCE queries defined as the maximal path–path LCE of a given path and any path starting at a given node, and tree–tree LCE
queries defined as the maximal path–path LCE between any pair of paths starting from two given nodes. We next define
these problems formally.

Tree LCE problems Let T be an edge-labeled, rooted tree with n nodes. We denote the subtree rooted at a node v by T (v),
and given nodes v and w such that w is in T (v) the path going down from v to w is denoted v � w . A path prefix of
v � w is any subpath v � u such that u is on the path v � w . Two paths v1 � w1 and v2 � w2 match if concatenating
the labels of all edges in the paths gives the same string. Given nodes v1, w1 such that w1 ∈ T (v1) and nodes v2, w2 such
that w2 ∈ T (v2) define the following queries:

• LCEPP(v1, w1, v2, w2): (path–path LCE) return the longest common matching prefix of the paths v1 � w1 and v2 � w2.
• LCEPT(v1, w1, v2): (path–tree LCE) return the maximal path–path LCE of the path v1 � w1 and any path from v2 to a

descendant leaf.
• LCETT(v1, v2): (tree–tree LCE) return a maximal path–path LCE of any pair of paths from v1 and v2 to descendant

leaves.

The queries are illustrated in Fig. 1. We assume that the output of the queries is reported compactly as the endpoint(s) of
the LCE. This allows us to report the shared path in constant time. Furthermore, we will assume w.l.o.g. that for each node
v in T , all the edge-labels to children of v are distinct. If this is not the case, then we can merge all identical edges of a
node to its children in linear time, without affecting the result of all the above LCE queries.

We note that the direction of the paths in T is important for the LCE queries. In the above LCE queries, the paths start
from a node and go downwards. If we instead consider paths from a node going upwards towards the root of T , the problem
is easier and can be solved in linear space and constant query-time by combining Breslauer’s suffix tree of a tree [14] with
a nearest common ancestor (NCA) data structure [25].

Our results First consider the LCEPP and LCEPT problems. To answer an LCEPP(v1, w1, v2, w2) query, a straightforward solu-
tion is to traverse both paths in parallel-top down. Similarly, to answer an LCEPT(v1, w1, v2) query we can traverse v1 � w1
top-down while traversing the matching path from v2 (recall that all edges to a child are distinct and hence the longest
matching path is unique). This approach leads to a linear-space solution with O (h) query-time to both problems, where h
is the height of T . Note that for worst-case trees we have that h = �(n).

100 P. Bille et al. / Theoretical Computer Science 638 (2016) 98–107
We show the following results. For LCEPP we give a linear O (n) space and O (log∗ n) query-time solution. For LCEPT we
give a linear O (n) space and O ((log log n)2) query-time solution, and complement this with a lower bound stating that any
LCEPT solution using O (n polylog(n)) space must necessarily have �(log log n) query time.

Next consider the LCETT problem. Here, the simple top down traversal does not work and it seems that substantially
different ideas are needed. We first show a reduction from the set-intersection problem, i.e., preprocessing a family of sets of
total size n to support disjointness queries between any pairs of sets. In particular, the reduction implies that a fast linear
space solution is not likely assuming a widely believed conjecture on the complexity of the set-intersection problem. We
complement this result with a time-space trade-off that achieves O (nτ) space and O (n/τ) query time for any parameter
1 ≤ τ ≤ n.

All results assume the standard word RAM model with word size �(log n). We also assume the alphabet is either sorted
or is linear-time sortable.

Applications We suggest a few immediate applications of LCE in trees. Consider a set of strings S = {S1, . . . , Sk} of total
length

∑k
i=1 |Si | = N and let T be the trie of S of size n, i.e., T is the labeled, rooted tree obtained by merging shared

prefixes in S maximally. If we want to support LCE queries between suffixes of strings in S , the standard approach is to
build a generalized suffix tree for the strings and combine it with an NCA data structure. This leads to a solution using O (N)

space and O (1) query time. We can instead implement the LCE query between the suffixes of strings in S as an LCEPP on
the trie T , i.e., any suffix of a string in S corresponds to a path in T and hence the LCE of two suffixes in S corresponds to
an LCEPP query in T . With our data structure for LCEPP , this leads to a solution using O (n) space and O (log∗ n) query time.
In general, n can be significantly smaller than N , depending on the amount of shared prefixes in S . Hence, this solution
provides a more space-efficient representation of S at the expense of a tiny increase in query time. An LCEPT query on T
corresponds to computing a maximal LCE of a suffix of a string in S with suffixes of strings in S sharing a common prefix.
An LCETT query on T corresponds to computing a maximal LCE over pairs of suffixes of strings in S that share a common
prefix. To the best of our knowledge these queries are novel one-to-many and many-to-many LCE queries. Since tries are a
basic data structure for storing strings we expect these queries to be of interest in a number of applications.

Another interesting application is using LCE in trees as a query primitive for XML data. XML documents can be viewed as
a labeled tree and typical queries (e.g., XPath queries) involve traversing and identifying paths in the tree. The LCE queries
provide simple and natural primitives for comparing paths and subtrees without explicit traversal. For instance, our solution
for LCEPT queries can be used to quickly identify the “best match” of a given path in a subtree.

2. Preliminaries

Given a node v and an integer d ≥ 0, the level ancestor of v at depth d, denoted LA(v, d) is the ancestor of v at depth d.
We explicitly compute and store the depth of every node v , denoted depth(v). Given a pair of nodes v and w the nearest
common ancestor of v and w , denoted NCA(v, w), is the common ancestor of v and w of greatest depth. Both LA and NCA
queries can be supported in constant time with a linear space data structures, see e.g., [9,17,8,2,22,1,25,7,19].

Finally, the suffix tree of a tree [27,14,36] is the compressed trie of all suffixes of leaf-to-root paths in T . The suffix tree
of a tree uses O (n) space and can be constructed in O (n log log n) time for general alphabets [36]. Note that the suffix tree
of a tree combined with NCA can support LCE queries in constant time for paths going upwards. Since we consider paths
going downwards, we will only use the suffix tree to check (in constant time) if two paths are completely identical.

We also need the following three primitives. Range minimum queries: A list of n numbers a1, a2, . . .an can be augmented
with 2n + o(n) bits of additional data in O (n) time, so that for any i ≤ j the position of the smallest number among
ai, ai+1, . . . , a j can be found in O (1) time [19]. Predecessor queries: Given a sorted collection of n integers from [0, U), a
structure of size O (n) answering predecessor queries in O (log log U) time can be constructed in time O (n) [37], where a
predecessor query locates, for a given x, the largest y ≤ x such that y ∈ S . Finally, Perfect hashing: given a collection S of
n integers a perfect hash table can be constructed in expected O (n) time [21], where a perfect hash table checks, for a
given x, if x ∈ S , and if so returns its associated data in O (1) time. The last result can be made deterministic at the expense
of increasing the preprocessing time to O (n log log n) [35], but then we need one additional step in our solution for the
path–tree LCE as to ensure O (n) total construction time.

3. Difference covers for trees

In this section we introduce a generalization of difference covers from strings to trees. This will be used to decrease the
space of our data structures. We believe it is of independent interest.

Lemma 1. For any tree T with n nodes and a parameter x, it is possible to mark 2n/x nodes of T , so that for any two nodes u, v ∈ T at
(possibly different) depths at least x2, there exists d ≤ x2 such that the d-th ancestors of both u and v are marked. Furthermore, such d
can be calculated in O (1) time and the set of marked nodes can be determined in O (n) time.

Proof. We distinguish between two types of marked nodes. Whether a node v is marked or not depends only on its depth.
The marked nodes are determined as follows.

P. Bille et al. / Theoretical Computer Science 638 (2016) 98–107 101
Type I. For every i = 0, 1, . . . , x − 1, let V i be the set of nodes at depth leaving a remainder of i when divided by x.
Because

⋃
i V i = T and all V ′

i s are disjoint, there exists r1 ∈ [0, x − 1] such that |Vr1 | ≤ n/x. Then v is a type I
marked node iff depth(v) = r1 mod x.

Type II. For every i = 0, 1, . . . , x − 1, let V i be the set of nodes v such that �depth(v)/x� leaves a remainder of i when
divided by x. By the same argument as above, there exists r2 ∈ [0, x − 1] such that |Vr2 | ≤ n/x. Then v is a type II
marked node iff �depth(v)/x� = r2 mod x.

Now, given two nodes u and v at depths at least x2, we need to show that there exists an appropriate d ≤ x2. Let
depth(u) = t1 mod x and choose d1 = t1 + x − r1. Then the d1-th ancestor of u is a type I marked node, because its depth is
depth(u) − d1 = depth(u) − (t1 + x − r1) = depth(u) − t1 − x + r1, which leaves a remainder of r1 when divided by x. Our d
will be of the form d1 +d2x. Observe that regardless of the value of d2, we can be sure that the d-th ancestor of u is a type I
marked node. Let v ′ be the d1-th ancestor of v , �depth(v ′)/x� = t2 mod x and choose d2 = t2 + x − r2. The (d2x)-th ancestor
of v ′ is a type II marked node, because �(depth(v ′) − d2x)/x� = �depth(v ′)/x� − t2 − x + r2, which leaves a remainder of r2
when divided by x. Therefore, choosing d = d1 + d2x guarantees that d ≤ x − 1 + x(x − 1) < x2, so the d-th ancestors of u
and v are both defined, the d-th ancestor of u is a type I marked node, and the d-th ancestor of v is a type II marked node.

The total number of marked nodes is clearly at most 2n/x, and the values of r and r′ can be determined by a sin-
gle traversal of T . To determine d, we only need to additionally know depth(u) and depth(v) and perform a few simple
arithmetical operations. �
Remark. Our difference cover has the following useful property: whether a node v is marked or not depends only on the
value of depth(v) (mod x2). Hence, if a node at depth at least x2 is marked then so is its (x2)-th ancestor. Similarly, if a
node is marked, so are all of its descendants at distance x2.

4. Path–path LCE

In this section we prove the following theorem.

Theorem 1. For a tree T with n nodes, a data structure of size O (n) can be constructed in O (n) time to answer path–path LCE queries
in O (log∗ n) time.

We start with a simple preliminary O (n log n)-space O (1)-query data structure which will serve as a starting point for
the more complicated final implementation. We note that a data structure with similar guarantees to Lemma 2 is also
implied from [6].

Lemma 2. For a tree T with n nodes, a data structure of size O (n logn) can be constructed in O (n logn) time to answer path–path
LCE queries in O (1) time.

Proof. The structure consists of log n separate parts, each of size O (n). The k-th part answers in O (1) time path–path LCE
queries such that both paths are of the same length 2k . This is enough to answer a general path–path LCE query in the same
time complexity, because we can first truncate the longer path so that both paths are of the same length �, then calculate
k such that 2k ≤ � < 2k+1. Then we have two cases.

1. The prefixes of length 2k of both paths are different. Then replacing the paths by their prefixes of length 2k does not
change the answer.

2. The prefixes of length 2k of both paths are the same. Then replacing the paths by their suffixes of length 2k does not
change the answer.

We can check if the prefixes are the same and then (with level ancestor queries) reduce the query so that both paths
are of the same length 2k , all in O (1) time.

Consider all paths of length 2k in the tree. There are at most n of them, because every node u creates at most one
new path LA(v, depth(v) − 2k) � v . We lexicographically sort all such paths and store the longest common extension of
every two neighbours on the sorted list. Additionally, we augment the longest common extensions with a range mini-
mum query structure, and keep at every v the position of the path LA(v, depth(v) − 2k) � v (if any) on the sorted list.
This allows us to answer LCEPP(LA(u, depth(u) − 2k), u, LA(v, depth(v) − 2k), v) in O (1) time: we lookup the positions of
LA(u, depth(u) − 2k) � u and LA(v, depth(v) − 2k) � v on the sorted list and use the range minimum query structure
to calculate their longest common prefix, all in O (1) time. The total space usage is O (n), because every node stores one
number and additionally we have a list of at most n numbers augmented with a range minimum query structure.

To construct the structure efficiently, we need to lexicographically sort all paths of length k. This can be done in O (n)

time for every k after observing that every path of length 2k+1 can be conceptually divided into two paths of length 2k .
Therefore, if we have already lexicographically sorted all paths of length 2k , we can lexicographically sort all paths of length

102 P. Bille et al. / Theoretical Computer Science 638 (2016) 98–107
2k+1 by sorting pairs of numbers from [1, n], which are the positions of the prefix and the suffix of a longer path on the
sorted list of all paths of length 2k . With radix sorting, this takes O (n) time. Then we need to compute the longest common
extension of ever two neighbours on the sorted list, which can be done in O (1) time by using the already constructed
structure for paths of length 2k . Consequently, the total construction time is O (n log n). �

To decrease the space usage of the structure from Lemma 2, we use the difference covers developed in Lemma 1.
Intuitively, the first step is to apply the lemma with x = log n and preprocess only paths of length 2k log2 n ending at the
marked nodes. Because we have only O (n/ log n) marked nodes, this requires O (n) space. Then, given two paths of length �,
we can either immediately return their LCE using the preprocessed data, or reduce the query to computing the LCE of two
paths of length at most log2 n. Using the same reasoning again with x = log(log2 n), we can reduce the length even further
to at most log2(log2 n) and so on. After O (log∗ n) such reduction steps, we guarantee that the paths are of length O (1), and
the answer can be found naively. Formally, every step is implemented using the following lemma.

Lemma 3. For a tree T with n nodes and a parameter b, a data structure of size O (n) can be constructed in O (n) time, so that given
two paths of length at most b ending at u ∈ T and v ∈ T in O (1) time we can either compute the path–path LCE or reduce the query
so that the paths are of length at most log2 b.

Proof. We apply Lemma 1 with x = log b. Then, for every k = 0, 1, . . . , log b separately, we consider all paths of length
2k log2 b ending at marked nodes. As in the proof of Lemma 2, we lexicographically sort all such paths and store the longest
common extension of every two neighbours on the sorted list augmented with a range minimum query structure. Because
we have only O (n/ log b) marked nodes, the space decreases to O (n). Furthermore, because the length of the paths is of
the form 2k log2 b (as opposed to the more natural choice of 2k), all lists can be constructed in O (n) total time by radix
sorting, as a path of length 2k+1 log2 b ending at a marked node can be decomposed into two paths of length 2k logb ending
at marked nodes, because if a node is marked, so is its (x2)-th ancestor.

Consider two paths of the same length � ≤ b ending at u ∈ T and v ∈ T . We need to either determine their LCE, or reduce
the query to determining the LCE of two paths of length at most log2 b. If � ≤ log2 b, there is nothing to do. Otherwise, first
we check if the prefixes of length log2 b of both paths are different in O (1) time. If so, we replace the paths with their
prefixes of such length and we are done. Otherwise, if � ≤ 2 log2 b we replace the paths with their suffixes of length
� − log2 b ≤ log2 b and we are done. The remaining case is that the prefixes of length log2 b are identical and � > 2 log2 b.
In such case, we can calculate k such that 2k log2 b ≤ � − log2 b < 2k+1 log2 b. Having such k, we cover the suffixes of length
� − log2 b with two (potentially overlapping) paths of length exactly 2k log2 b. More formally, we create two pairs of paths:

1. LA(u, depth(u) − 2k log2 b) � u and LA(v, depth(v) − 2k log2 b) � v ,
2. LA(u, depth(u) −� + log2 b) � LA(u, depth(u) −� + log2 b +2k log2 b) and LA(v, depth(v) −� + log2 b) � LA(v, depth(v) −

� + log2 b + 2k log2 b).

If the paths from the first pair are different, it is enough to compute their LCE. If they are identical, it is enough to
compute the LCE of the paths from the second pair. Because we can distinguish between these two cases in O (1) time, we
focus on computing the LCE of two paths of length 2k log2 b ending at some u′ and v ′ . The important additional property
guaranteed by how we have defined the pairs is that the paths of length log2 b ending at LA(u′, depth(u′) − 2k log2 b)

and LA(v ′, depth(v ′) − 2k log2 b) are the same. Now by the properties of the difference cover we can calculate in O (1)

time d ≤ log2 b such that the d-th ancestors of u′ and v ′ are marked. We conceptually slide both paths up by d, so that
they both end at these marked nodes. Because of the additional property, either the paths of length 2k log2 b ending at
LA(u′, depth(u′) − d) and LA(v ′, depth(v ′) − d) are identical, or their first mismatch actually corresponds to the LCE of the
original paths ending at u′ and v ′ . These two cases can be distinguished in O (1) time. Then we either use the preprocessed
data to calculate the LCE in O (1) time, or we are left with the suffixes of length d of the paths ending at u′ and v ′ . But
because d ≤ log2 b, also in the latter case we are done. �

We apply Lemma 3 with b = n, log2 n, log2(log2 n), . . . terminating when b ≤ 4. The total number of applications is
just O (log∗ n), because log2(log2 z) = 4 log2(log z) ≤ log z for z large enough.5 Therefore, the total space usage becomes
O (n log∗ n) and, by iteratively applying the reduction step, for any two paths of length at most n ending at given u and v
we can in O (log∗ n) time either compute their LCE, or reduce the query to computing the LCE of two paths of length O (1),
which can be computed naively in additional O (1) time.

To prove Theorem 1, we need to decrease the space usage from O (n log∗ n) down to O (n). To this end, we create a
smaller tree T ′ on O (n/b) nodes, where b = log∗ n is the parameter of the difference cover, as follows. Every marked node
u ∈ T becomes a node of T ′ . The parent of u ∈ T in T ′ is the node corresponding in T ′ to the (b2)-th ancestor of u in T ,
which is always marked. Additionally, we add one artificial node, which serves as the root of the whole T ′ , and make it the

5 This follows from limz→∞ log2(log2 z)
log z = limz→∞ 4 log(log2 z)

ln z = limz→∞ 8
ln z = 0.

P. Bille et al. / Theoretical Computer Science 638 (2016) 98–107 103
parent of all marked nodes at depth (in T) less than b2. Now edges of T ′ correspond to paths of length b2 in T (except for
the edges outgoing from the root; we will not be using them). We need to assign unique names to these paths, so that the
names of two paths are equal iff the paths are the same. This can be done by traversing the suffix tree of T in O (n) time.
Finally, T ′ is preprocessed by applying Lemma 3 O (log∗ n) times as described above. Because its size of T ′ is just O (n/b),
the total space usage preprocessing time is just O (n) now.

To compute the LCE of two paths of length � ending at u ∈ T and v ∈ T , we first compare their prefixes of length b2.
If they are identical, by the properties of the difference cover we can calculate d ≤ b2 such that the d-th ancestors of both
u and v , denoted u′ and v ′ , are marked, hence exist in T ′ . Consequently, if the prefixes of length � − d of the paths are
different, we can calculate their first mismatch by computing the first mismatch of the paths of length �(� − d)/b2� ending
at u′ ∈ T ′ and v ′ ∈ T ′ . This follows because every edge of T ′ corresponds to a path of length b2 in T , so a path of length
�(� − d)/b2� in T ′ corresponds to a path of length belonging to [� − d − b2, � − d] in T , and we have already verified that
the first mismatch is outside of the prefix of length b2 of the original paths. Hence the first mismatch of the corresponding
paths in T ′ allows us to narrow down where the first mismatch of the original paths in T occurs up to b2 consecutive edges.
All in all, in O (1) time plus a single path–path LCE query in T ′ we can reduce the original query to a query concerning two
paths of length at most b2.

The final step is to show that T can be preprocessed in O (n) time and space, so that the LCE of any two paths of length
at most b2 can be calculated in O (b) time. We assign unique names to all paths of length b in T , which can be again done
by traversing the suffix tree of T in O (n) time. More precisely, every u ∈ T such that depth(u) ≥ b stores a single number,
which is the name of the path of length b ending at u. To calculate the LCE of two paths of length at most b2 ending at
u ∈ T and v ∈ T , we proceed as follows. We traverse both paths in parallel top-down moving by b edges at once. Using the
preprocessed names, we can check if the first mismatch occurs on these b consecutive edges, and if so terminate. Therefore,
after at most b steps we are left with two paths of length at most b, such that computing their LCE allows us to answer
the original query. But this can be calculated by naively traversing both paths in parallel top-down. The total query time
is O (b).

To summarize, the total space and preprocessing time is O (n) and the query time remains O (log∗ n), which proves
Theorem 1.

5. Path–tree LCE

In this section we prove the following theorem.

Theorem 2. For a tree T with n nodes, a data structure of size O (n) can be constructed in O (n) time to answer path–tree LCE queries
in O ((log log n)2) time.

The idea is to apply the difference covers recursively with the following lemma.

Lemma 4. For a tree T with n nodes and a parameter b, a data structure of size O (n) can be constructed in O (n logn) time, so that
given a path of length � ≤ b ending at u ∈ T and a subtree rooted at v ∈ T we can reduce the query in O (log log n) time so that the
path is of length at most b4/5.

Proof. The first part of the structure is designed so that we can detect in O (1) time if the path–tree LCE is of length at
most b4/5. We consider all paths of length exactly b4/5 in the tree. We assign names to every such path, so that testing if
two paths are identical can be done by looking at their names. Then, for every node w we gather all paths of length b4/5

starting at w (i.e., w � v , where w = LA(v, depth(v) − b4/5)) and store their names in a perfect hash table, where every
name is linked to the corresponding node w . This allows us to check if the answer is at least b4/5 by first looking up the
name of the prefix of length b4/5 of the path, and then querying the perfect hash table kept at v . If the name does not
occur there, the answer is less than b4/5 and we are done. Otherwise, we can move by b4/5 down, i.e., decrease � by b4/5

and replace v with its descendant of distance b4/5.
The second part of the structure is designed to work with the marked nodes. We apply Lemma 1 with x = b2/5 and

consider canonical paths of length i · x2 in the tree, where i = 1, 2, . . . ,
√

x, ending at marked nodes. The total number of
such paths is O (n/

√
x), because every marked node is the endpoint of at most

√
x of them. We lexicographically sort all

canonical paths and store the longest common extension of every two neighbours on the global sorted list augmented with
a range minimum query structure. Also, for every marked node v and every i = 1, 2, . . . , x, we save the position of the path
LA(v, depth(v) − i · x2) � v on the global sorted list. Additionally, at every node u we gather all canonical paths starting
there, i.e., u � v such that LA(v, depth(v) − i · x2) = u for some i = 1, 2, . . . , x, sort them lexicographically and store on the
local sorted list of u. Every such path is represented by a pair (u, i). The local sorted list is augmented with a predecessor
structure storing the positions on the global sorted list.

Because we have previously decreased � and replaced v , now by the properties of the difference cover we can find d ≤ x2

such that the (� + d)-th ancestor of u and the d-th ancestor of v are marked, and then increase � by d and replace v by its
d-th ancestor. Consequently, from now on we assume that both LA(u, depth(u) − �) and v are marked.

104 P. Bille et al. / Theoretical Computer Science 638 (2016) 98–107
Now we can use the second part of the structure. If � ≤ b4/5, there is nothing to do. Otherwise, the prefix of length
��/x2� · x2 of the path is a canonical path (because � ≤ √

x · x2), so we know its position on the global sorted list. We
query the predecessor structure stored at v with that position to get the lexicographical predecessor and successor of
the prefix among all canonical paths starting at v . This allows us to calculate the longest common extension p of the
prefix and all canonical paths starting at v by taking the maximum of the longest common extension of the prefix and
its predecessor, and the prefix and its successor. Now, because canonical paths are all paths of the form i · x2, the length
of the path–tree LCE cannot exceed p + x2. Furthermore, with a level ancestor query we can find v ′ such that the paths
LA(u, depth(u) − �) � LA(u, depth(u) − � + p) and v � v ′ are identical. Then, to answer the original query, it is enough to
calculate the path–tree LCE for LA(u, depth(u) − � + p) � LA(u, depth(u) − � + min(�, p + x2)) and the subtree rooted at v ′ .
Therefore, in O (log log n) time we can reduce the query so that the path is of length at most x2 = b4/5 as claimed.

To achieve O (n) construction time, we need to assign names to all paths of length b4/5 in the tree, which can be done
in O (n) by traversing the suffix tree of T . We would also like to lexicographically sort all canonical paths, but this seems
difficult to achieve in O (n). Therefore, we change the lexicographical order as follows: we assign names to all canonical
paths of length exactly x2, so that different paths get different names and identical paths get identical names (again, this
can be done in O (n) time by traversing the suffix tree). Then we treat every canonical path of length i · x2 as a sequence
consisting of i names, and sort these sequences lexicographically in O (n) time with radix sort. Even though this is not the
lexicographical order, the canonical paths are only used to approximate the answer up to an additive error of x2, and hence
such modification is still correct. �

We apply Lemma 4 with b = n, n4/5, n(4/5)2
, . . . , 1. The total number of applications is O (log log n). Therefore, the total

space usage becomes O (n log log n), and by applying the reduction step iteratively, for any path of length n ending at u and
a subtree rooted at v we can compute the path–tree LCE in O ((log log n)2) time. The total construction time is O (n log log n).

To prove Theorem 2, we need to decrease the space usage and the construction time. The idea is similar to the one from
Section 4: we create a smaller tree T ′ on O (n/b) nodes, where b = log log n is the parameter of the difference cover. The
edges of T ′ correspond to paths of length b2 in T . We preprocess T ′ as described above, but because its size is now just
O (n/b), the preprocessing time and space become O (n).

To compute the path–tree LCE for a given path of length � ending at u and a subtree rooted at v , we first check
if the answer is at least b2. This can be done in O (log log n) time by preprocessing all paths of length b2 in T , as
done inside Lemma 4 for paths of length b4/5. If so, we can decrease � and replace v with its descendant, so that both
LA(u, depth(u) − �) and v are marked, hence exist in T ′ . Then we use the structure constructed for T ′ to reduce the query,
so that the path is of length at most b2. Therefore, it is enough how to answer a query, where a path is of length at most
b2, in O (log log n) time after O (n) time and space preprocessing.

The final step is to preprocess T in O (n) time and space, so that the path–tree LCE of a path of length at most b2 and
any subtree can be computed in O (b) time. We assign unique names to all paths of length b in T . Then, for every u we
gather the names of all paths u � v of length b in a perfect hash table. To calculate the path–tree LCE, we traverse the
path top-down while tracing the corresponding node in the subtree. Initially, we move by b edges by using the perfect hash
tables. This allows us to proceed as long as the remaining part of the LCE is at least b. Then, we traverse the remaining
part consisting of at most b edges naively. In total, this takes O (b) time. The space is clearly O (n) and the preprocessing
requires constructing the perfect hash tables, which can be done in O (n) time.

5.1. Lower bound

In this section, we prove that any path–tree LCE structure of size O (n polylog(n)) must necessarily use �(log log n) time
to answer queries. As shown by Pǎtraşcu and Thorup [34], for U = n2 any predecessor structure consisting of O (n polylog(n))

words needs �(log log n) time to answer queries, assuming that the word size is �(log n). We show the following reduction,
which implies the aforementioned lower bound.

Theorem 3. For any ε > 0, given an LCEPT structure that uses s(n) = �(n) space and answers queries in q(n) = �(1) time we can
build a predecessor structure using O (s(2U ε + n log |U |)) space and O (q(2U ε + n log |U |)) query time for any S ⊆ [0, U) of size n.

Proof. We construct a tree T consisting of two parts, which are then glued together by adding an artificial root. One part is
simply a full binary trie on |U |ε leaves (for simplicity, we assume that |U |ε is a power of 2), each of them corresponding to
an element of [0, U 1/ε). The other is a binary trie containing all elements of S . More precisely, for every x ∈ S we consider
the binary expansion of x, which is of length log |U |, and insert the corresponding path into the trie. The resulting tree is
of size 2|U |ε + n log |U |. Then we can find the predecessor of any x in S with LCEPT queries as follows. First, observe that
a predecessor query can be seen as starting at the root of the binary trie containing the elements of S and navigating it
according to the binary expansion of x as long as possible. There are three cases.

1. The search ends at a leaf. In such case, x ∈ S .
2. The search ends at a node u such that the next binary digit of x is 0 but u has no left child. Then the predecessor of x

is the predecessor of the element corresponding to the leftmost leaf in the right subtree of u.

P. Bille et al. / Theoretical Computer Science 638 (2016) 98–107 105
Fig. 2. Set intersection lower bound example. S1 = {1, 2}, S2 = {1, 4}, S3 = {2, 3, 4}, S4 = {3}. For example, LCETT (v1, v3) = 1 since S1 ∩ S3 �= ∅ but
LCETT (v2, v4) = 0 since S2 ∩ S4 = ∅.

3. The search ends at a node u such that the next binary digit of x is 1 but u has no right child. Then the predecessor of
x corresponds to the rightmost leaf in the left subtree of u.

In the first case, we are done. In the second and third case, the answer depends only on the node u, so by storing an
additional data of size O (1) at every node of T we can locate the predecessor in O (1) time after having found the node u.

We split the binary expansion of x into 1/ε chunks x1, x2, . . . , x1/ε and process them one-by-one. First, we determine the
largest i such that the binary trie containing all elements of S contains a node v corresponding to the prefix x1x2 . . . xi of
the binary expansion of x. This can be done in O (1) time and O (n log |U |) space using perfect hashing. If i = 1/ε , u = v and
we are done. Otherwise, let r be the root of the full binary trie and � its leaf corresponding to xi+1, which can be explicitly
stored for every element of [0, U 1/ε). Then a single LCEPT(r, �, v) query allows us to determine the node u. Overall, the
query takes O (1/ε + 1 + q(2U ε + n log |U |)) = O (q(2U ε + n log |U |)) time. �

By applying the reduction with U = n2 and ε = 1/2, we get that an LCEPT structure using O (n polylog(n)) space and
answering queries in o(log log n) time implies a predecessor structure using O (n polylog(n)) space and answering queries in
o(log log(n)) time, which is not possible.

6. Tree–tree LCE

We now consider the LCETT problem. We show that the problem is set intersection hard and give a time-space trade-off.

6.1. The set intersection reduction

The set intersection problem is defined as follows. Given a family S = {S1, . . . , Sk} of sets of total size n = ∑k
i=1 |Si | the

goal is to preprocess S to answer queries: given two sets Si and S j determine if Si ∩ S j = ∅. The set intersection problem
is widely believed to require superlinear space in order to support fast queries. A folklore conjecture states that for sets of
size polylogarithmic in k, supporting queries in constant time requires �̃(k2) space [33] (see also [15]).

We show the following reduction.

Theorem 4. Let T be a tree with n nodes. Given an LCETT data structure that uses s(n) space and answers queries in q(n) time we can
build a set intersection data structure using O (s(n)) space and O (q(n)) query time, for input sets containing O (n) elements.

Proof. Let S = {S1, . . . , Sk} be an instance of set intersection with n = ∑k
i=1 |Si |. We transform the sets into a tree T with

root r. For each set Si create a node vi as a child of r. For each element e ∈ Si create a child node of vi and label the edge
by e. See Fig. 2 for an example. To answer an intersect query for Si and S j we compute � = LCETT(vi, v j). If � = 1 then Si
and S j intersect and if � = 0 they don’t. �

6.2. The time-space trade-off

We now give a time-space trade-off for the LCETT problem as stated by the following theorem.

Theorem 5. For a tree T with n nodes and a parameter τ , 1 ≤ τ ≤ n, a data structure of size O (nτ) can be constructed in O (nτ) time
to answer tree–tree LCE queries in O (n/τ) time.

First consider the following two extreme solutions. Given nodes v1 and v2 we can simply traverse the entire subtrees
T (v1) and T (v2) in parallel and report the maximal path–path LCE. Since we only need to store T , this solution uses O (n)

space and O (|T (v1)| + |T (v2)|) = O (n) query time. On the other hand, if we preprocess and store the maximal tree–tree
LCE for every pair of nodes we use O (n2) space and support queries in O (1) time. We show how to efficiently balance
between these solutions by clustering T into O (τ) overlapping subtrees of size O (n/τ).

106 P. Bille et al. / Theoretical Computer Science 638 (2016) 98–107
Clustering Let C be a connected subgraph of T . A node in V (C) adjacent to a node in V (T)\V (C) is called a boundary node
of C . A cluster of T is a connected subgraph of T with at most two boundary nodes and at least 1 edge. A set of clusters CS
is a cluster partition of T iff V (T) = ∪C∈CS V (C), E(T) = ∪C∈CS E(C), and for any C1, C2 ∈ CS, E(C1) ∩ E(C2) = ∅. We will use
the following clustering results which follows from Frederickson [20] (see also [3,4,10]).

Lemma 5. Given a tree T with n > 1 nodes and a parameter τ , we can construct a cluster partition CS in O (n) time, such that
|CS| = O (τ) and |V (C)| = O (n/τ) for any C ∈ CS.

The data structure Our data structure consists of the following parts:

• A cluster partition CS of T with parameter τ .
• For each pair (v, b), where v is a node in T and b is a boundary node, we store LCETT(v, b). By Lemma 5, the total

number of boundary nodes is O (τ) hence this uses O (nτ) space.

Answering queries Let v1 and v2 be nodes in clusters C1 and C2, respectively. We compute LCETT(v1, v2) as follows. If
v1 or v2 is a boundary node we return the precomputed stored answer in O (1) time. Otherwise, we traverse in parallel
the part of subtree T (v1) inside C1 and the part of subtree T (v2) inside C2. If either endpoint of the traversal reaches a
boundary node we lookup the precomputed answer. The corresponding LCETT is then the distance to the endpoint plus the
precomputed answer. The answer to LCETT(v1, v2) is the maximal path–path LCE found during the traversal.

Since C1 and C2 contain O (n/τ) nodes the total time is O (n/τ). Hence, our solution uses O (nτ) space and O (n/τ)

query time, thus completing the proof of Theorem 5.
Finally, we note that the above data structure can be easily modified (while maintaining the same time and space

bounds) to support the following tree–tree LCE query: Given nodes v1 and v2, find the largest common subtree (rather
than subpath) starting at v1 and v2 (i.e., the largest connected subgraph that includes v1 and descendants of v1 and is
equal to a connected subgraph that includes v2 and descendants of v2).

References

[1] S. Alstrup, C. Gavoille, H. Kaplan, T. Rauhe, Nearest common ancestors: a survey and a new algorithm for a distributed environment, Theory Comput.
Syst. 37 (2004) 441–456.

[2] S. Alstrup, J. Holm, Improved algorithms for finding level ancestors in dynamic trees, in: Proc. 27th International Colloquium on Automata, Languages,
and Programming, in: Lecture Notes in Computer Science, vol. 1853, 2000, pp. 73–84.

[3] S. Alstrup, J. Holm, K. de Lichtenberg, M. Thorup, Minimizing diameters of dynamic trees, in: Proceedings of the 24th International Colloquium on
Automata, Languages and Programming, in: Lecture Notes in Computer Science, vol. 1256, 1997, pp. 270–280.

[4] S. Alstrup, J. Holm, M. Thorup, Maintaining center and median in dynamic trees, in: Proceedings of the 7th Scandinavian Workshop on Algorithm
Theory, in: Lecture Notes in Computer Science, vol. 1851, 2000, pp. 46–56.

[5] A. Amir, M. Lewenstein, E. Porat, Faster algorithms for string matching with k mismatches, J. Algorithms 50 (2) (2004) 257–275.
[6] H. Bannai, P. Gawrychowski, S. Inenaga, M. Takeda, Converting SLP to LZ78 in almost linear time, in: Proc. 24th Combinatorial Pattern Matching, in:

Lecture Notes in Computer Science, vol. 7922, 2013, pp. 38–49.
[7] M.A. Bender, M. Farach-Colton, The LCA problem revisited, in: Proc. 4th Latin American Symposium on Theoretical Informatics, in: Lecture Notes in

Computer Science, vol. 1776, 2000, pp. 88–94.
[8] M.A. Bender, M. Farach-Colton, The level ancestor problem simplified, Theoret. Comput. Sci. 321 (1) (2004) 5–12.
[9] O. Berkman, U. Vishkin, Finding level-ancestors in trees, J. Comput. System Sci. 48 (2) (1994) 214–230.

[10] P. Bille, I.L. Gørtz, The tree inclusion problem: in linear space and faster, ACM Trans. Algorithms 7 (3) (2011) 38, Announced at ICALP 2005.
[11] P. Bille, I.L. Gørtz, M.B.T. Knudsen, M. Lewenstein, H.W. Vildhøj, Longest common extensions in sublinear space, in: Proc. 26th Combinatorial Pattern

Matching, in: Lecture Notes in Computer Science, vol. 9133, 2015, pp. 65–76.
[12] P. Bille, I.L. Gørtz, J. Kristensen, Longest common extensions via fingerprinting, in: Proc. 6th Language and Automata Theory and Applications, in:

Lecture Notes in Computer Science, vol. 7183, 2012, pp. 119–130.
[13] P. Bille, I.L. Gørtz, B. Sach, H.W. Vildhøj, Time–space trade-offs for longest common extensions, J. Discrete Algorithms 25 (0) (2014) 42–50, announced

at CPM 2012.
[14] D. Breslauer, The suffix tree of a tree and minimizing sequential transducers, Theoret. Comput. Sci. 191 (1–2) (1998) 131–144.
[15] H. Cohen, E. Porat, Fast set intersection and two-patterns matching, Theoret. Comput. Sci. 411 (40–42) (2010) 3795–3800.
[16] R. Cole, R. Hariharan, Approximate string matching: a simpler faster algorithm, SIAM J. Comput. 31 (6) (2002) 1761–1782.
[17] P.F. Dietz, Finding level-ancestors in dynamic trees, in: Proc. 2nd Workshop on Algorithms and Data Structures, in: Lecture Notes in Computer Science,

vol. 519, 1991, pp. 32–40.
[18] J. Fischer, V. Heun, Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE, in: Proc. 17th Combinatorial

Pattern Matching, in: Lecture Notes in Computer Science, vol. 4009, 2006, pp. 36–48.
[19] J. Fischer, V. Heun, Space-efficient preprocessing schemes for range minimum queries on static arrays, SIAM J. Comput. 40 (2) (2011) 465–492.
[20] G.N. Frederickson, Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning trees, SIAM J. Comput. 26 (2) (1997) 484–538,

announced at FOCS’91.
[21] M.L. Fredman, J. Komlos, E. Szemeredi, Storing a sparse table with O (1) worst case access time, in: Proc. 23rd Foundations of Computer Science, 1982,

pp. 165–169.
[22] R.F. Geary, R. Raman, V. Raman, Succinct ordinal trees with level-ancestor queries, ACM Trans. Algorithms 2 (4) (2006) 510–534.
[23] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, Cambridge, 1997.
[24] D. Gusfield, J. Stoye, Linear time algorithms for finding and representing all the tandem repeats in a string, J. Comput. System Sci. 69 (4) (2004)

525–546.
[25] D. Harel, R.E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J. Comput. 13 (2) (1984) 338–355.

http://refhub.elsevier.com/S0304-3975(15)00729-X/bib41474B5232303034s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib41474B5232303034s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib414832303030s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib414832303030s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib41484C5431393937s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib41484C5431393937s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib41485432303030s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib41485432303030s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib414C5032303034s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib42616E6E616932303133s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib42616E6E616932303133s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib42464332303030s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib42464332303030s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib42464332303034s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib425631393934s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib424732303131s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib42474B4C5632303135s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib42474B4C5632303135s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib42474B32303132s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib42474B32303132s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib4247535632303134s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib4247535632303134s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib427265736C6175657231393938s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib435032303130s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib434832303032s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib446965747A31393931s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib446965747A31393931s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib464832303036s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib464832303036s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib464832303131s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib66726564657269636B736F6E31393937s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib66726564657269636B736F6E31393937s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib464B53s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib464B53s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib47525632303036s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib4775736669656C6431393937s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib475332303034s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib475332303034s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib485431393834s1

P. Bille et al. / Theoretical Computer Science 638 (2016) 98–107 107
[26] L. Ilie, G. Navarro, L. Tinta, The longest common extension problem revisited and applications to approximate string searching, J. Discrete Algorithms
8 (4) (2010) 418–428.

[27] S.R. Kosaraju, Efficient tree pattern matching, in: Proc. 30th Foundations of Computer Science, 1989, pp. 178–183.
[28] G.M. Landau, E.W. Myers, J.P. Schmidt, Incremental string comparison, SIAM J. Comput. 27 (2) (1998) 557–582.
[29] G.M. Landau, J.P. Schmidt, D. Sokol, An algorithm for approximate tandem repeats, J. Comput. Biol. 8 (1) (2001) 1–18.
[30] G.M. Landau, U. Vishkin, Fast parallel and serial approximate string matching, J. Algorithms 10 (1989) 157–169.
[31] M.G. Main, R.J. Lorentz, An O (n logn) algorithm for finding all repetitions in a string, J. Algorithms 5 (3) (1984) 422–432.
[32] E.W. Myers, An O (N D) difference algorithm and its variations, Algorithmica 1 (2) (1986) 251–266.
[33] M. Pǎtraşcu, L. Roditty, Distance oracles beyond the Thorup–Zwick bound, SIAM J. Comput. 43 (1) (2014) 300–311, announced at FOCS’10.
[34] M. Pǎtraşcu, M. Thorup, Time-space trade-offs for predecessor search, in: Proc. 38th Symposium on Theory of Computing, 2006, pp. 232–240.
[35] M. Ružić, Algorithms for deterministic construction of efficient dictionaries, in: Proc. 12th European Symposium on Algorithms, in: Lecture Notes in

Computer Science, vol. 3221, 2004, pp. 592–603.
[36] T. Shibuya, Constructing the suffix tree of a tree with a large alphabet, in: Proc. 10th International Symposium on Algorithms and Computation, in:

Lecture Notes in Computer Science, vol. 1741, 1999, pp. 225–236.
[37] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an efficient priority queue, Math. Syst. Theory 10 (1977) 99–127.

http://refhub.elsevier.com/S0304-3975(15)00729-X/bib494E4C32303130s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib494E4C32303130s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib4B6F736172616A7531393839s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib4C4D5331393938s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib4C535332303031s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib4C5631393839s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib4D4C31393834s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib4D7965727331393836s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib505232303134s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib505432303036s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib52757A696332303034s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib52757A696332303034s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib7368696275796131393939s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib7368696275796131393939s1
http://refhub.elsevier.com/S0304-3975(15)00729-X/bib424B5A31393737s1

	Longest common extensions in trees
	1 Introduction
	2 Preliminaries
	3 Difference covers for trees
	4 Path-path LCE
	5 Path-tree LCE
	5.1 Lower bound

	6 Tree-tree LCE
	6.1 The set intersection reduction
	6.2 The time-space trade-off

	References

