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Find Ci with SSSP on DDG:
       O(nlog2n/√r) = O(n/logn) sublinear time [Fakcharoenphol, Rao FOCS 2001]
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The underlying Min Cycle might cross Ci!
Theorem:
We do not loose the Min Cycle after cutting the DDG along Ci
as long as there are no holes trapped in the crossing area 
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Challenges: 
1. prove this theorem.
2. prevent holes in crossing area (by building one DDG for 

every hole configuration, using a bounded genus graph)
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