Minimum Cut of Directed Planar Graphs in O(nloglogn) Time

Shay Mozes, Kirill Nikolaev, Yahav Nussbaum, Oren Weimann

Minimum Cut of Directed Planar Graphs in O(nloglogn) Time

Shay Mozes, Kirill Nikolaev, Yahav Nussbaum, Oren Weimann

Minimum Cut and Minimum st-cut in Planar Graphs

- Undirected min st-cut: O(nloglogn)
 [Italiano, Nussbaum, Sankowski, Wulff-Nilsen STOC 2011]
- Undirected min cut: O(n loglogn)
 [Łącki, Sankowski ESA 2011]
- Directed min st-cut: O(n logn) [Borradaile, Klein SODA 2006]
- Directed min cut O(n log²n) [Chalermsook, Fakcharoenphol, Nanongkai SODA 2004]

Minimum Cut and Minimum st-cut in Planar Graphs

- Undirected min st-cut: O(nloglogn)
 [Italiano, Nussbaum, Sankowski, Wulff-Nilsen STOC 2011]
- Undirected min cut: O(n loglogn)
 [Łącki, Sankowski ESA 2011]
- Directed min st-cut: O(n logn)
 [Borradaile, Klein SODA 2006]
- Directed min cut O(n log²n) O(n loglogn) [Chalermsook, Fakcharoenphol, Nanongkai SODA 2004]

Minimum Cut and Minimum st-cut in Planar Graphs

- Undirected min st-cut: O(nloglogn)
 [Italiano, Nussbaum, Sankowski, Wulff-Nilsen STOC 2011]
- Undirected min cut: O(n loglogn)
 [Łącki, Sankowski ESA 2011]
- Directed min cut
 O(n log²n)
 O(n loglogn)
 [Chalermsook, Fakcharoenphol, Nanongkai SODA 2004]
- Directed min st-cut: O(n logn) [Borradaile, Klein SODA 2006]

• S

Min st-cut

Directed Min st-cycle Crosses P Multiple Times

Directed Min st-cycle Crosses P Multiple Times Directed Min cycle Crosses P at most Once!

SSSP computation in O(n) time [Henzinger et al 1997]

SSSP computation in O(n) time [Henzinger et al 1997]

SSSP computation in O(n) time [Henzinger et al 1997]

SSSP computation in O(n) time [Henzinger et al 1997] Correctness: cycles do not cross

SSSP computation in O(n) time [Henzinger et al 1997] <u>Correctness</u>: cycles do not cross <u>Time</u>: O(nlogn)

O(n/r) pieces each with O(r) vertices and O(\sqrt{r}) boundary vertices

O(n/r) pieces each with O(r) vertices and O(\sqrt{r}) boundary vertices

O(n/r) pieces each with O(r) vertices and O(\sqrt{r}) boundary vertices

O(n/r) pieces each with O(r) vertices and O(\sqrt{r}) boundary vertices

with O(1) holes in O(n) time [Klein, Mozes, Sommer STOC 2013]

with O(1) holes in O(n) time [Klein, Mozes, Sommer STOC 2013]

with O(1) holes in O(n) time [Klein, Mozes, Sommer STOC 2013]

<u>Dense Distance Graph (DDG)</u>: all boundary-to-boundary distance matrices O(nlogr) = O(nloglogn) time [Klein SODA 2005]

Find Ci with SSSP on DDG:

with O(1) holes in O(n) time [Klein, Mozes, Sommer STOC 2013]

<u>Dense Distance Graph (DDG)</u>: all boundary-to-boundary distance matrices O(nlogr) = O(nloglogn) time [Klein SODA 2005]

Find Ci with SSSP on DDG:

O(n/r) pieces each with O(r) vertices and O(\sqrt{r}) boundary vertices with O(1) holes in O(n) time [Klein, Mozes, Sommer STOC 2013]

<u>Dense Distance Graph (DDG)</u>: all boundary-to-boundary distance matrices O(nlogr) = O(nloglogn) time [Klein SODA 2005]

Find Ci with SSSP on DDG:

 $O(nlog^2n/\sqrt{r}) = O(n/logn)$ sublinear time [Fakcharoenphol, Rao FOCS 2001]

Bottleneck: computing DDG (O(nloglogn) time)

Shortest Path Separator

Shortest Path Separator

Find shortest cycle that crosses P once

We've just seen this takes O(nloglogn) time so O(nlognloglogn) overall

[Chalermsook, Fakcharoenphol, Nanongkai SODA 2004] + [Italiano,Nussbaum,Sankowski,Wulff-Nilsen STOC 2011]

Find shortest cycle that crosses P once

We've just seen this takes O(nloglogn) time so O(nlognloglogn) overall

[Chalermsook, Fakcharoenphol, Nanongkai SODA 2004] + [Italiano,Nussbaum,Sankowski,Wulff-Nilsen STOC 2011]

[Łącki, Sankowski ESA 2011]

[Łącki, Sankowski ESA 2011]

[Łącki, Sankowski ESA 2011]

[Łącki, Sankowski ESA 2011]

A	
В	\checkmark

The underlying C_i might be non-simple!

Theorem:

We do not loose the Min Cycle after cutting the DDG along Ci

The underlying C_i might be non-simple! The underlying Min Cycle might cross C_i!

Theorem:

The underlying C_i might be non-simple! The underlying Min Cycle might cross C_i!

Theorem:

The underlying C_i might be non-simple! The underlying Min Cycle might cross C_i!

Theorem:

The underlying C_i might be non-simple! The underlying Min Cycle might cross C_i!

Theorem:

The underlying C_i might be non-simple! The underlying Min Cycle might cross C_i!

Theorem:

The underlying C_i might be non-simple! The underlying Min Cycle might cross C_i!

Theorem:

We do not loose the Min Cycle after cutting the DDG along C_i as long as there are **no holes trapped in the crossing area**

Challenges:

- 1. prove this theorem.
- 2. prevent holes in crossing area (by building one DDG for every hole configuration, using a bounded genus graph)

Conclusions

Conclusions

Undirected min st-cut: O(nloglogn) [Italiano, Nussbaum, Sankowski, Wulff-Nilsen STOC 2011]

Undirected min cut: O(n loglogn) [Łącki, Sankowski ESA 2011]

Directed min cut O(n loglogn)

Directed min st-cut: O(n logn) [Borradaile, Klein SODA 2006]

Conclusions

Undirected min st-cut: O(nloglogn) [Italiano, Nussbaum, Sankowski, Wulff-Nilsen STOC 2011]

Undirected min cut: O(n loglogn) [Łącki, Sankowski ESA 2011]

Directed min cut O(n loglogn)

Directed min st-cut: O(n logn) [Borradaile, Klein SODA 2006]

