Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Karl Bringmann,
Paweł Gawrychowski, Shay Mozes,
Oren Weimann

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one tree into the other

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one tree into the other rooted, ordered trees with node labels

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one tree into the other

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one tree into the other

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other
(a) (b) (c) (d) (c) $\ddagger \rightarrow$ (a) (b) (b) (d) (c) (e) (b) (c) (e)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other
(a) (b) © (d) (e) $\ddagger \rightarrow$ (a) (b) (b) (d) (c) (e) (B) (c) (c)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other
(a) (b) (c) (d) (e) © (c) (b) (b) (d) (c) (e) (B) (c) (c)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other
(a) (b) (c) (d) (c) (e) \square (a) (b) (b) (d) (c) (c) (b) (c) (c)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other
(a) (b) © (d) (e) $\ddagger \rightarrow$ (a) (b) (b) (d) (c) (e) (B) (c) (c)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other
(a) (b) (c) (d) (c) \square (a) (b) (b) (c) (e) (b) (c) (c)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other
(a) (b) (c) (d) (e)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other
(a) (b) © (d) (e) $\ddagger \rightarrow$ (a) (b) (b) (d) (c) (e) (B) (c) (c)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other
(a) (b) © (d) (c) (f) \rightarrow (a) (b) (b) (d) (e) (e) (b) (c)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other
(a) (b) (c) (d) (c) (f) \square (a) (b) (b) (d) (e) (c) (8) (c)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other

$$
\mathrm{O}\left(\mathrm{n}^{2}\right) \text { time }
$$

(a) (b) (c) (d) (e) $\ddagger \rightarrow$ (a) (b) (b) (d) (c) (e) (B) (c) (c)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other

$$
\mathrm{O}\left(\mathrm{n}^{2}\right) \text { time }
$$

(a) (b) © (d) (e) $\rightarrow \square$ (a) (b) (b) (d) (c) (e) (b) (c) (c)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Minimum edits to transform one string into the other

$$
\begin{aligned}
& \mathrm{O}\left(\mathrm{n}^{2}\right) \text { time } \\
& \mathrm{O}\left(\mathrm{n}^{4}\right) \text { time }
\end{aligned}
$$

(a) (b) (c) (d) (c) $\ddagger \rightarrow$ (a) (b) (b) (d) (c) (c) (b) (c) (e)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

String Edit Distance Cannot be Computed in Strongly Subquadratic Time (unless SETH is false) [Backurs,Indyk, STOC'I5]
(a) (b) (c) (d) (e) $\ddagger \rightarrow$ (a) (b) (b) (d) (c) (e) (b) (c) (c)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

prefix in postorder traversal

prefix in postorder traversal

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

prefix in postorder traversal

prefix in postorder traversal

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

not prefix in postorder traversal

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

$O\left(n^{4}\right)$ time
[Shasha Zhang 1989]

not prefix in postorder traversal

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

O(n^{4}) time [Shasha Zhang 1989]
$\mathrm{O}\left(\mathrm{n}^{3} \log \mathrm{n}\right)$ time [Klein I998]

not prefix in postorder traversal

not prefix in postorder traversal

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

O(n^{4}) time [Shasha Zhang 1989]
$O\left(n^{3} \log n\right)$ time [Klein 1998]
$\mathrm{O}\left(\mathrm{n}^{3}\right)$ time
[Demaine, Mozes, Rossman,W. 2007]

not prefix in postorder traversal

not prefix in postorder traversal

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

O(n^{4}) time [Shasha Zhang 1989]
$O\left(n^{3} \log n\right)$ time [Klein 1998]

$\mathrm{O}\left(\mathrm{n}^{3}\right)$ time
[Demaine, Mozes, Rossman,W. 2007]

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Conjecture (APSP):
For any $\varepsilon>0$ there exists $\mathrm{c}>0$, such that All Pairs Shortest Paths on n node graphs with edge weights in $\left\{1, \ldots, n^{c}\right\}$ cannot be solved in $\mathrm{O}\left(\mathrm{n}^{3-\varepsilon}\right)$ time.

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can)

Conjecture (APSP):
For any $\varepsilon>0$ there exists $\mathrm{c}>0$, such that All Pairs Shortest Paths on n node graphs with edge weights in $\left\{1, \ldots, n^{c}\right\}$ cannot be solved in $\mathrm{O}\left(\mathrm{n}^{3-\varepsilon}\right)$ time.

Equivalent to negative triangle detection [Vassilevska-Williams,Williams 2010]

The Hard Instance of TED

The Hard Instance of TED

To specify a solution to TED it is enough to say which nodes are matched to which (the rest are deleted)

The Hard Instance of TED

To specify a solution to TED it is enough to say which nodes are matched to which (the rest are deleted)

The matched pairs must have the same left-right and ancestor-descendant relations

The Hard Instance of TED

To specify a solution to TED it is enough to say which nodes are matched to which (the rest are deleted)

The matched pairs must have the same left-right and ancestor-descendant relations

The Hard Instance of TED

To specify a solution to TED it is enough to say which nodes are matched to which (the rest are deleted)

The matched pairs must have the same left-right and ancestor-descendant relations

TED

APSP

$\mathrm{w}(\mathrm{i}, \mathrm{j})+\mathrm{w}(\mathrm{j}, \mathrm{k})+\mathrm{w}(\mathrm{k}, \mathrm{i})<0$

APSP

$\mathrm{w}(\mathrm{i}, \mathrm{j})+\mathrm{w}(\mathrm{j}, \mathrm{k})+\mathrm{w}(\mathrm{k}, \mathrm{i})<0$

TED

APSP

$\mathrm{w}(\mathrm{i}, \mathrm{j})+\mathrm{w}(\mathrm{j}, \mathrm{k})+\mathrm{w}(\mathrm{k}, \mathrm{i})<0$

TED

APSP

$\mathrm{w}(\mathrm{i}, \mathrm{j})+\mathrm{w}(\mathrm{j}, \mathrm{k})+\mathrm{w}(\mathrm{k}, \mathrm{i})<0$

APSP

$\mathrm{w}(\mathrm{i}, \mathrm{j})+\mathrm{w}(\mathrm{j}, \mathrm{k})+\mathrm{w}(\mathrm{k}, \mathrm{i})<0$

TED

Large alphabet: $|\Sigma|=\Theta(\mathrm{n})$

APSP

$$
\mathrm{w}(\mathrm{i}, \mathrm{j})+\mathrm{w}(\mathrm{j}, \mathrm{k})+\mathrm{w}(\mathrm{k}, \mathrm{i})<0
$$

APSP

$\mathrm{w}(\mathrm{i}, \mathrm{j})+\mathrm{w}(\mathrm{j}, \mathrm{k})+\mathrm{w}(\mathrm{k}, \mathrm{i})<0$

Max-weight k-Clique $\rightarrow \quad$ TED

Small alphabet: $|\Sigma|=O(1)$

Conjecture (Max-weight k-Clique):
For any $\varepsilon>0$ there exists $c>0$, such that for any $k \geq 3$ finding a maximum weight k -Clique in graphs with edge weights in $\left\{1, \ldots, \mathrm{n}^{\mathrm{ck}}\right\}$ cannot be solved in $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}(1-\varepsilon)\right)$ time.

Max-weight k-Clique $\rightarrow \quad$ TED

Small alphabet: $|\Sigma|=O(1)$

Conjecture (Max-weight k-Clique):
For any $\varepsilon>0$ there exists $c>0$, such that for any $k \geq 3$ finding a maximum weight k -Clique in graphs with edge weights in $\left\{1, \ldots, \mathrm{n}^{\mathrm{ck}}\right\}$ cannot be solved in $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}(1-\varepsilon)\right)$ time.

Max-weight k-Clique $\rightarrow \quad$ TED

$$
\text { Small alphabet: }|\Sigma|=O(1)
$$

Max-weight k-Clique $\rightarrow \quad$ TED

Small alphabet: $|\Sigma|=O(1)$

Max-weight k-Clique $\rightarrow \quad$ TED

Small alphabet: $|\Sigma|=O(k)$

Max-weight k-Clique $\rightarrow \quad$ TED

$$
\text { Small alphabet: }|\Sigma|=O(\mathrm{k})
$$

Max-weight k-Clique $\rightarrow \quad$ TED

Small alphabet: $|\Sigma|=O(k)$

Each $\mathrm{k} / 3$ clique is a spine node

Max-weight k-Clique $\rightarrow \quad$ TED

Small alphabet: $|\Sigma|=O(k)$

Each $\mathrm{k} / 3$ clique is a spine node
Simulate matching costs with small (n^{2} size) gadgets T_{i}.

Max-weight k-Clique $\rightarrow \quad$ TED

Small alphabet: $|\Sigma|=O(k)$

Each $\mathrm{k} / 3$ clique is a spine node
Simulate matching costs with small (n^{2} size) gadgets T_{i}.

Max-weight k-Clique $\rightarrow \quad$ TED

Small alphabet: $|\Sigma|=O(k)$

Each $\mathrm{k} / 3$ clique is a spine node
Simulate matching costs with small (n^{2} size) gadgets T_{i}.

Challenging:

- T_{i} needs to "prepare" for any possible T_{i}
- we need to control which T_{i} can be matched to which (in APSP by height)
- constant $\mathrm{O}(\mathrm{k})$ size alphabet

Max-weight k-Clique $\rightarrow \quad$ TED

Small alphabet: $|\Sigma|=O(k)$

Each $\mathrm{k} / 3$ clique is a spine node
Simulate matching costs with small (n^{2} size) gadgets T_{i}.

Challenging:

- T_{i} needs to "prepare" for any possible T_{i}
- we need to control which T_{i} can be matched to which (in APSP by height)
- constant $\mathrm{O}(\mathrm{k})$ size alphabet

1. $c_{\text {match }}\left(A_{i}^{\prime}, D_{z^{\prime}}\right)=-M^{6}-M^{3}(N-i)-W\left(i, z^{\prime}\right)$ for every $i=1,2, \ldots, N$ and $z^{\prime}=1,2, \ldots, N$,
2. $c_{\text {match }}\left(B_{z}, C_{j}^{\prime}\right)=-M^{6}-M^{3}(N-j)-W(z, j)$ for every $z=1,2, \ldots, N$ and $j=1,2, \ldots, N$.
3. $c_{\text {match }}\left(A_{i}, C_{j}\right)=-M^{2}-W(j, i)+W(j-1, i-1)$ for every $i=2,3, \ldots, N$ and $j=2,3, \ldots, N$.
4. $c_{\text {match }}\left(A_{i}, C_{1}\right)=-M^{5}-M^{3}(i-1)-W(1, i)$ for every $i=1,2, \ldots, N$,
5. $c_{\text {match }}\left(A_{1}, C_{j}\right)=-M^{5}-M^{3}(j-1)-W(j, 1)$ for every $j=1,2, \ldots, N$.

Lemma 5. For sufficiently large M, the total cost of an optimal matching is
$-M^{8} \cdot 2-M^{7} \cdot 2(N-1)-M^{6} \cdot 2-M^{5}-M^{3} \cdot 2 N+M^{2}-\max _{i, j, z}\{W(i, z)+W(z, j)+W(j, i)\}$.
Proof. Consider i, j, z maximizing $W(i, z)+W(z, j)+W(j, i)$. We may assume that $i \geq j$. Then, it is possible to choose the following matching:

1. b_{k} to c_{j}^{\prime} with cost $-M^{8}$,
2. some nodes from the copy of I being the left child of c_{j}^{\prime} to some spine nodes below b_{z} with total cost $-M^{7}(N-z)$,
3. a_{i}^{\prime} to d_{k} with cost $-M^{8}$,
4. some nodes from the copy of I being d of a_{i}^{\prime} to some spine nodes below d_{z} with total cost $-M^{7}(N-z)$,
5. b_{1}^{\prime} to $d_{z-1}^{\prime}, b_{2}^{\prime}$ to $d_{z-2}^{\prime}, \ldots, b_{z-1}^{\prime}$ to d_{1}^{\prime} with cost $-M^{7} \cdot 2$ each,
6. a_{i} to c_{j}, a_{i-1} to $c_{j-1}, \ldots, a_{i-j+1}$ to c_{1} with cost $-M^{3} \cdot 2+M^{2}$ each,
7. A_{i}^{\prime} to D_{z} with cost $-M^{6}-M^{3}(N-i)-W(i, z)$,
8. B_{z} to C_{j}^{\prime} with cost $-M^{6}-M^{3}(N-j)-W(z, j)$,
9. A_{i} to C_{j}, A_{i-1} to $C_{j-1}, \ldots, A_{i-j+2}$ to C_{2} with costs $-M^{2}-W(j, i)+W(j-1, i-1)$, $-M^{2}-W(j-1, i-1)+W(j-2, i-2), \ldots,-M^{2}-W(2, i-j+2)+W(1, i-j+1)$.

10. A_{i-j+1} to C_{1} with cost $-M^{5}-M^{3}(i-j)-W(1, i-j+1)$.

Open Problems

Open Problems

- TED to APSP reduction?

Open Problems

- TED to APSP reduction?
- Largest common subforest: unlabeled trees $(|\Sigma|=1)$

Open Problems

- TED to APSP reduction?
- Largest common subforest: unlabeled trees $(|\Sigma|=1)$
- Levenshtein distance: every elementary edit operation costs 1

Open Problems

- TED to APSP reduction?
- Largest common subforest: unlabeled trees $(|\Sigma|=1)$
- Levenshtein distance: every elementary edit operation costs 1
- log shaves?

Thank You!

