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[Backurs,Indyk, STOC’15]
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Conjecture (APSP): 
For any ε > 0 there exists c > 0, such that All Pairs Shortest Paths on n node 
graphs with edge weights in {1, . . . , nc} cannot be solved in O(n3-ε) time. 

Equivalent to negative triangle detection [Vassilevska-Williams,Williams 2010]
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4. the right-right subtree of Cj is the right tree of C
0(·, j � 1, M

2).

See Figure 7. For the construction of C(i, j, M · (k/3)2) and C(i � 1, j � 1, M
2) to be correct we

need that M · (k/3)2 � W · n(k/3 + 1)3 and M
2 � M · n2 · n(k/3 + 1)3, respectively, which holds

for sufficiently large M .
Now we calculate cmatch(Ai, Cj). C(i�1, j�1, M

2) contributes �M
2 minus the total cost of edges

connecting two subsets of k/3 nodes in the new graph. As the weights in the new graph are defined
as w

0(u, v) = M �w(u, v), this is exactly �M
2 � (M · (k/3)2 �W (i� 1, j � 1)). C(i, j, M · (k/3)2)

contributes �M · (k/3)2 �W (i, j), so cmatch(Ai, Cj) = �M · (k/3)2 �W (i, j)�M
2 � (M · (k/3)2 �

W (i � 1, j � 1)) = �M
2 � W (i, j) + W (i � 1, j � 1) as required.

It remains to bound the cost of matching nodes. Nodes in the left subtree of Ai (Cj) can be
matched only to nodes of C1 (A1) with cost at least �M

3 · n > �M
4, except that the roots can

be matched with cost �M
5. The cost of matching a node of Ai to a node of Cj , for i, j > 1, is

either at least �M · (k/3)2 (for the nodes of C(i, j, M · (k/3)2) or at least �M
2 (for the nodes of

C(i, j, M2)), so for sufficiently large M at least �M
2.

C(i, j,M3 · (k/3)2)

C1A1

Ai Cj

D(M3(i� 1) +W (1, i))

righ
t

left
D(M3(j � 1) +W (j, 1))

ri
g
h
t

left

C 0(i� 1, j � 1,M4)

left
righ

t left rig
ht

�M
5�M

5

�M5 �W (1, 1)

Figure 7: Micro structures A1, C1 and Ai, Cj for i, j > 1.

Wrapping up. We have shown how to construct, given a complete undirected n-node graph G,
two trees such that the weight of the max-weight k-clique in G can be extracted from the cost of
an optimal matching (and, as mentioned in the beginning of Section 2, by a simple transformation

18

D(
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E(u2, 7,M1) D(
P

y w(7, vy))

right
right

left

lef
t

lef
t

right

�M2

Figure 6: Schematic illustration of a connection gadget for k/3 = 2 and n = 8.

We can clearly construct a solution with total cost �M2 · k/3 � M1 · n · k/3 � W (i, j) (because
we have enumerated the clique corresponding to i so that u1 < u2 < . . . < uk/3). We claim that,
for appropriately chosen M1 and M2, no better solution is possible. Let W =

P
u,v

w(u, v). We
fix M1 = W · (k/3 + 1). This is enough to guarantee that the total cost contributed by nodes in
all decrease gadgets is at least �M1. The total cost contributed by nodes in all equality gadgets is
at least �M1 · n · k/3. Consequently, setting M2 = M1 · n · k/3 + M1 guarantees that any optimal
solution must match all children of the left root, so in fact, for every x = 1, 2, . . . , k/3 we must
match the x-th child of the left root to some child of the right root. Because matching the left tree
of any decrease gadget contributes at least �W to the total cost, by the choice of M1 an optimal
solution in fact must match the x-th child of the left root with the ux-th child of the right root, as
otherwise we lose at least M1 due to the corresponding equality gadget that cannot be compensated
by matching its accompanying decrease gadget. Finally, the corresponding decrease gadget adds
�
P

y
w(ux, vy) to the total cost. Therefore, as long as M � M2 · k/3 + M1 · n · k/3 the total cost is

indeed �M�W (i, j) after choosing the cost of matching the roots to be �M +M2 ·k/3+M1 ·n ·k/3.
For any node in a decrease gadget, the cost of matching is at least �W , for any node in an equality
gadget, the cost of matching is �M1, and finally the cost of matching the children of the roots is
�M2, so the cost of matching any node of C(i, j, W ) is at least �M . For the correctness of the
construction it is enough that M is at least

M2 · k/3 + M1 · n · k/3 =M1((nk/3 + 1)k/3 + nk/3)

=W (k/3 + 1)k/3(nk/3 + 1 + n)

=W (k/3 + 1)k/3(n(k/3 + 1) + 1)

W · n(k/3 + 1)3 = n
O(ck)

.

Micro structures A
0
i
, Dz0 , Bz, C

0
j
. We only explain how to construct A

0
i

and Dz0 , for any i =
1, 2, . . . , N and z

0 = 1, 2, . . . , N , as the construction of Bz and C
0
j

is symmetric. Recall that we
require cmatch(A

0
i
, Dz0) = �M

6 �M
4(N � i)�W (i, z0) and for every node in A

0
i
and Dz0 the cost of

matching should be at least �M
6.
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topmost node matched to a node from Ik/3�1. Looking again at the same expression, we see that
there are ↵k/3�2 such nodes, namely the nodes b

0
N�z0 with z  z

0
< N � ↵k/3�1n

k/3�1 and N � z
0

divisible by n
k/3�2. Continuing in the same fashion, we obtain that there are ↵i nodes matched to

nodes from Ii, making the total cost �M
7(N � z) as claimed.

We assume without loss of generality that z � z
0. Then, an optimal solution must match d

0
z0�1

to b
0
xz0�1

, d
0
z0�2 to b

0
xz0�2

, . . . , and d
0
1 to b

0
x1

, for some z � x1 > . . . > xz0�1 � 1, as otherwise its
cost is larger than �M

8 · 2 � M
7(2N � z � z

0) � M
7 · 2(z0 � 1). Rewriting the cost we obtain

�M
8 · 2 � M

7(2N � 2 � z + z
0), so recalling our assumption z � z

0 we see that in fact z = z
0 as

otherwise its cost is larger than �M
8 · 2 � M

7 · 2(N � 1).

We are now ready to state properties of the remaining micro structures. Let cmatch(T1, T2) denote
the cost of matching two trees T1 and T2. Then, we require that:

1. cmatch(A
0
i
, Dz0) = �M

6 � M
3(N � i) � W (i, z0) for every i = 1, 2, . . . , N and z

0 = 1, 2, . . . , N ,

2. cmatch(Bz, C
0
j
) = �M

6 � M
3(N � j) � W (z, j) for every z = 1, 2, . . . , N and j = 1, 2, . . . , N .

3. cmatch(Ai, Cj) = �M
2�W (j, i)+W (j � 1, i� 1) for every i = 2, 3, . . . , N and j = 2, 3, . . . , N .

4. cmatch(Ai, C1) = �M
5 � M

3(i � 1) � W (1, i) for every i = 1, 2, . . . , N ,

5. cmatch(A1, Cj) = �M
5 � M

3(j � 1) � W (j, 1) for every j = 1, 2, . . . , N .

The labels of the nodes in the micro structures should be partitioned into disjoint subsets corre-
sponding to the following micro structures:

1. {A0
1, A

0
2, . . . , A

0
N

, D1, D2, . . . , DN},

2. {B1, B2, . . . , BN , C
0
1, C

0
2, . . . , C

0
N
},

3. {A1, A2, . . . , AN , C1, C2, . . . , CN},

so that two nodes can be matched only if their labels belong to the same subset. The cost of
matching any node of A

0
i
, Dz0 , Bz, C

0
j

should be at least �M
6. The cost of matching any node of

Ai, Cj should be at least �M
2, except that the root of Ai (Cj) can be matched to the root of C1

(A1) with cost larger than �M
5�M but at most �M

5, and, for any non-root node of Ai (Cj) and
for any non-root node of C1 (A1), the cost of matching is larger than �M

4. Finally, every Ai and
Cj should consist of O(n2) nodes. Now we can show that, assuming these properties, any optimal
solution has a specific structure.

Lemma 5. For sufficiently large M , the total cost of an optimal matching is

�M
8 · 2 � M

7 · 2(N � 1) � M
6 · 2 � M

5 � M
3 · 2N + M

2 � max
i,j,z

{W (i, z) + W (z, j) + W (j, i)}.

Proof. Consider i, j, z maximizing W (i, z) + W (z, j) + W (j, i). We may assume that i � j. Then,
it is possible to choose the following matching:

1. bk to c
0
j

with cost �M
8,

2. some nodes from the copy of I being the left child of c
0
j

to some spine nodes below bz with
total cost �M

7(N � z),
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8 · 2 � M

7(2N � 2 � z + z
0), so recalling our assumption z � z

0 we see that in fact z = z
0 as

otherwise its cost is larger than �M
8 · 2 � M

7 · 2(N � 1).

We are now ready to state properties of the remaining micro structures. Let cmatch(T1, T2) denote
the cost of matching two trees T1 and T2. Then, we require that:

1. cmatch(A
0
i
, Dz0) = �M

6 � M
3(N � i) � W (i, z0) for every i = 1, 2, . . . , N and z

0 = 1, 2, . . . , N ,

2. cmatch(Bz, C
0
j
) = �M

6 � M
3(N � j) � W (z, j) for every z = 1, 2, . . . , N and j = 1, 2, . . . , N .

3. cmatch(Ai, Cj) = �M
2�W (j, i)+W (j � 1, i� 1) for every i = 2, 3, . . . , N and j = 2, 3, . . . , N .

4. cmatch(Ai, C1) = �M
5 � M

3(i � 1) � W (1, i) for every i = 1, 2, . . . , N ,

5. cmatch(A1, Cj) = �M
5 � M

3(j � 1) � W (j, 1) for every j = 1, 2, . . . , N .

The labels of the nodes in the micro structures should be partitioned into disjoint subsets corre-
sponding to the following micro structures:

1. {A0
1, A

0
2, . . . , A

0
N

, D1, D2, . . . , DN},

2. {B1, B2, . . . , BN , C
0
1, C

0
2, . . . , C

0
N
},

3. {A1, A2, . . . , AN , C1, C2, . . . , CN},

so that two nodes can be matched only if their labels belong to the same subset. The cost of
matching any node of A

0
i
, Dz0 , Bz, C

0
j

should be at least �M
6. The cost of matching any node of

Ai, Cj should be at least �M
2, except that the root of Ai (Cj) can be matched to the root of C1

(A1) with cost larger than �M
5�M but at most �M

5, and, for any non-root node of Ai (Cj) and
for any non-root node of C1 (A1), the cost of matching is larger than �M

4. Finally, every Ai and
Cj should consist of O(n2) nodes. Now we can show that, assuming these properties, any optimal
solution has a specific structure.

Lemma 5. For sufficiently large M , the total cost of an optimal matching is

�M
8 · 2 � M

7 · 2(N � 1) � M
6 · 2 � M

5 � M
3 · 2N + M

2 � max
i,j,z

{W (i, z) + W (z, j) + W (j, i)}.

Proof. Consider i, j, z maximizing W (i, z) + W (z, j) + W (j, i). We may assume that i � j. Then,
it is possible to choose the following matching:

1. bk to c
0
j

with cost �M
8,

2. some nodes from the copy of I being the left child of c
0
j

to some spine nodes below bz with
total cost �M

7(N � z),
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3. a

0
i
to dk with cost �M

8,

4. some nodes from the copy of I being the right child of a
0
i
to some spine nodes below dz with

total cost �M
7(N � z),

5. b
0
1 to d

0
z�1, b

0
2 to d

0
z�2, . . . , b

0
z�1 to d

0
1 with cost �M

7 · 2 each,

6. ai to cj , ai�1 to cj�1, . . . , ai�j+1 to c1 with cost �M
3 · 2 + M

2 each,

7. A
0
i
to Dz with cost �M

6 � M
3(N � i) � W (i, z),

8. Bz to C
0
j

with cost �M
6 � M

3(N � j) � W (z, j),

9. Ai to Cj , Ai�1 to Cj�1, . . . , Ai�j+2 to C2 with costs �M
2 � W (j, i) + W (j � 1, i � 1),

�M
2 � W (j � 1, i � 1) + W (j � 2, i � 2), . . . , �M

2 � W (2, i � j + 2) + W (1, i � j + 1).

10. Ai�j+1 to C1 with cost �M
5 � M

3(i � j) � W (1, i � j + 1).

Summing up and telescoping, the total cost is

�M
8

�M
7(N � z)

�M
8

�M
7(N � z)

�M
7 · 2(z � 1)

�M
3 · 2j + M

2 · j
�M

6 � M
3(N � i) � W (i � z)

�M
6 � M

3(N � j) � W (z, j)

�M
2(j � 1) � W (j, i) � M

5 � M
3(i � j)

= � M
8 · 2 � M

7 · 2(N � 1) � M
6 · 2 � M

5 � M
3 · 2N + M

2 � W (i, z) � W (z, j) � W (j, i).

For the other direction, we need to argue that every solution has cost at least �M
8 · 2 � M

7 ·
2(N�1)�M

6 ·2�M
5�M

3 ·2N +M
2�maxi,j,z{W (i, z)+W (z, j)+W (j, i)}. We start with invoking

Lemma 4 and analyse the remaining small micro structures. Due to leaves b
0
1, . . . , b

0
z�1, d

0
1, . . . , d

0
z�1

being already matched, no node from B1, . . . , Bz�1, D1, . . . , Dz�1 can be matched (as they can in
general only be matched to A

0
⇤’s and C

0
⇤’s). Then, due to b

00
z and d

00
z being already matched (or

z = N) no node from Bz+1, . . . , BN , Dz+1, . . . , DN can be matched, and nodes from Bz or Dz

can be only matched to nodes from C
0
j

or A
0
i
, respectively. The cost incurred by all such nodes is

cmatch(A
0
i
, Dz)+cmatch(Bz, C

0
j
), making the total cost �M

8 ·2�M
7 ·2(N �1)�M

6 ·2�M
3(2N � i�

j)�W (i, z)�W (z, j). It remains to analyse the contribution of all spine nodes a1, . . . , aN , b1, . . . , bN

and nodes from micro structures A1, . . . , AN , C1, . . . , CN .
Consider the micro structures C1 and A1. Matching their roots to roots of some Ai0 and Cj0 ,

respectively, decreases the total cost by at least �M
5, which is much smaller than the cost of

matching the remaining nodes. Furthermore, it is not possible to match both the root of C1 to the
root of some Ai0 and the root of A1 to the root of some Cj0 at the same time, unless the root of
A1 is matched to the root of C1. Therefore, an optimal solution matches exactly one of them or
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Figure 5: Left: Decrease gadget built for d = 3, n = 6 and x = n
2 · 2 + n · 4 + 3. Right: Equality

gadget for u = 3, v = 6.

the first segment of the left tree can be matched with nodes from the first segment of the right tree
with cost �c=, and similarly for the second segments. Then, if u = v we can match all nodes in
both trees, so the total cost is �c= · n. Otherwise, we can match at most n � 1 nodes, making
the total cost at least �c= · n + c=, see Figure 5 (right). Furthermore, note that the total cost of
matching the left tree of E(u, v, c=) with any tree is at least �c= · n and the cost of matching any
node of E(u, v, c=) is �c=.

Connection gadget C(i, j, M). For any i, j 2 {1, . . . , N} and sufficiently large M 2 {0, . . . , n
d�

1}, the edit distance of the left and right tree of C(i, j, M) is �M �W (i, j). The left tree does not
depend on j and the right tree does not depend on i.

Let {u1, . . . , uk/3} and {v1, . . . , vk/3} be the k/3-cliques corresponding to i and j, respectively,
where u1 < u2 < . . . , uk/3 and v1 < v2 < . . . < vk/3. Recall that W (i, j) denotes the total weight of
all edges connecting two nodes in the i-th clique or a node in the i-th clique with a node in the j-th
clique, where we assume that w(u, u) = 0. We construct the gadget C(i, j, M) as follows. The root
of the left tree has degree 1 + k/3 and the root of the right tree has degree 1 + n. Their rightmost
children correspond to the root of the left and the right trees of D(

P
x<y

w(ux, uy)), respectively.
Every other child of the left root can be matched with every other child of the right root with cost
�M2 (we fix M1 and M2 later). Intuitively, we would like the x-th child of the the left root to
be matched with the ux-th child of the right root, and then contribute �

P
y
w(ux, vy) to the total

cost, so that summing up over x = 1, 2, . . . , k/3 we obtain the desired sum. To this end, we attach
the left tree of E(ux, ·, M1) and the right tree of D(·) to the x-th child of the left root. Similarly, we
attach the right tree of E(·, t, M1) and the left tree of D(

P
y
w(t, vy)) to the t-th child of the right

root. Here we use · to emphasise that a particular tree does not depend on the particular value of
the parameter. All decrease gadgets are of the same type. See Figure 6.
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• TED to APSP reduction?

• Largest common subforest:    unlabeled trees (|Σ| = 1) 

• Levenshtein distance:    every elementary edit operation costs 1                                  

• log shaves?

Open Problems



Thank You!


