
2
An Optimal Decomposition Algorithm

for Tree Edit Distance

ERIK D. DEMAINE

Massachusetts Institute of Technology

SHAY MOZES

Brown University

AND

BENJAMIN ROSSMAN AND OREN WEIMANN

Massachusetts Institute of Technology

Abstract. The edit distance between two ordered rooted trees with vertex labels is the minimum cost
of transforming one tree into the other by a sequence of elementary operations consisting of deleting
and relabeling existing nodes, as well as inserting new nodes. In this article, we present a worst-case
O(n3)-time algorithm for the problem when the two trees have size n, improving the previous best
O(n3 log n)-time algorithm. Our result requires a novel adaptive strategy for deciding how a dynamic
program divides into subproblems, together with a deeper understanding of the previous algorithms for
the problem. We prove the optimality of our algorithm among the family of decomposition strategy
algorithms—which also includes the previous fastest algorithms—by tightening the known lower
bound of �(n2 log2 n) to �(n3), matching our algorithm’s running time. Furthermore, we obtain
matching upper and lower bounds for decomposition strategy algorithms of �(nm2(1+ log n

m)) when
the two trees have sizes m and n and m < n.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—Computations on discrete structures; pattern matching;
G.2.1 [Discrete Mathematics]: Combinatorics—Combinatorial algorithms

General Terms: Algorithms, Theory

A preliminary version of this article [Demaine et al. 2007] appeared in the Proceedings of the 34th
International Colloquium on Automata, Languages and Programming (ICALP).
O. Weimann is now affiliated with Weizmann Institute of Science.
Authors’ addresses: E. D. Demaine, MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139; S. Mozes, Computer Science, Brown University, Provi-
dence, RI 02912-1910; B. Rossman, O. Weimann (corresponding author), Department of Computer
Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel, e-mail:
Oren.weimann@weizmann.ac.il.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1549-6325/2009/12-ART02 $10.00
DOI 10.1145/1644015.1644017 http://doi.acm.org/10.1145/1644015.1644017

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

2:2 E. D. DEMAINE ET AL.

Additional Key Words and Phrases: Decomposition strategy, dynamic programming, edit distance,
ordered trees, tree edit distance

ACM Reference Format:

Demaine, E. D., Mozes, S., Rossman, B., and Weimann, O. 2009. An optimal decomposition algorithm
for tree edit distance. ACM Trans. Algor. 6, 1, Article 2 (December 2009), 19 pages.
DOI = 10.1145/1644015.1644017 http://doi.acm.org/10.1145/1644015.1644017

1. Introduction

The problem of comparing trees occurs in diverse areas such as structured text
databases like XML, computer vision, compiler optimization, natural language
processing, and computational biology [Bille 2005; Chawathe 1999; Klein et al.
2000; Shasha and Zhang 1989; Tai 1979].

One major application is the analysis of RNA molecules in computational biol-
ogy. Ribonucleic acid (RNA) is a polymer consisting of a sequence of nucleotides
(Adenine, Cytosine, Guanine, and Uracil) connected linearly via a backbone. In ad-
dition, complementary nucleotides (AU, GC, and GU) can form hydrogen bonds,
leading to a structural formation called the secondary structure of the RNA. Be-
cause of the nested nature of these hydrogen bonds, the secondary structure of RNA
can be naturally represented by an ordered rooted tree [Gusfield 1997; Waterman
1995] as depicted in Figure 1. Recently, comparing RNA sequences has gained
increasing interest thanks to numerous discoveries of biological functions associ-
ated with RNA. A major fraction of RNA’s function is determined by its secondary
structure [Moore 1999]. Therefore, computing the similarity between the secondary
structure of two RNA molecules can help determine the functional similarities of
these molecules.

The tree edit distance metric is a common similarity measure for rooted ordered
trees. It was introduced by Tai in the late 1970’s [Tai 1979] as a generalization of the
well-known string edit distance problem [Wagner and Fischer 1974]. Let F and G
be two rooted trees with a left-to-right order among siblings and where each vertex
is assigned a label from an alphabet �. The edit distance between F and G is the
minimum cost of transforming F into G by a sequence of elementary operations
consisting of deleting and relabeling existing nodes, as well as inserting new nodes
(allowing at most one operation to be performed on each node). These operations
are illustrated in Figure 2. Formally, given a node v in F with parent v ′, relabel
changes the label of v , delete removes a nonroot node v and sets the children of v
as the children of v ′ (the children are inserted in the place of v as a subsequence in
the left-to-right order of the children of v ′), and insert (the complement of delete)
connects a new node v as a child of some v ′ in F making v the parent of a consecutive
subsequence of the children of v ′. The cost of the elementary operations is given by
two functions, cdel and cmatch , where cdel (τ) is the cost of deleting or inserting a vertex
with label τ , and cmatch (τ1, τ2) is the cost of changing the label of a vertex from τ1 to
τ2. Since a deletion in F is equivalent to an insertion in G and vice versa, we can
focus on finding the minimum cost of a sequence of just deletions and relabelings
in both trees that transform F and G into isomorphic trees.

1.1. PREVIOUS RESULTS. To state running times, we need some basic notation.
Let n and m denote the sizes |F | and |G| of the two input trees, ordered so that
n ≥ m. Let nleaves and m leaves denote the corresponding number of leaves in each

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

An Optimal Decomposition Algorithm for Tree Edit Distance 2:3

FIG. 1. Two different ways of viewing an RNA sequence. In (a), a schematic 2-dimensional descrip-
tion of an RNA folding. In (b), the RNA as a rooted ordered tree.

FIG. 2. The three editing operations on a tree with vertex labels.

tree, and let nheight and mheight denote the corresponding height of each tree, which
can be as large as n and m, respectively.

Tai [1979] presented the first algorithm for computing tree edit distance, which
requires O(n2

leavesm
2
leavesnm) time and space, and thus has a worst-case running

time of O(n3m3) = O(n6). Shasha and Zhang [1989] improved this result to an
O(min{nheight, nleaves}·min{mheight, m leaves}·nm) time algorithm using O(nm) space.
In the worst case, their algorithm runs in O(n2m2) = O(n4) time. Klein [1998]
improved this result to a worst-case O(m2n log n) = O(n3 log n) time algorithm
using O(nm) space. These last two algorithms are based on closely related dy-
namic programs, and both present different ways of computing only a subset of
a larger dynamic program table; these entries are referred to as relevant subprob-
lems. Dulucq and Touzet [2003] introduced the notion of a decomposition strategy
(see Section 2.3) as a general framework for algorithms that use this type of dy-
namic program, and proved a lower bound of �(nm log n log m) time for any such
strategy.

Many other solutions have been developed; see Apostolico and Galil [1997],
Bille [2005], and Valiente [2002] for surveys. The most recent development is by
Chen [2001], who presented a different approach that uses results on fast matrix
multiplication. Chen’s algorithm uses O(nm + nm2

leaves + nleavesm2.5
leaves) time and

O(n + (m + n2
leaves) min{nleaves, nheight}) space. In the worst case, this algorithm

runs in O(nm2.5) = O(n3.5) time. Among all these algorithms, Klein’s is the fastest
in terms of worst-case time complexity, and previous improvements to Klein’s
O(n3 log n) time bound were achieved only by constraining the edit operations or
the scoring scheme [Chawathe 1999; Selkow 1977; Shasha and Zhang 1990; Zhang
1995].

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

2:4 E. D. DEMAINE ET AL.

1.2. OUR RESULTS. We present a new algorithm for computing the tree edit
distance that falls into the same decomposition strategy framework of Dulucq and
Touzet [2003], Klein [1998], and Shasha and Zhang [1989]. In the worst case,
our algorithm requires O(nm2(1 + log n

m)) = O(n3) time and O(nm) space. The
corresponding sequence of edit operations can easily be obtained within the same
time and space bounds. We therefore improve upon all known algorithms in the
worst-case time complexity. Our approach is based on Klein’s, but whereas the
recursion scheme in Klein’s algorithm is determined by just one of the two input
trees, in our algorithm the recursion depends alternately on both trees. Furthermore,
we prove a worst-case lower bound of �(nm2(1 + log n

m)) time for all decompo-
sition strategy algorithms. This bound improves the previous best lower bound of
�(nm log n log m) time [Dulucq and Touzet 2003], and establishes the optimality
of our algorithm among all decomposition strategy algorithms.

1.3. ROADMAP. In Section 2 we give a simple and unified presentation of the
two well-known tree edit algorithms, on which our algorithm is based, and on
the class of decomposition strategy algorithms. We present and analyze the time
complexity of our algorithm in Section 3, and prove the matching lower bound in
Section 4. An explicit O(nm) space complexity version of our algorithm is given
in Section 5 and final conclusions are presented in Section 6.

2. Background and Framework

Both the existing algorithms and ours compute the edit distance of finite ordered �-
labeled forests, henceforth forests. These are forests that have a left-to-right order
among siblings and each vertex is assigned a label from a given finite alphabet �
such that two different vertices can have the same label or different labels. The
unique empty forest/tree is denoted by ∅. The vertex set of a forest F is written
simply as F , as when we speak of a vertex v ∈ F . For a forest F and v ∈ F , σ (v)
denotes the label of v , Fv denotes the subtree of F rooted at v , and F − v denotes
the forest F after deleting v . The special case of F − root(F) where F is a tree
and root(F) is its root is denoted F◦. The leftmost and rightmost trees of a forest
F are denoted by L F and RF and their roots by �F and rF . We denote by F − L F
the forest F after deleting the entire leftmost tree L F ; similarly F − RF . A left-to-
right postorder traversal of F is the postorder traversal of all its trees L F , . . . , RF
from left to right. For a tree T , the postorder traversal is defined recursively as the
postorder traversal of the forest T ◦ followed by a visit of root(T) (as opposed to
a preorder traversal that first visits root(T) and then T ◦). A forest obtained from
F by a sequence of any number of deletions of the leftmost and rightmost roots is
called a subforest of F .

Given forests F and G and vertices v ∈ F and w ∈ G, we write cdel (v) instead of
cdel (σ (v)) for the cost of deleting or inserting σ (v), and we write cmatch (v, w) instead
of cmatch (σ (v), σ (w)) for the cost of relabeling σ (v) to σ (w). δ(F, G) denotes the
edit distance between the forests F and G.

Because insertion and deletion costs are the same (for a node of a given label),
insertion in one forest is tantamount to deletion in the other forest. Therefore, the
only edit operations we need to consider are relabelings and deletions of nodes in
both forests. In the next two sections, we briefly present the algorithms of Shasha and
Zhang [1989] and of Klein [1998]. This presentation, inspired by the tree similarity

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

An Optimal Decomposition Algorithm for Tree Edit Distance 2:5

survey of Bille [2005], is somewhat different from the original presentations and is
essential for understanding our algorithm.

2.1. SHASHA AND ZHANG’S ALGORITHM. Given two forests F and G of sizes
n and m, respectively, the following lemma is easy to verify. Intuitively, the lemma
says that in any sequence of edit operations the two rightmost roots in F and G
must either be matched with each other or else one of them is deleted.

LEMMA 2.1. [SHASHA AND ZHANG 1989]. δ(F, G) can be computed as
follows:

—δ(∅, ∅) = 0;
—δ(F, ∅) = δ(F − rF , ∅) + cdel (rF);
—δ(∅, G) = δ(∅, G − rG) + cdel (rG);

—δ(F, G) = min

⎧⎨
⎩

δ(F − rF , G) + cdel (rF),
δ(F, G − rG) + cdel (rG),
δ(R◦

F , R◦
G) + δ(F − RF , G − RG) + cmatch (rF , rG).

Lemma 2.1 yields an O(m2n2) dynamic programming algorithm. If we index the
vertices of the forests F and G according to their left-to-right postorder traversal
position, then entries in the dynamic program table correspond to pairs (F ′, G ′)
of subforests F ′ of F and G ′ of G where F ′ contains vertices {i1, i1 + 1, . . . , j1}
and G ′ contains vertices {i2, i2 + 1, . . . , j2} for some 1 ≤ i1 ≤ j1 ≤ n and
1 ≤ i2 ≤ j2 ≤ m.

However, we next show that only O(min{nheight, nleaves}·min{mheight, m leaves}·nm)
different relevant subproblems are encountered by the recursion computing δ(F, G).
We calculate the number of relevant subforests of F and G independently, where a
forest F ′ (respectively, G ′) is a relevant subforest of F (respectively, G) if it occurs in
the computation of δ(F, G). Clearly, multiplying the number of relevant subforests
of F and of G is an upper bound on the total number of relevant subproblems.

We now count the number of relevant subforests of F ; the count for G is similar.
First, notice that for every node v ∈ F , F◦

v is a relevant subproblem. This is because
the recursion allows us to delete the rightmost root of F repeatedly until v becomes
the rightmost root; we then match v (i.e., relabel it) and get the desired relevant
subforest. A more general claim is stated and proved later on in Lemma 2.3. We
define

keyroots(F) = { the root of F} ∪ {v ∈ F | v has a left sibling}.
It is easy to see that every relevant subforest of F is a prefix (with respect to the
postorder indices) of F◦

v for some node v ∈ keyroots(F). If we define v’s collapse
depth cdepth(v) to be the number of keyroot ancestors of v , and cdepth(F) to be the
maximum cdepth(v) over all nodes v ∈ F , we get that the total number of relevant
subforest of F is at most∑

v∈keyroots(F)

|Fv | =
∑
v∈F

cdepth(v) ≤
∑
v∈F

cdepth(F) = |F |cdepth(F).

This means that given two trees, F and G, of sizes n and m we can compute
δ(F, G) in O(cdepth(F)·cdepth(G)·nm) = O(nheight ·mheight ·nm) time. Shasha and
Zhang also proved that for any tree T of size n, cdepth(T) ≤ min{nheight, nleaves},
hence the result. In the worst case, this algorithm runs in O(m2n2) = O(n4) time.

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

2:6 E. D. DEMAINE ET AL.

2.2. KLEIN’S ALGORITHM. Klein’s [1998] algorithm is based on a recursion
similar to Lemma 2.1. Again, we consider forests F and G of sizes |F | = n ≥
|G| = m. Now, however, instead of recursing always on the rightmost roots of F
and G, we recurse on the leftmost roots if |L F | ≤ |RF | and on the rightmost roots
otherwise. In other words, the “direction” of the recursion is determined by the
(initially) larger of the two forests. We assume the number of relevant subforests
of G is O(m2); we have already established that this is an upper bound.

We next show that Klein’s algorithm yields only O(n log n) relevant subforests
of F . The analysis is based on a technique called heavy path decomposition [Harel
and Tarjan 1984; Sleator and Tarjan 1983]. We mark the root of F as light. For
each internal node v ∈ F , we pick one of v’s children with maximal number of
descendants and mark it as heavy, and we mark all the other children of v as light.
We define ldepth(v) to be the number of light nodes that are proper ancestors of v in
F , and light(F) as the set of all light nodes in F . It is easy to see that for any forest
F and vertex v ∈ F , ldepth(v) ≤ log |F |+ O(1). Note that every relevant subforest
of F is obtained by some i ≤ |Fv | consecutive deletions from Fv for some light
node v . Therefore, the total number of relevant subforests of F is at most∑

v∈light(F)

|Fv | ≤
∑
v∈F

1 + ldepth(v) ≤
∑
v∈F

(log |F | + O(1)) = O(|F | log |F |).

Thus, we get an O(m2n log n) = O(n3 log n) algorithm for computing δ(F, G).

2.3. THE DECOMPOSITION STRATEGY FRAMEWORK . Both Klein’s [1998] and
Shasha and Zhang’s [1989] algorithms are based on Lemma 2.1. The difference
between them lies in the choice of when to recurse on the rightmost roots and when
on the leftmost roots. The family of decomposition strategy algorithms based on
this lemma was formalized by Dulucq and Touzet [2003].

Definition 2.2. Let F and G be two forests. A strategy is a mapping from pairs
(F ′, G ′) of subforests of F and G to {left, right}. A decomposition algorithm is an
algorithm based on Lemma 2.1 with the directions chosen according to a specific
strategy.

Each strategy is associated with a specific set of recursive calls (or a dy-
namic programming algorithm). The strategy of Shasha and Zhang’s algorithm
is S(F ′, G ′) = right for all F ′, G ′. The strategy of Klein’s algorithm is S(F ′, G ′) =
left if |L F ′ | ≤ |RF ′ |, and S(F ′, G ′) = right otherwise. Notice that Shasha and
Zhang’s strategy does not depend on the input trees, while Klein’s strategy depends
only on the larger input tree. Dulucq and Touzet [2003] proved a lower bound of
�(mn log m log n) time for any decomposition strategy algorithm.

The following lemma states that every decomposition algorithm computes the
edit distance between every two root-deleted subtrees of F and G.

LEMMA 2.3. Given a decomposition algorithm with strategy S, the pair
(F◦

v , G◦
w) is a relevant subproblem for all v ∈ F and w ∈ G regardless of the

strategy S.

PROOF. First note that a node v ′ ∈ Fv (respectively, w ′ ∈ Gw) is never deleted
or matched before v (respectively, w) is deleted or matched. Consider the following
specific sequence of recursive calls:

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

An Optimal Decomposition Algorithm for Tree Edit Distance 2:7

—Delete from F until v is either the leftmost or the rightmost root.
—Next, delete from G until w is either the leftmost or the rightmost root.

Let (F ′, G ′) denote the resulting subproblem. There are four cases to consider.

(1) v and w are the rightmost (leftmost) roots of F ′ and G ′, and S(F ′, G ′) = right
(left).

Match v and w to get the desired subproblem.

(2) v and w are the rightmost (leftmost) roots of F ′ and G ′, and S(F ′, G ′) = left
(right).

Note that at least one of F ′, G ′ is not a tree (since otherwise this is case (1)).
Delete from one which is not a tree. After a finite number of such deletions we
have reduced to case (1), either because S changes direction, or because both
forests become trees whose roots are v, w .

(3) v is the rightmost root of F ′, w is the leftmost root of G ′.

If S(F ′, G ′) = left, delete from F ′; otherwise delete from G ′. After a finite
number of such deletions this reduces to one of the previous cases when one
of the forests becomes a tree.

(4) v is the leftmost root of F ′, w is the rightmost root of G ′.

This case is symmetric to (3).

3. The Algorithm

In this section we present our algorithm for computing δ(F, G) given two trees F
and G of sizes |F | = n ≥ |G| = m. The algorithm recursively uses a decomposition
strategy in a divide-and-conquer manner to achieve O(nm2(1 + log n

m)) = O(n3)
running time in the worst case. For clarity we describe the algorithm recursively
and analyze its time complexity. In Section 5 we prove that the space complexity
of a bottom-up nonrecursive implementation of the algorithm is O(mn) = O(n2).

Before presenting our algorithm, let us try to develop some intuition. We begin
with the observation that Klein’s strategy always determines the direction of the
recursion according to the F-subforest, even in subproblems where the F-subforest
is smaller than the G-subforest. However, it is not straightforward to change this
since even if at some stage we decide to choose the direction according to the
other forest, we must still make sure that all subproblems previously encountered
are entirely solved. At first glance this seems like a real obstacle since apparently
we only add new subproblems to those that are already computed. Our key obser-
vation is that there are certain subproblems for which it is worthwhile to choose
the direction according to the currently larger forest, while for other subprob-
lems we had better keep choosing the direction according to the originally larger
forest.

The heavy path of a tree F is the unique path starting from the root (which is
light) along heavy nodes. Consider two trees, F and G, and assume we are given
the distances δ(F◦

v , G◦
w) for all v ∈ F and w ∈ G. By Lemma 2.3, these are relevant

subproblems for any decomposition strategy algorithm. How would we go about
computing δ(F, G) in this case? Using Shasha and Zhang’s strategy would require

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

2:8 E. D. DEMAINE ET AL.

(F)

FIG. 3. A tree F with n nodes. The black nodes belong to the heavy path. The white nodes are in
TopLight(F), and the size of each subtree rooted at a white node is at most n

2 . Note that the root of
the tree belongs to the heavy path even though it is light.

O(|F ||G|) time, while using Klein’s strategy would take O(|F ||G|2) time. Let us
focus on Klein’s strategy since Shasha and Zhang’s strategy is independent of the
trees. Note that even if we were not given the distance δ(F◦

u , G◦
w) for a node u on the

heavy path of F , we would still be able to solve the problem in O(|F ||G|2) time. To
see why, note that in order to compute the relevant subproblem δ(Fu, Gw), we must
compute all the subproblems required for solving δ(F◦

u , G◦
w) even if δ(F◦

u , G◦
w) is

given.
We define the set TopLight(F) to be the set of roots of the forest obtained by

removing the heavy path of F . Note that TopLight(F) is the set of light nodes
with ldepth 1 in F (see the definition of ldepth in Section 2.2). This definition is
illustrated in Figure 3. It follows from Lemma 2.3 that if we compute δ(Fv , G)
for all v ∈ TopLight(F), we would also compute all the subproblems δ(F◦

v ′, G◦
w)

for any w ∈ G and v ′ not on the heavy path of F . Note that Klein’s strategy
solves δ(Fv , G) by determining the direction according to Fv even if |Fv | < |G|.
We observe that we can do better if in such cases we determine the direction
according to G. It is important to understand that making the decisions according
to the larger forest when solving δ(F◦

v , G◦
w) for any v ∈ F and w ∈ G (i.e.,

regardless of whether v is on the heavy path or not) would actually increase the
running time. The identification of the set TopLight(F) is crucial for obtaining the
improvement.

Given these definitions, the recursive formulation of our algorithm is simply as
follows.

3.1. THE ALGORITHM. We compute δ(F, G) recursively as follows:

(1) If |F | < |G|, compute δ(G, F) instead.
(2) Recursively compute δ(Fv , G) for all v ∈ TopLight(F).
(3) Compute δ(F, G) using the following decomposition strategy: S(F ′, G ′) = left

if F ′ is a tree, or if �F ′ is not the heavy child of its parent. Otherwise, S(F ′, G ′) =
right. However, do not recurse into subproblems that were previously computed
in step (2).

The algorithm’s first step makes sure that F is the larger forest, and the second step
makes sure that δ(F◦

v ′, G◦
w) is computed and stored for all v ′ not in the heavy path of

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

An Optimal Decomposition Algorithm for Tree Edit Distance 2:9

F and for all w ∈ G. Note that the strategy in the third step is equivalent to Klein’s
strategy for binary trees. For higher valence trees, this variant first makes all left
deletions and then all right deletions, while Klein’s strategy might change direction
many times. They are equivalent in the important sense that both delete the heavy
child last. The algorithm is evidentally a decomposition strategy algorithm, since
for all subproblems, it either deletes or matches the leftmost or rightmost roots.
The correctness of the algorithm follows from the correctness of decomposition
strategy algorithms in general.

3.2. TIME COMPLEXITY. We show that our algorithm has a worst-case running
time of O(m2n(1 + log n

m)) = O(n3). We proceed by counting the number of
subproblems computed in each step of the algorithm. We call a subproblem trivial
if at least one of the forests in this subproblem is empty. Obviously, the number of
distinct trivial subproblems is O(n2). Let R(F, G) denote the number of nontrivial
relevant subproblems encountered by the algorithm in the course of computing
δ(F, G). From now on we only count nontrivial subproblems, unless explicitly
indicated otherwise.

We observe that any tree F has the following two properties:

(∗)
∑

v∈TopLight(F)

|Fv | ≤ |F |. Because Fv and Fv ′ are disjoint for all v, v ′ ∈ TopLight(F).

(∗∗) |Fv | <
|F |
2 for every v ∈ TopLight(F). Otherwise v would be a heavy node.

In step (2) we compute δ(Fv , G) for all v ∈ TopLight(F). Hence, the number of
subproblems encountered in this step is

∑
v∈TopLight(F) R(Fv , G). For step (3), we

bound the number of relevant subproblems by multiplying the number of relevant
subforests in F and in G. For G, we count all possible O(|G|2) subforests obtained
by left and right deletions. Note that for any node v ′ not in the heavy path of F , the
subproblem obtained by matching v ′ with any node w in G was already computed
in step (2). This is because any such v ′ is contained in Fv for some v ∈ TopLight(F),
so δ(F◦

v ′, G◦
w) is computed in the course of computing δ(Fv , G) (by Lemma 2.3).

Furthermore, note that in step (3), a node v on the heavy path of F cannot be
matched or deleted until the remaining subforest of F is precisely the tree Fv . At
this point, both matching v or deleting v result in the same new relevant subforest
F◦

v . This means that we do not have to consider matchings of nodes when counting
the number of relevant subproblems in step (3). It suffices to consider only the |F |
subforests obtained by deletions according to our strategy. Thus, the total number
of new subproblems encountered in step (3) is bounded by |G|2|F |.

We have established that if |F | ≥ |G| then

R(F, G) ≤ |G|2|F | +
∑

v∈TopLight(F)

R(Fv , G)

and if |F | < |G| then

R(F, G) ≤ |F |2|G| +
∑

w∈TopLight(G)

R(F, Gw).

We first show, by a crude estimate, that this leads to an O(n3) running time. Later,
we analyze the dependency on m and n accurately.

LEMMA 3.1. R(F, G) ≤ 4(|F ||G|)3/2.

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

2:10 E. D. DEMAINE ET AL.

PROOF. We proceed by induction on |F |+|G|. In the base case, |F |+|G| = 0,
so both forests are empty and R(F, G) = 0. For the inductive step there are two
symmetric cases. If |F | ≥ |G| then R(F, G) ≤ |G|2|F | +∑

v∈TopLight(F) R(Fv , G).
Hence, by the induction hypothesis,

R(F, G) ≤ |G|2|F | +
∑

v∈TopLight(F)

4(|Fv ||G|)3/2

= |G|2|F | + 4|G|3/2
∑

v∈TopLight(F)

|Fv |3/2

≤ |G|2|F | + 4|G|3/2
∑

v∈TopLight(F)

|Fv | max
v∈TopLight(F)

√
|Fv |

≤ |G|2|F |+4|G|3/2|F |
√

|F |
2

= |G|2|F | +
√

8(|F ||G|)3/2 ≤ 4(|F ||G|)3/2.

Here we have used facts (∗) and (∗∗) and the fact that |F | ≥ |G|. The case where
|F | < |G| is symmetric.

This crude estimate gives a worst-case running time of O(n3). We now analyze
the dependence on m and n more accurately. Along the recursion defining the
algorithm, we view step (2) as only making recursive calls, but not producing any
relevant subproblems. Rather, every new relevant subproblem is created in step (3)
for a unique recursive call of the algorithm. So when we count relevant subproblems,
we sum the number of new relevant subproblems encountered in step (3) over all
recursive calls to the algorithm. We define sets A, B ⊆ F as follows:

A = {
a ∈ light(F) : |Fa| ≥ m

}
B = {

b ∈ F−A : b ∈ TopLight(Fa) for some a ∈ A
}

Note that the root of F belongs to A. Intuitively, the nodes in both A and B are
exactly those for which recursive calls are made with the entire G tree. The nodes
in B are the last ones, along the recursion, for which such recursive calls are made.
We count separately:

(i) the relevant subproblems created in just step (3) of recursive calls δ(Fa, G) for
all a ∈ A, and

(ii) the relevant subproblems encountered in the entire computation of δ(Fb, G) for
all b ∈ B (i.e.,

∑
b∈B R(Fb, G)).

Together, this counts all relevant subproblems for the original δ(F, G). To see this,
consider the original call δ(F, G). Certainly, the root of F is in A. So all subproblems
generated in step (3) of δ(F, G) are counted in (i). Now consider the recursive calls
made in step (2) of δ(F, G). These are precisely δ(Fv , G) for v ∈ TopLight(F). For
each v ∈ TopLight(F), notice that v is either in A or in B; it is in A if |Fv | ≥ m, and
in B otherwise. If v is in B, then all subproblems arising in the entire computation
of δ(Fv , G) are counted in (ii). On the other hand, if v is in A, then we are in
analogous situation with respect to δ(Fv , G) as we were in when we considered
δ(F, G) (i.e., we count separately the subproblems created in step (3) of δ(Fv , G)
and the subproblems coming from δ(Fu, G) for u ∈ TopLight(Fv)).

Earlier in this section, we saw that the number of subproblems created in step (3)
of δ(F, G) is |G|2|F |. In fact, for any a ∈ A, by the same argument, the number of

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

An Optimal Decomposition Algorithm for Tree Edit Distance 2:11

subproblems created in step (3) of δ(Fa, G) is |G|2|Fa|. Therefore, the total number
of relevant subproblems of type (i) is |G|2 ∑

a∈A |Fa|. For v ∈ F , define depthA(v)
to be the number of proper ancestors of v that lie in the set A. We claim that
depthA(v) ≤ 1 + log n

m for all v ∈ F . To see this, consider any sequence a0, . . . , ak

in A where ai is a descendent of ai−1 for all i ∈ [1, k]. Note that |Fai | ≤ 1
2 |Fai−1 |

for all i ∈ [1, k] since the ai s are light nodes. Also note that Fa0 ≤ n and that
|Fak | ≥ m by the definition of A. It follows that k ≤ log n

m , that is, A contains
no sequence of descendants of length > 1 + log n

m . So clearly every v ∈ F has
depthA(v) ≤ 1 + log n

m .
We now have the number of relevant subproblems of type (i) as

|G|2
∑
a∈A

|Fa| ≤ m2
∑
v∈F

1 + depthA(v) ≤ m2
∑
v∈F

(
2 + log

n
m

)
=m2n

(
2 + log

n
m

)
.

The relevant subproblems of type (ii) are counted by
∑

b∈B R(Fb, G). Using
Lemma 3.1, we have∑

b∈B

R(Fb, G) ≤ 4|G|3/2
∑
b∈B

|Fb|3/2

≤ 4|G|3/2
∑
b∈B

|Fb| max
b∈B

√
|Fb|

≤ 4|G|3/2|F |√m = 4m2n.

Here we have used the facts that |Fb| < m and
∑

b∈B |Fb| ≤ |F | (since the
trees Fb are disjoint for different b ∈ B). Therefore, the total number of relevant
subproblems for δ(F, G) is at most m2n(2+ log n

m)+4m2n = O(m2n(1+ log n
m)).

This implies the following.

THEOREM 3.2. The running time of the algorithm is O(m2n(1 + log n
m)).

4. A Tight Lower Bound for Decomposition Algorithms

In this section we present a lower bound on the worst-case running time of de-
composition strategy algorithms. We first give a simple proof of an �(m2n) lower
bound. In the case where m = �(n), this gives a lower bound of �(n3) which shows
that our algorithm is worst-case optimal among all decomposition algorithms. To
prove that our algorithm is worst-case optimal for any m ≤ n, we analyze a more
complicated scenario that gives a lower bound of �(m2n(1 + log n

m)), matching
the running time of our algorithm, and improving the previous best lower bound of
�(nm log n log m) time [Dulucq and Touzet 2003].

In analyzing strategies we will use the notion of a computational path, which cor-
responds to a specific sequence of recursion calls. Recall that for all subforest-pairs
(F ′, G ′), the strategy S determines a direction: either right or left. The recursion can
either delete from F ′ or from G ′ or match. A computational path is the sequence of
operations taken according to the strategy in a specific sequence of recursive calls.
For convenience, we sometimes describe a computational path by the sequence of
subproblems it induces, and sometimes by the actual sequence of operations: either
“delete from the F-subforest”, “delete from the G-subforest”, or “match”.

We now turn to the �(m2n) lower bound on the number of relevant subproblems
for any strategy.

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

2:12 E. D. DEMAINE ET AL.

(F) (G)

v

rvv

w rw
w

FIG. 4. The two trees used to prove an �(m2n) lower bound (Lemma 4.1).

LEMMA 4.1. For any decomposition algorithm, there exists a pair of trees
(F, G) with sizes n, m respectively, such that the number of relevant subproblems
is �(m2n).

PROOF. Let S be the strategy of the decomposition algorithm, and consider the
trees F and G depicted in Figure 4. According to Lemma 2.3, every pair (F◦

v , G◦
w)

where v ∈ F and w ∈ G is a relevant subproblem for S. Focus on such a subproblem
where v and w are internal nodes of F and G. Denote v’s right child by vr and
w’s left child by w�. Note that F◦

v is a forest whose rightmost root is the node vr .
Similarly, G◦

w is a forest whose leftmost root is w�. Starting from (F◦
v , G◦

w), consider
the computational path cv,w that deletes from F whenever the strategy says left and
deletes from G otherwise. In both cases, neither vr nor w� is deleted unless one of
them is the only node left in the forest. Therefore, the length of this computational
path is at least min{|Fv |, |Gw |}− 1. Recall that for each subproblem (F ′, G ′) along
cv,w , the rightmost root of F ′ is vr and the leftmost root of G ′ is w�. It follows that
for every two distinct pairs (v1, w1)
= (v2, w2) of internal nodes in F and G, the
relevant subproblems occurring along the computational paths cv1,w1 and cv2,w2 are
disjoint. Since there are n

2 and m
2 internal nodes in F and G respectively, the total

number of subproblems along the cv,w computational paths is given by

∑
(v,w) internal nodes

min{|Fv |, |Gw |} − 1 =
n
2∑

i=1

m
2∑

j=1

min{2i, 2 j} = �(m2n).

The �(m2n) lower bound established by Lemma 4.1 is tight if m = �(n),
since in this case our algorithm achieves an O(n3) running time. To establish a
tight bound when m is not �(n), we use the following technique for counting
relevant subproblems. We associate a subproblem consisting of subforests (F ′, G ′)
with the unique pair of vertices (v, w) such that Fv , Gw are the smallest trees
containing F ′, G ′ respectively. For example, for nodes v and w , each with at least
two children, the subproblem (F◦

v , G◦
w) is associated with the pair (v, w). Note that

all subproblems encountered in a computational path starting from (F◦
v , G◦

w) until
the point where either forest becomes a tree are also associated with (v, w).

LEMMA 4.2. For every decomposition algorithm, there exists a pair of trees
(F, G) with sizes n ≥ m such that the number of relevant subproblems is
�(m2n log n

m).

PROOF. Consider the trees illustrated in Figure 5. The n-sized tree F is a com-
plete balanced binary tree, and G is a “zigzag” tree of size m. Let w be an in-
ternal node of G with a single leaf wr as its right subtree and w� as a left child.

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

An Optimal Decomposition Algorithm for Tree Edit Distance 2:13

(F) (G)

v
rvv

w
rw

w

FIG. 5. The two trees used to prove �(m2n log n
m) lower bound (Lemma 4.2).

Denote m ′ = |Gw |. Let v be a node in F such that Fv is a tree of size n′ + 1 where
n′ ≥ 4m ≥ 4m ′. Denote v’s left and right children v� and vr respectively. Note that
|Fv�

| = |Fvr | = n′
2 .

Let S be the strategy of the decomposition algorithm. We aim to show that the
total number of relevant subproblems associated with (v, w) or with (v, w�) is at
least n′

4 (m ′ − 2). Starting from the subproblem (F◦
v , G◦

w), which is relevant by
Lemma 2.3, let c be the computational path that always deletes from F (no matter
whether S says left or right). We consider two complementary cases.

Case 1. n′
4 left deletions occur in the computational path c, and at the time of the

n′
4 th left deletion, there were fewer than n′

4 right deletions.
We define a set of new computational paths {c j }1≤ j≤ n′

4
where c j deletes from

F up through the j th left deletion, and thereafter deletes from F whenever S says
right and from G whenever S says left. At the time the j th left deletion occurs, at
least n′

4 ≥ m ′ −2 nodes remain in Fvr and all m ′ −2 nodes are present in Gw�
. So on

the next m ′ −2 steps along c j , neither of the subtrees Fvr and Gw�
is totally deleted.

Thus, we get m ′ − 2 distinct relevant subproblems associated with (v, w). Notice
that in each of these subproblems, the subtree Fv�

is missing exactly j nodes. So we
see that, for different values of j ∈ [1, n′

4], we get disjoint sets of m ′ − 2 relevant
subproblems. Summing over all j , we get n′

4 (m ′ − 2) distinct relevant subproblems
associated with (v, w).

Case 2. n′
4 right deletions occur in the computational path c, and at the time of

the n′
4 th right deletion, there were fewer than n′

4 left deletions.
We define a different set of computational paths {γ j }1≤ j≤ n′

4
where γ j deletes

from F up through the j th right deletion, and thereafter deletes from F whenever
S says left and from G whenever S says right (i.e., γ j is c j with the roles of left and
right exchanged). Similarly as in case 1, for each j ∈ [1, n′

4] we get m ′ − 2 distinct
relevant subproblems in which Fvr is missing exactly j nodes. All together, this
gives n′

4 (m ′ − 2) distinct subproblems. Note that since we never make left deletions
from G, the left child of w� is present in all of these subproblems. Hence, each
subproblem is associated with either (v, w) or (v, w�).

In either case, we get n′
4 (m ′ − 2) distinct relevant subproblems associated with

(v, w) or (v, w�). To get a lower bound on the number of problems we sum over
all pairs (v, w) with Gw being a tree whose right subtree is a single node, and

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

2:14 E. D. DEMAINE ET AL.

|Fv | ≥ 4m. There are m
4 choices for w corresponding to tree sizes 4 j for j ∈ [1, m

4].
For v , we consider all nodes of F whose distance from a leaf is at least log(4m).
For each such pair we count the subproblems associated with (v, w) and (v, w�).
So the total number of relevant subproblems counted in this way is

∑
v,w

|Fv |
4

(|Gw | − 2) = 1

4

∑
v

|Fv |
m
4∑

j=1

(4 j − 2)

= 1

4

log n∑
i=log 4m

n
2i

·2i

m
4∑

j=1

(4 j − 2) = �
(

m2n log
n
m

)
.

THEOREM 4.3. For every decomposition algorithm and n ≥ m, there exist trees
F and G of sizes �(n) and �(m) such that the number of relevant subproblems is
�(m2n(1 + log n

m)).

PROOF. If m = �(n) then this bound is �(m2n) as shown in Lemma 4.1.
Otherwise, this bound is �(m2n log n

m) which was shown in Lemma 4.2.

5. Reducing the Space Complexity

The recursion presented in Section 3 for computing δ(F, G) translates into an
O(m2n(1 + log n

m)) time and space algorithm. In this section we reduce the space
complexity of this algorithm to O(mn). We achieve this by ordering the relevant
subproblems in such a way that we need to record the edit distance of only O(mn)
relevant subproblems at any point in time. For simplicity, we assume the input
trees F and G are binary. At the end of this section, we show how to remove this
assumption.

The algorithm TED fills a global n by m table
 with values
vw = δ(F◦
v , G◦

w)
for all v ∈ F and w ∈ G.

TED(F, G)

1: If |F | < |G| do TED(G, F).

2: For every v ∈ TopLight(F) do TED(Fv , G).

3: Fill
vw for all v ∈ HeavyPath(F) and w ∈ G.

Step 3 runs in O(|F ||G|2) time and assumes
vw has already been computed in
step 2 for all v ∈ F − HeavyPath(F) and w ∈ G (see Section 3). In the remainder
of this section we prove that it can be done in O(|F ||G|) space.

In step 3 we go through the nodes v1, . . . , vt on the heavy path of F starting with
the leaf v1 and ending with the root vt where t = |HeavyPath(F)|. Throughout
the computation we maintain a table T of size |G|2. When we start handling v p
(1 ≤ p ≤ t), the table T holds the edit distance between Fv p−1 and all possible
subforests of G. We use these values to calculate the edit distance between Fv p and
all possible subforests of G and store the newly computed values back into T . We
refer to the process of updating the entire T table (for a specific v p) as a period.
Before the first period, in which Fv1 is a leaf, we set T to hold the edit distance
between ∅ and G ′ for all subforests G ′ of G (this is just the cost of deleting G ′).

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

An Optimal Decomposition Algorithm for Tree Edit Distance 2:15

1p-v
pv

1p-v

1p-v1p-v

1p-v

1p-v

0F

1F

2F

3F

4F

5F

FIG. 6. The intermediate left subforest enumeration with respect to Fv p−1 and Fv p is the sequence of
forests Fv p−1 = F0, F1, . . . , F5 = Fv p .

Note that since we assume F is binary, during each period the direction of our
strategy does not change. Let left(v) and right(v) denote the left and right children
of a node v . If v p−1 = right(v p), then our strategy is left throughout the period
of v p. Otherwise it is right. We now explain what goes into computing a period.
This process, which we refer to as COMPUTEPERIOD(v p), both uses and updates
tables T and
. At the heart of this procedure is a dynamic program. Through-
out this description we assume that our strategy is left. The right analog is obvi-
ous. We now describe two simple subroutines that are called by COMPUTEPERIOD
(v p).

If Fv p−1 can be obtained from Fv p by a series of left deletions, the interme-
diate left subforest enumeration with respect to Fv p−1 and Fv p is the sequence
Fv p−1 = F0, F1 . . . , Fk = Fv p such that Fk ′−1 = Fk ′ −�Fk′ for all 1 ≤ k ′ ≤ k = |Fv p |−|Fv p−1 |. This concept is illustrated in Figure 6. The subroutine
INTERMEDIATELEFTSUBFORESTENUM(Fv p−1, Fv p) associates every Fk ′ with �Fk′ and
lists them in the order of the intermediate left subforest enumerations with respect
to Fv p−1 and Fv p . This is the order in which we access the nodes and subforests dur-
ing the execution of COMPUTEPERIOD(v p), so each access will be done in constant
time. The intermediate left and right subforest enumerations required for all periods
(i.e., for all of the v ps along the heavy path) can be prepared once in O(|F |) time
and space by performing |F | deletions on F according to our strategy and listing
the deleted vertices in reverse order.

Let w0, w1, . . . , w |G|−1 be the right-to-left preorder traversal of a tree G. We
define Gi,0 as the forest obtained from G by making i right deletions. Notice that
the rightmost tree in Gi,0 is Gwi (the subtree of G rooted at wi). We further define
Gi, j as the forest obtained from G by first making i right deletions and then making
j left deletions. Let j(i) be the number of left deletions required to turn Gi,0 into
the tree Gwi . We can easily compute j(0), . . . , j(|G|−1) in O(|G|) time and space
by noticing that j(i) = |G| − i − |Gwi |. Note that distinct nonempty subforests
of G are represented by distinct Gi, j s for 0 ≤ i ≤ |G| − 1 and 0 ≤ j ≤ j(i).
For convenience, we sometimes refer to G◦

wi
as Gi, j(i)+1 and sometimes as the

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

2:16 E. D. DEMAINE ET AL.

w0

00,GG =

11,G

w1w7

w2w4w8

w3w5w6w9w10

14,G

w4w8

w5w6w9w10

51,42,1
GGG w ==

w1

w2w4

w3w5w9

w8

w6w10

w2w4

w3w5w6

FIG. 7. The indexing of various subforests (shown in solid black) of G (shown in gray). The right-
to-left preorder traversal of G is w0, w1, . . . , w |G|−1. The subforest Gi, j is the forest obtained from G
by first making i right deletions and then making j left deletions. All nonempty subforests of G are
captured by all 0 ≤ i ≤ |G| − 1 and 0 ≤ j ≤ j(i) = |G| − i − |Gwi |. The index of G itself is G0,0.
In the special case of G◦

w1
= G2,4 we sometimes use the equivalent index G1,5.

equivalent Gi+1, j(i). The two subforests, are the same since the forest Gi, j(i) is
the tree Gwi , so making another left deletion, namely Gi, j(i)+1 is the same as first
making an extra right deletion, namely Gi+1, j(i). The left subforest enumeration of
all nonempty subforests of G is defined as

G |G|−1, j(|G|−1), . . . , G |G|−1,0 , . . . , G2, j(2), . . . , G2,0 , G1, j(1), . . . , G1,0 , G0,0.

The subroutine LEFTSUBFORESTENUM(G) associates every Gi, j with the left
deleted vertex �Gi, j and lists them in the order of the left subforest enumeration with
respect to G, so that we will be able to access �Gi, j in this order in constant time
per access. This procedure takes O(|G|) time and space for each i by performing
first i right deletions and then j left deletions, and listing the left deleted vertices in
reverse order. The entire subroutine therefore requires O(|G|2) time and space. The
previous definitions are illustrated in Figure 7. There are obvious “right” analog of
everything we have just defined.

The pseudocode for COMPUTEPERIOD(v p) is given shortly. As we already men-
tioned, at the beginning of the period for v p, the table T stores the distance between
Fv p−1 and all subforests of G and our goal is to update T with the distance between
Fv p and any subforest of G. For each value of i in decreasing order (the loop in
line 3), we compute a temporary table S of the distances between the forests Fk ′ in
the intermediate left subforest enumeration with respect to Fv p−1 and Fv p and the
subforest Gi, j for 0 ≤ j ≤ j(i) in the left subforest enumeration of G. Clearly,
there are O(|F ||G|) such subproblems. The computation is done for increasing
values of k ′ and decreasing values of j according to the basic relation in line 4.
Once the entire table S is computed, we update T , in line 5, with the distances
between Fk = Fv p and Gi, j for all 0 ≤ j ≤ j(i). Note that along this computation
we encounter the subproblem which consists of the root-deleted-trees F◦

v p
= Fk−1

and G◦
wi−1

= Gi, j(i−1). In line 7, we store the value for this subproblem in
v p,wi−1 .
Thus, going over all possible values for i , the procedures updates the entire table
T and all the appropriate entries in
, and completes a single period.

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

An Optimal Decomposition Algorithm for Tree Edit Distance 2:17

COMPUTEPERIOD(v p)

Overwrites T with values δ(Fv p , G ′) for all subforests G ′ of G, and fills in
 with values δ(F◦
v p

, G◦
w)

for every w ∈ G.
Assumes T stores δ(Fv p−1 , G ′) for all subforests G ′ of G, and v p−1 = right(v p) (if v p−1 = left(v p)
then reverse roles of “left” and “right” below).

1: F0, . . . , Fk ← IntermediateLeftSubforestEnum(Fv p−1 , Fv p)

2: G |G|−1, j(|G|−1), . . . , G0,0 ← LeftSubforestEnum(G)

3: for i = |G| − 1, . . . , 0 do

4: compute table S ← (δ(Fk′ , Gi, j))k′=1,...k
j= j(i),...,0

via the dynamic program:

δ(Fk′ , Gi, j) = min

⎧⎪⎪⎨
⎪⎪⎩

cdel (�Fk′) + δ(Fk′−1, Gi, j),
cdel (�Gi, j) + δ(Fk′ , Gi, j+1),
cmatch (�Fk′ , �Gi, j) + δ(L◦

Fk′ , L◦
Gi, j

)
+δ(Fk′ –L Fk′ , Gi, j –LGi, j)

5: T ← δ(Fv p , Gi, j) for all 0 ≤ j ≤ j(i), via S

6: Q ← δ(Fk′ , Gi, j(i−1)) for all 1 ≤ k ′ ≤ k, via S
7:
 ← δ(F◦

v p
, Gi, j(i−1)) via S

8: end do

The correctness of COMPUTEPERIOD(v p) follows from Lemma 2.1. However, we
still need to show that all the required values are available when needed in the
execution of line 4. Let us go over the different subproblems encountered during
this computation and show that each of them is available when required along the
computation.

δ(Fk ′−1, Gi, j):

—when k ′ = 1, F0 is Fv p−1 , so it is already stored in T from the previous period.
—for k ′ > 1, δ(Fk ′−1, Gi, j) was already computed and stored in S, since we go

over values of k ′ in increasing order.

δ(Fk ′, Gi, j+1):

—when j = j(i) and i + j(i) = |G| − 1, then Gi, j(i)+1 = ∅ so δ(Fk ′, ∅) is the cost
of deleting Fk ′ , which may be computed in advance for all subforests within the
same time and space bounds.

—when j = j(i) and i + j(i) < |G| − 1, recall that δ(Fk ′, Gi, j(i)+1) is equivalent
to δ(Fk ′, Gi+1, j(i)) so this problem was already computed, since we loop over the
values of i in decreasing order. Furthermore, this problem was stored in the the
array Q when line 6 was executed for the previous value of i .

—when j < j(i), δ(Fk ′, Gi, j+1) was already computed and stored in S, since we
go over values of j in decreasing order.

δ(L◦
Fk′ , L◦

Gi, j
):

—this value was computed previously (in step 2 of TED) as
vw for some v ∈
F − HeavyPath(F) and w ∈ G.

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

2:18 E. D. DEMAINE ET AL.

δ(Fk ′ –L Fk′ , Gi, j –LGi, j):

—if j
= j(i) then Fk ′ − L Fk′ = Fk ′′ where k ′′ = k ′ − |L Fk′ | and Gi, j − LGi, j = Gi, j ′

where j ′ = j + |LGi, j |, so δ(Fk ′′, Gi, j ′) was already computed and stored in S
earlier in the loop.

—if j = j(i), then Gi, j is a tree, so Gi, j = LGi, j . Hence, δ(Fk ′ –L Fk′ , Gi, j –LGi, j)
is simply the cost of deleting Fk ′′ .

The space required by this algorithm is evidently O(|F ||G|) since the size of S
is at most |F ||G|, the size of T is at most |G|2, the size of Q is at most |F |,
and the size of
 is |F ||G|. The time complexity does not change, since we
still handle each relevant subproblem exactly once, in constant time per relevant
subproblem.

Note that in the last time COMPUTEPERIOD() is called, the table T stores (among
other things) the edit distance between the two input trees. In fact, our algorithm
computes the edit distance between any subtree of F and any subtree of G. We
could store these values without changing the space complexity.

This concludes the description of our O(mn) space algorithm. All that remains
to show is why we may assume the input trees are binary. If they are not binary, we
construct in O(m + n) time binary trees F ′ and G ′ where |F ′| ≤ 2n, |G ′| ≤ 2m,
and δ(F, G) = δ(F ′, G ′) using the following procedure: Pick a node v ∈ F with
k > 2 children which are, in left to right order, left(v) = v1, v2, . . . , vk = right(v).
We leave left(v) as it is, and set right(v) to be a new node with a special label ε
whose children are v2, v3, . . . , vk . To ensure this does not change the edit distance,
we set the cost of deleting ε to zero, and the cost of relabeling ε to ∞. The same
procedure is applied to G as well. We note that another way to remove the binary
trees assumption is to modify COMPUTEPERIOD() to work directly with nonbinary
trees at the cost of slightly complicating it. This can be done by splitting it into two
parts, where one handles left deletions and the other right deletions.

6. Conclusions

We presented a new O(n3)-time and O(n2)-space algorithm for computing the tree
edit distance between two rooted ordered trees. Our algorithm is both symmetric
in its two inputs as well as adaptively dependent on them. These features make
it faster than all previous algorithms in the worst case. Furthermore, we proved
that our algorithm is optimal within the broad class of decomposition strategy
algorithms, by improving the previous lower bound for this class. As a consequence,
any future improvements in terms of worst-case time complexity would have to find
an entirely new approach. Our algorithm is simple to describe and implement; our
implementation in Python spans just a few dozen lines of code.

ACKNOWLEDGMENTS. We thank the anonymous referees for many helpful com-
ments.

REFERENCES

APOSTOLICO, A., AND GALIL, Z., Eds. 1997. Pattern Matching Algorithms. Oxford University Press,
Oxford, UK.

BILLE, P. 2005. A survey on tree edit distance and related problems. Theor. Comput. Sci. 337, 217–239.

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

An Optimal Decomposition Algorithm for Tree Edit Distance 2:19

CHAWATHE, S. S. 1999. Comparing hierarchical data in external memory. In Proceedings of the 25th
International Conference on Very Large Data Bases. 90–101.

CHEN, W. 2001. New algorithm for ordered tree-to-tree correction problem. J. Algor. 40, 135–158.
DEMAINE, E. D., MOZES, S., ROSSMAN, B., AND WEIMANN, O. 2007. An optimal decomposition algo-

rithm for tree edit distance. In Proceedings of the 34th International Colloquium on Automata, Languages
and Programming (ICALP). 146–157.

DULUCQ, S., AND TOUZET, H. 2003. Analysis of tree edit distance algorithms. In Proceedings of the 14th
Annual Symposium on Combinatorial Pattern Matching (CPM). 83–95.

GUSfiELD, D. 1997. Algorithms on Strings, Trees and Sequences: Computer Science and Computational
Biology. Cambridge University Press.

HAREL, D., AND TARJAN, R. E. 1984. Fast algorithms for finding nearest common ancestors. SIAM J.
Comput. 13, 2, 338–355.

KLEIN, P. N. 1998. Computing the edit-distance between unrooted ordered trees. In Proceedings of the
6th Annual European Symposium on Algorithms (ESA). 91–102.

KLEIN, P. N., TIRTHAPURA, S., SHARVIT, D., AND KIMIA, B. B. 2000. A tree-edit-distance algorithm
for comparing simple, closed shapes. In Proceedings of the 11th ACM-SIAM Symposium on Discrete
Algorithms (SODA). 696–704.

MOORE, P. 1999. Structural motifs in RNA. Ann. Rev. Biochem. 68, 287–300.
SELKOW, S. 1977. The tree-to-tree editing problem. Inf. Process. Lett. 6, 6, 184–186.
SHASHA, D., AND ZHANG, K. 1989. Simple fast algorithms for the editing distance between trees and

related problems. SIAM J. Comput. 18, 6, 1245–1262.
SHASHA, D., AND ZHANG, K. 1990. Fast algorithms for the unit cost editing distance between trees. J.

Algor. 11, 4, 581–621.
SLEATOR, D. D., AND TARJAN, R. E. 1983. A data structure for dynamic trees. J. Comput. Syst. Sci. 26,

362–391.
TAI, K. 1979. The tree-to-tree correction problem. J. Assoc. Comput. Mach. 26, 3, 422–433.
VALIENTE, G. 2002. Algorithms on Trees and Graphs. Springer-Verlag.
WAGNER, R. A., AND FISCHER, M. J. 1974. The string-to-string correction problem. J. ACM 21, 1,

168–173.
WATERMAN, M. 1995. Introduction to Computational Biology: Maps, Sequences and Genomes. Chapters

13,14. Chapman and Hall.
ZHANG, K. 1995. Algorithms for the constrained editing distance between ordered labeled trees and

related problems. Pattern Recogn. 28, 3, 463–474.

RECEIVED MAY 2007; REVISED NOVEMBER 2007; ACCEPTED FEBRUARY 2008

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 2, Publication date: December 2009.

