Shortest Paths in Directed Planar Graphs with Negative Lengths:

a Linear-Space $O\left(n \log ^{2} n\right)$-Time Algorithm

Shay Mozes (Brown University)
joint work with
Philip Klein (Brown University)
Oren Weimann (MIT)

Single-Source shortest paths

- Planar graph
- Directed
- Positive and negative lengths
- No negative cycles

Single-Source shortest paths

- Planar graph
- Directed
- Positive and negative lengths
- No negative cycles

Single-Source shortest paths

- Planar graph
- Directed
- Positive and negative lengths
- No negative cycles

Applications

- Feasible circulation
- Feasible flow
- Perfect matching
- Image segmentation
- Stereo matching

Related Work

General graphs:

- Dijkstra (non-negative lengths) - $O(n \log n+m)$
- Bellman-Ford - O(nm)

Planar graphs:

- $O\left(n^{3 / 2}\right)$ - [Lipton, Rose and Tarjan 1979]
- $O\left(n^{4 / 3} \log ^{2 / 3} D\right)$ - [Henzinger, Klein, Rao, Subramanian 1994] also, $O(n)$ for non-negative lengths
- $O\left(n \log ^{3} n\right)$ time $O(n \log n)$ space - [Fakcharoenphol and Rao 200I]

Our Contribution:

- $O\left(n \log ^{2} n\right)$ time, $O(n)$ space

Rerooting

Rerooting

- We want distances from s
- It suffices to find distances from any node r

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $\quad l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $\quad l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $\quad l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $\quad l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $\quad l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $\quad l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $\quad l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $\quad l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$

- Length of any s-t path changes by $\varphi(s)-\varphi(t)$

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $\quad l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$

- Length of any s-t path changes by $\varphi(s)-\varphi(t)$
- $\varphi(v)$ preserves shortest paths

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$
- Length of any s-t path changes by $\varphi(s)-\varphi(t)$
- $\varphi(v)$ preserves shortest paths

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$
- Length of any s-t path changes by $\varphi(s)-\varphi(t)$
- $\varphi(v)$ preserves shortest paths

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$
- Length of any s-t path changes by $\varphi(s)-\varphi(t)$
- $\varphi(v)$ preserves shortest paths
- Price function is feasible if l_{φ} is non-negative
- Converts a problem with negative lengths to non-negative lengths

Price Functions, Reduced Lengths

- Price function: $\varphi(v)$
- Reduced length: $l_{\varphi}(u v)=\varphi(u)+l(u v)-\varphi(v)$
- Length of any s-t path changes by $\varphi(s)-\varphi(t)$
- $\varphi(v)$ preserves shortest paths
- Price function is feasible if l_{φ} is non-negative
- Converts a problem with negative lengths to non-negative lengths
- Single source distances form a feasible price function because $\varphi(u)+l(u v) \geq \varphi(v)$

Rerooting

- We want distances from s
- It suffices to find distances from any node r

Rerooting

- We want distances from s
- It suffices to find distances from any node r
- Use distances from r as a feasible price function

Rerooting

- We want distances from s
- It suffices to find distances from any node r
- Use distances from r as a feasible price function
- Run Dijkstra's algorithm from s

High-Level View

I. recursion
II. boundary to boundary distances in G_{i}
III. r-to-boundary distances in G
IV. distances from r in G

rerooting

High-Level View

I. recursion
II. boundary to boundary distances in G_{i}
||I. r-to-boundary distances in G
IV. distances from r in G

rerooting

High-Level View

I. recursion
II. boundary to boundary distances in G_{i}
III. r-to-boundary distances in G
IV. distances from r in G

rerooting

High-LevelView

I. recursion
II. boundary to boundary distances in G_{i}

G|
||I. r-to-boundary distances
in G
$\mid V$. distances from r in G
rerooting

High-LevelView

I. recursion
II. boundary to boundary distances in G_{i}

G।
IV. distances from r in G
rerooting

High-LevelView

I. recursion
II. boundary to boundary distances in G_{i}
||I. r-to-boundary distances

G|
IV. distances from r in G
rerooting

High-LevelView

I. recursion
II. boundary to boundary distances in G_{i}
||II. r-to-boundary distances

G|

High-LevelView

I. recursion

II. boundary to boundary distances in G_{i}

G|

High-LevelView

I. recursion
II. boundary to boundary distances in G_{i}
III. r-to-boundary distances in G
IV. distances from r in G rerooting

High-LevelView

I. recursion
II. boundary to boundary distances in G_{i}
III. r-to-boundary distances in G
IV. distances from r in G rerooting

High-Level View

I. recursion
II. boundary to boundary distances in G_{i}
III. r-to-boundary distances in G

IV. distances from r in G rerooting

High-LevelView

I. recursion
II. boundary to boundary distances in G_{i}
III. r-to-boundary distances in G

IV. distances from r in G rerooting

High-LevelView

I. recursion
II. boundary to boundary distances in G_{i}
III. r-to-boundary distances in G

High-LevelView

I. recursion
II. boundary to boundary distances in G_{i}
III. r-to-boundary distances in G

High-Level View

I. recursion
II. boundary to boundary distances in G_{i}
III. r-to-boundary distances in G

High-LevelView

I. recursion
II. boundary to boundary distances in G_{i}
III. r-to-boundary distances in G

High-LevelView

I. recursion

II. boundary to boundary
 distances in G_{i}
III. r-to-boundary distances in G
IV. distances from rin G rerooting

High-LevelView

I. recursion

II. boundary to boundary
 distances in G_{i}
III. r-to-boundary distances in G
IV. distances from r in G rerooting

High-LevelView

I. recursion

II. boundary to boundary
 distances in G_{i}
III. r-to-boundary distances in G
IV. distances from r in G rerooting

High-LevelView

I. recursion

II. boundary to boundary
 distances in G_{i}
III. r-to-boundary distances in G
IV. distances from r in G rerooting

High-LevelView

I. recursion

II. boundary to boundary distances in G_{i}

III. r-to-boundary distances in G
IV. distances from r in G rerooting

High-LevelView

I. recursion

II. boundary to boundary distances in G_{i}

III. r-to-boundary distances in G
IV. distances from r in G

G_{0}

High-LevelView

I. recursion

II. boundary to boundary distances in G_{i}

III. r-to-boundary distances in G
IV. distances from r in G
V. rerooting

G_{0}

High-LevelView

I. recursion
II. boundary to boundary distances in G_{i}
III. r-to-boundary distances in G
IV. distances from r in G
V. rerooting

High-LevelView

I. recursion
II. boundary to boundary distances in G_{i}
III. r-to-boundary distances in G
IV. distances from r in G
V. rerooting

I. Recursive Step

Planar Separator:

- $O(\sqrt{n})$ boundary nodes
- At most $2 n / 3$ nodes in each part
- Can be found in $O(n)$ time [Lipton-Tarjan 79, Miller 86]

I. Recursive Step

Planar Separator:

- $O(\sqrt{n})$ boundary nodes
- At most $2 n / 3$ nodes in each part
- Can be found in $O(n)$ time [Lipton-Tarjan 79, Miller 86]

I. Recursive Step

Planar Separator:

- $O(\sqrt{n})$ boundary nodes

I. Recursive Step

G

I. Recursive Step

3

I. Recursive Step

- Choose an arbitrary boundary node r

G

I. Recursive Step

- Choose an arbitrary boundary node r
- Recursively compute distances from r within G_{0}

GI

I. Recursive Step

- Choose an arbitrary boundary node r
- Recursively compute distances from r within G_{0}
- Recursively compute distances from r within G_{1}

GI

II. Boundary-to-Boundary Distances in G_{i}

- Compute all boundary-to-boundary distances within G_{1}
- $O(n)$ pairs of boundary nodes
- algorithm: multiple-source shortest paths [Klein 2005] in $O(n \log n)$ time
- Uses from-r distances in G_{1}
- Repeat for G_{0}

GI

II. Boundary-to-Boundary Distances in G_{i}

- Compute all boundary-to-boundary distances within G_{1}
- $O(n)$ pairs of boundary nodes
- algorithm: multiple-source shortest paths [Klein 2005] in $O(n \log n)$ time
- Uses from-r distances in G_{1}
- Repeat for G_{0}

G।

II. Boundary-to-Boundary Distances in G_{i}

- Compute all boundary-to-boundary distances within G_{1}
- $O(n)$ pairs of boundary nodes
- algorithm: multiple-source shortest paths [Klein 2005] in $O(n \log n)$ time
- Uses from-r distances in G_{1}
- Repeat for G_{0}

G।

II. Boundary-to-Boundary Distances in G_{i}

- Compute all boundary-to-boundary distances within G_{1}
- $O(n)$ pairs of boundary nodes
- algorithm: multiple-source shortest paths [Klein 2005] in $O(n \log n)$ time
- Uses from-r distances in G_{1}
- Repeat for G_{0}

G।

III. r-to-boundary Distances in G

III. r-to-boundary Distances in G

- Compute distances from r to all boundary nodes

III. r-to-boundary Distances in G

- Compute distances from r to all boundary nodes
- Shortest path in G consists of alternating boundary-to-boundary shortest paths in G_{0} and G_{1}

III. r-to-boundary Distances in G

- Compute distances from r to all boundary nodes
- Shortest path in G consists of alternating boundary-to-boundary shortest paths in G_{0} and $\mathrm{G}_{\text {I }}$
- "Bellman-Ford" using just boundary-to-boundary distances

$$
\forall v e_{j}[v]:=\min _{w}\left\{e_{j-1}[w]+\delta_{i}[w, v]\right\}
$$

III. r-to-boundary Distances in G

$\forall v e_{j}[v]:=\min _{w}\left\{e_{j-1}[w]+\delta_{i}[w, v]\right\}$

- All iterations in $O\left(n^{3 / 2}\right)$ [Lipton-Rose-Tarjan 1979]
- δ has a Monge non-crossing property [FakcharoenpholRao 2001] $\Rightarrow O\left(n \log ^{2} n\right)$ time
- We show: $O(n \alpha(n))$ time

III. r-to-boundary Distances in G

$\left.\forall v e_{j}[v]:=\min _{w} e_{j-1}[w]+\delta_{i}[w, v]\right\rangle$

- Think of a matrix whose w, v element is
- We want to find all column minima of this matrix

Monge Matrices

Monge Matrices

- A matrix is Monge if for any $i \leq j, k \leq l$ $\delta(i, k)+\delta(j, l) \geq \delta(i, l)+\delta(j, k)$

Monge Matrices

- A matrix is Monge if for any $i \leq j, k \leq l$ $\delta(i, k)+\delta(j, l) \geq \delta(i, l)+\delta(j, k)$
- All column minima of an $n \times n$ Monge matrix can be found in $O(n)$ time [SMAWK I989]

III. r-to-boundary Distances in G

$\left.\forall v e_{j}[v]:=\min _{w} e_{j-1}[w]+\delta_{i}[w, v]\right\rangle$

- Think of a matrix whose w, v element is
- We want to find all column minima of this matrix
- Show that this matrix is Monge

Crossings and the Monge Property

Crossings and the Monge Property

$$
\delta(i, k)+\delta(j, l)
$$

Crossings and the Monge Property

$$
\delta(i, k)+\delta(j, l) \geq \delta(i, l)+\delta(j, k)
$$

Crossings and the Monge Property

$$
\delta(i, k)+\delta(j, l) \geq \delta(i, l)+\delta(j, k)
$$

Crossings and the Monge Property

$$
\delta(i, k)+\delta(j, l) \geq \delta(i, l)+\delta(j, k)
$$

Crossings and the Monge Property

$$
\delta(i, k)+\delta(j, l) \geq \delta(i, l)+\delta(j, k)
$$

Crossings and the Monge Property

Crossings and the Monge Property

Crossings and the Monge Property

Partial Monge Matrices

- Column Minima of a triangular Monge matrix can be found in $O(n \alpha(n))$ time [Klawe-Kleitman 1990]

III. r-to-boundary Distances in G

$\forall v \quad e_{j}[v]:=\min _{w}\left\{e_{j-1}[w]+\delta_{i}[w, v]\right\rangle$

- δ_{i} is partially Monge even when adding $e_{j-1}[w]$ to row w
- Each iteration takes $O(\sqrt{n} \alpha(\sqrt{n}))$
- $O(\sqrt{n})$ iterations
- All iterations in $O(n \alpha(n))$ time

So Far We Have:

- r-to-boundary distances in G
- r-to-all distances in G_{i}

GI

IV. From-r Distances in G

IV. From-r Distances in G

- Add r-to-boundary edges. Use distances in G as edge lengths
- Distances from r in this graph are equal to distances in G

IV. From-r Distances in G

- Add r-to-boundary edges. Use distances in G as edge lengths
- Distances from r in this graph are equal to distances in G
- Distances from r in G are almost feasible price function

IV. From-r Distances in G

- Add r-to-boundary edges. Use distances in G as edge lengths
- Distances from r in this graph are equal to distances in G
- Distances from r in G are almost feasible price function
- Setting $\varphi(r)$ to a sufficiently large value makes it feasible

IV. From-r Distances in G

- Add r-to-boundary edges. Use distances in G as edge lengths
- Distances from r in this graph are equal to distances in G
- Distances from r in $G_{ı}$ are almost feasible price function
- Setting $\varphi(r)$ to a sufficiently large value makes it feasible

Analysis

	step	techniques	time
$\boldsymbol{\\|}$	recursion	planar separator	$\begin{array}{l}\text { boundary to boundary } \\ \text { distances in Gi }\end{array}$

paths [Klein 2005]\end{array}\right]|G| \log (|G|)\)

$O(\log n)$ levels $\Rightarrow O\left(n \log ^{2} n\right)$ time
 $O(n)$ space

Monge in Other Planar Problems

- Use of efficient Monge searching may be applicable in other planar graphs problem
- Example:
improvement on the running time of an algorithm for the replacement path problem [Emek, Peleg, Roditty SODA08]

Thank You!

