Minimum Cut of Directed Planar Graphs
in O(nloglogn) Time

RS

Shay Mozes, Kirill Nikolaev, Yahav Nussbaum, Oren Weimann

_<




Minimum Cut of Directed Planar Graphs
in O(nloglogn) Time

_<

Shay Mozes, Kirill Nikolaev, Yahav Nussbaum, Oren Weimann




Minimum Cut and Minimum st-cut
in Planar Graphs

e Undirected min st-cut: O(nloglogn)
[ltaliano, Nussbaum, Sankowski, Wulff-Nilsen STOC 2011]

e Undirected min cut:  O(nloglogn)
[Lacki, Sankowski ESA 2011]

e Directed min st-cut:  O(nlogn)
[Borradaile, Klein SODA 2006]

e Directed min cut O(nlog2n)
[Chalermsook, Fakcharoenphol, Nanongkai SODA 2004]



Minimum Cut and Minimum st-cut
in Planar Graphs

e Undirected min st-cut: O(nloglogn)
[ltaliano, Nussbaum, Sankowski, Wulff-Nilsen STOC 2011]

e Undirected min cut:  O(nloglogn)
[Lacki, Sankowski ESA 2011]

e Directed min st-cut:  O(nlogn)
[Borradaile, Klein SODA 2006]

e Directed min cut O(nlog2n) O(nloglogn)
[Chalermsook, Fakcharoenphol, Nanongkai SODA 2004]



Minimum Cut and Minimum st-cut
in Planar Graphs

e Undirected min st-cut: O(nloglogn)
[ltaliano, Nussbaum, Sankowski, Wulff-Nilsen STOC 2011]

e Undirected min cut:  O(nloglogn)
[Lacki, Sankowski ESA 2011]

e Directed min cut O(nlog2n) O(nloglogn)
[Chalermsook, Fakcharoenphol, Nanongkai SODA 2004]

e Directed min st-cut:  O(nlogn)
[Borradaile, Klein SODA 2006]



Cuts and Cycles in Planar Graphs



Cuts and Cycles in Planar Graphs



Cuts and Cycles in Planar Graphs

) 5



Cuts and Cycles in Planar Graphs

Min st-cycle
(separating s and 1)

2

Min st-cut



Cuts and Cycles in Planar Graphs

Min st-cycle
(separating s and 1)

2

Min cut

Min st-cut



Cuts and Cycles in Planar Graphs

Min st-cycle
(separating s and 1)

2

Min cut

Min st-cut



Cuts and Cycles in Planar Graphs

Min st-cycle
(separating s and 1)

.

Min cut

Min st-cut



Cuts and Cycles in Planar Graphs

Min st-cycle
(separating s and 1)
Shortest s-to-t path P

[

o
A



Undirected Min st-cycle Crosses P Once

Min st-cycle
(separating s and 1)

[

N



Undirected Min st-cycle Crosses P Once

Min st-cycle
(separating s and 1)

[

(




Undirected Min st-cycle Crosses P Once

Min st-cycle
(separating s and 1)

[

N




Undirected Min st-cycle Crosses P Once

Min st-cycle
(separating s and 1)

[

(




Undirected Min st-cycle Crosses P Once

Min st-cycle
(separating s and 1)

[

N




Undirected Min st-cycle Crosses P Once

Min st-cycle
(separating s and 1)

[

N




Directed Min st-cycle Crosses P Multiple Times

Min st-cycle
(separating s and 1)

\
V.

>
[




Directed Min st-cycle Crosses P Multiple Times
Directed Min cycle Crosses P at most Once!
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SSSP computation in O(n) time [Henzinger et al 1997]
Correctness: cycles do not cross

Time: O(nlogn)
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O(n/r) pieces each with O(r) vertices and O(vr) boundary vertices
with O(1) holes in O(n) time[Klein, Mozes, Sommer STOC 2013]

Dense Distance Graph (DDG): all boundary-to-boundary distance matrices
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Find Ci with SSSP on DDG:
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Undirected Min st-cycle in O(nloglogn) time
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The underlying Ci might be non-simple!
The underlying Min Cycle might cross Ci!
Theorem:

We do not loose the Min Cycle after cutting the DDG along C;
as long as there are no holes trapped in the crossing area

Challenges:
1. prove this theorem.

2. prevent holes in crossing area (by building one DDG for
every hole configuration, using a bounded genus graph)
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