
Shortest Paths in Directed Planar Graphs
with Negative Lengths:

a Linear-Space O(n log2 n)-Time Algorithm

Shay Mozes (Brown University)

joint work with

Philip Klein (Brown University)

Oren Weimann (MIT)

Single-Source shortest paths

• Planar graph
• Directed
• Positive and negative lengths
• No negative cycles

Single-Source shortest paths

• Planar graph
• Directed
• Positive and negative lengths
• No negative cycles

Single-Source shortest paths

• Planar graph
• Directed
• Positive and negative lengths
• No negative cycles

10

-4

Applications

• Feasible circulation
• Feasible flow
• Perfect matching
• Image segmentation
• Stereo matching

,

Figure 3. The edge connectivity in the stereo

case.

Figure 4. The effect of the term gD. Four sam-
ple frames equally spaced from a sequence

consisting of a total of 25 frames.

tionary while the left-hand circle moves to the right. Due to

the intensity gradient, is non-zero for the moving circle,

while i t is zero for the stationary circle. This results in the

correct identification of the moving circle over each triple

of frames, with the identified boundary switching from the

right- to the left-hand circle when the former stops and the

latter begins to move. Note that the identification of the

right-hand circle occurs in spite of the fact that by mov-

ing up in the image this circle acquires a reduced average

intensity flow across its boundary, and hence a weaker n u -

merator, N [d R] . To emphasize this, i t is worth noting that

when the still image version ofthe model is applied to these

images, i t consistently identifies whichever circle is lower

in the image.

In figures 5 and 6 are shown the results of the appli-

cation of the model to several stereo pairs and image se-

quences. The examples took about 5 to 20 minutes to run

on stereo pairs of 135x 152, 148x 148, and 230x260 pix-

els and triples of images from motion sequences of 75 x 5 0

and 55x70 pixels. The model successfully identifies cor-

responding regions within each image, and is consistent

across consecutive triples of motion sequence images, even

though no initialization was used to pass from one triple

to the next. Note that although there is a tendency for the
boundaries to lie on discontinuities, this tendency can be

overruled by other propertics of the region model, in this

case the tendency to find boundaries lying on high intensity

Figure 5. The results, shown on the right, of

applying the algorithm to some stereo pairs,
shown on the left. The algorithm was iterated

on the images, the numbers showing the or-
der in which the regions were found.

gradients. This is to be expected: a sharp intensity gradi-

ent may signal the boundary of an object even though there

is no discontinuity present. Both are indicators of such a

boundary.

5. Conclusions

We have presented a method for the extraction of regions

from multiple images simultaneously with their correspon-

dences. This method falls within the category of methods

that search for regions in images possessing certain proper-

ties directly, without performing dense computations, a par-

ticularly relevantexample being active contours. The model

allowsa broad range of possibilities for the description both

of regions in the individual images and of their correspon-

dences. For any of these possibilities, the optimal regions

and boundary correspondences can be found in polynomial

time. We have illustrated the model using the simplest (and

hence most likely to be broadly useful) choices for the terms

in the energy. In addition, we have introduced an energy

term based on a novel heuristic that favours boundaries ly-

ing on discontinuities in the disparity or optical flow. This

energy should be useful beyond the specific model used in

this paper.

The principle drawback of the method lies in the nature

of the object models. Object recognition in images is a

hard problem, and although equation 2.1 can incorporate

a great variety of different information, i t is all in the form

of summations over the region or boundary. The same crit-

icism applies to active contours and segmentation by parti-

tion methods. It is clear that using this type of information

515

Authorized licensed use limited to: MIT Libraries. Downloaded on December 25, 2008 at 13:09 from IEEE Xplore. Restrictions apply.

Related Work
General graphs:
• Dijkstra (non-negative lengths) - O (n log n + m)
• Bellman-Ford - O(nm)

Planar graphs:
• O(n3/2) - [Lipton, Rose and Tarjan 1979]

• O(n4/3 log2/3 D) - [Henzinger, Klein, Rao, Subramanian 1994]
also, O(n) for non-negative lengths

• O(n log3 n) time O(n log n) space - [Fakcharoenphol and
Rao 2001]

Our Contribution:
• O(n log2 n) time, O(n) space

Rerooting

r
s

Rerooting

r
s

• We want distances from s
• It suffices to find distances

from any node r

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)

u v w

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)

u v w

5 20 8

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)

u v w

5 20 8

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)

u v w

5 20 8

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)

u v w

5 820

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)

u v w

5 20 8

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)

u v w

5 20 8

• Length of any s-t path changes by φ(s)-φ(t)

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)

u v w

5 20 8

• Length of any s-t path changes by φ(s)-φ(t)
• φ(v) preserves shortest paths

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)
• Length of any s-t path changes by φ(s)-φ(t)
• φ(v) preserves shortest paths

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)
• Length of any s-t path changes by φ(s)-φ(t)
• φ(v) preserves shortest paths

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)
• Length of any s-t path changes by φ(s)-φ(t)
• φ(v) preserves shortest paths

• Price function is feasible if lφ is non-negative
• Converts a problem with negative lengths to

non-negative lengths

Price Functions,
Reduced Lengths

• Price function: φ(v)
• Reduced length: lφ(uv) = φ(u) + l(uv) - φ(v)
• Length of any s-t path changes by φ(s)-φ(t)
• φ(v) preserves shortest paths

• Price function is feasible if lφ is non-negative
• Converts a problem with negative lengths to

non-negative lengths
• Single source distances form a feasible price

function because φ(u) + l(uv) ≥ φ(v)

Rerooting

r
s

• We want distances from s
• It suffices to find distances from

any node r

Rerooting

r
s

• We want distances from s
• It suffices to find distances from

any node r

- Use distances from r as a
feasible price function

Rerooting

r
s

• We want distances from s
• It suffices to find distances from

any node r

- Use distances from r as a
feasible price function

- Run Dijkstra’s algorithm from s

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

G1

G0

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

High-Level View

G1

G0

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

G1

G0

r

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

G1

G0

r

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

r

G1

G0

r
I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

r

G1

G0

r
I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

δ1

r

G1

G0

r
I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

δ1

r

G1

G0

δ0

r
I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

δ1

r

G1

G0

δ0
r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

δ1

G1G0

δ0

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

G1G0

δ1 δ0

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

δ1 δ0

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

δ1 δ0

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

r

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

G1

r

G0

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

G1

r

G0

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

G1

G0

r

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

r

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

r s

I. recursion

II. boundary to boundary
distances in Gi

III. r-to-boundary distances
in G

IV. distances from r in G

V. rerooting

High-Level View

Planar Separator:

• boundary nodes
• At most 2n/3 nodes in each part
• Can be found in O (n) time

[Lipton-Tarjan 79, Miller 86]

I. Recursive Step

G
O

(√
n
)

Planar Separator:

• boundary nodes
• At most 2n/3 nodes in each part
• Can be found in O (n) time

[Lipton-Tarjan 79, Miller 86]

I. Recursive Step

G
O

(√
n
)

Planar Separator:

• boundary nodes
• At most 2n/3 nodes in each part
• Can be found in O (n) time

[Lipton-Tarjan 79, Miller 86]

G1

I. Recursive Step

G0

G
O

(√
n
)

I. Recursive Step

G1

G0

I. Recursive Step

G1

G0

I. Recursive Step

• Choose an arbitrary
boundary node r

G1

G0

r

r

I. Recursive Step

• Choose an arbitrary
boundary node r

• Recursively compute
distances from r within G0

G1

G0

r

r

I. Recursive Step

• Choose an arbitrary
boundary node r

• Recursively compute
distances from r within G0

• Recursively compute
distances from r within G1

G1

G0

r

r

• Compute all boundary-to-boundary
distances within G1

• O (n) pairs of boundary nodes

• algorithm: multiple-source shortest
paths [Klein 2005] in O (n log n) time

• Uses from-r distances in G1

• Repeat for G0

II. Boundary-to-Boundary
Distances in Gi

G1

r

• Compute all boundary-to-boundary
distances within G1

• O (n) pairs of boundary nodes

• algorithm: multiple-source shortest
paths [Klein 2005] in O (n log n) time

• Uses from-r distances in G1

• Repeat for G0

II. Boundary-to-Boundary
Distances in Gi

G1

r

• Compute all boundary-to-boundary
distances within G1

• O (n) pairs of boundary nodes

• algorithm: multiple-source shortest
paths [Klein 2005] in O (n log n) time

• Uses from-r distances in G1

• Repeat for G0

II. Boundary-to-Boundary
Distances in Gi

δ1
G1

r

• Compute all boundary-to-boundary
distances within G1

• O (n) pairs of boundary nodes

• algorithm: multiple-source shortest
paths [Klein 2005] in O (n log n) time

• Uses from-r distances in G1

• Repeat for G0

II. Boundary-to-Boundary
Distances in Gi

δ1
G1

r

δ0

r

III. r-to-boundary Distances in G

δ1δ0

G1G0

• Compute distances from r to all
boundary nodes

r

III. r-to-boundary Distances in G

δ1δ0

G1G0

• Compute distances from r to all
boundary nodes
• Shortest path in G consists of

alternating boundary-to-boundary
shortest paths in G0 and G1

r

III. r-to-boundary Distances in G

δ1δ0

G1G0

• Compute distances from r to all
boundary nodes
• Shortest path in G consists of

alternating boundary-to-boundary
shortest paths in G0 and G1

• “Bellman-Ford” using just
boundary-to-boundary distances

r

III. r-to-boundary Distances in G

δ1δ0

G1G0

∀v ej [v] := min
w

{ej−1[w] + δi[w, v]}

δ1δ0

• All iterations in [Lipton-Rose-Tarjan 1979]
• δ has a Monge non-crossing property [Fakcharoenphol-

Rao 2001] ⇒ O (n log2 n) time

• We show: O (nα(n)) time

III. r-to-boundary Distances in G

∀v ej [v] := min
w

{ej−1[w] + δi[w, v]}
O

(
n3/2

)

δ1δ0

• Think of a matrix whose w,v element is
• We want to find all column minima of this matrix

III. r-to-boundary Distances in G

∀v ej [v] := min
w

{ej−1[w] + δi[w, v]}

Monge Matrices

i

j

k l

Monge Matrices
• A matrix is Monge if for any i ≤ j,k ≤ l
δ(i,k) +δ(j,l) ≥ δ(i,l) +δ(j,k)

i

j

k l

Monge Matrices
• A matrix is Monge if for any i ≤ j,k ≤ l
δ(i,k) +δ(j,l) ≥ δ(i,l) +δ(j,k)

• All column minima of an n x n Monge
matrix can be found in O(n) time
[SMAWK 1989]

i

j

k l

δ1δ0

• Think of a matrix whose w,v element is
• We want to find all column minima of this matrix
• Show that this matrix is Monge

III. r-to-boundary Distances in G

∀v ej [v] := min
w

{ej−1[w] + δi[w, v]}

i

j
k

l

Crossings and the Monge Property

i

j
k

l
w

Crossings and the Monge Property

 δ(i,k) + δ(j,l)

i

j
k

l
w

Crossings and the Monge Property

 δ(i,k) + δ(j,l) ≥ δ(i,l) + δ(j,k)

Crossings and the Monge Property

i

l
i

j

k l

k
j

 δ(i,k) + δ(j,l) ≥ δ(i,l) + δ(j,k)

Crossings and the Monge Property

i

l
i

j

k l

✓ k
j

 δ(i,k) + δ(j,l) ≥ δ(i,l) + δ(j,k)

Crossings and the Monge Property

i

l
i

j

k l

k
j

 δ(i,k) + δ(j,l) ≥ δ(i,l) + δ(j,k)

Crossings and the Monge Property

i

j
k

li

j

k l

Crossings and the Monge Property

i

j
k

li

j

k l

Crossings and the Monge Property

i

j
k

li

j

k l

✗

Partial Monge Matrices
• Column Minima of a triangular Monge

matrix can be found in O(nα(n)) time
[Klawe-Kleitman 1990] i

j

k l

• δi is partially Monge even when adding ej-1[w] to row w
• Each iteration takes
• iterations

• All iterations in O(nα(n)) time

δ1δ0

III. r-to-boundary Distances in G

∀v ej [v] := min
w

{ej−1[w] + δi[w, v]}∀v ej [v] := min
w

{ej−1[w] + δi[w, v]}

O
(√

n
) O(

√
nα(
√

n))

So Far We Have:
• r-to-boundary distances in G

• r-to-all distances in Gi

G1

G0

r
r

r

IV. From-r Distances in G

r

• Add r-to-boundary edges. Use distances in G as edge lengths
• Distances from r in this graph are equal to distances in G

IV. From-r Distances in G

r

• Add r-to-boundary edges. Use distances in G as edge lengths
• Distances from r in this graph are equal to distances in G
• Distances from r in G1 are almost feasible price function

IV. From-r Distances in G

r

• Add r-to-boundary edges. Use distances in G as edge lengths
• Distances from r in this graph are equal to distances in G
• Distances from r in G1 are almost feasible price function
• Setting φ(r) to a sufficiently large value makes it feasible

IV. From-r Distances in G

r

• Add r-to-boundary edges. Use distances in G as edge lengths
• Distances from r in this graph are equal to distances in G
• Distances from r in G1 are almost feasible price function
• Setting φ(r) to a sufficiently large value makes it feasible

IV. From-r Distances in G

r r

Analysis
step techniques time

I

II

III

IV

V

recursion planar separator

boundary to boundary
distances in Gi

multiple-source planar shortest
paths [Klein 2005]

|G| log(|G|)

r-to-boundary distances
in G

“Bellman-Ford”, partial Monge
searching [Klawe-Kleitman 1990]

|G| α(|G|)

distances from r in G
augmented graph, feasible price
function, Dijkstra

|G| log(|G|)
(can be done in O(|G|))

rerooting -
distances from s in G feasible price function, Dijkstra |G| log(|G|)

(can be done in O(|G|))

O(log n) levels ⇒ O(n log2 n) time
O(n) space

s

i

i'

j

j'

t

z

Monge in Other Planar
Problems

• Use of efficient Monge searching may be
applicable in other planar graphs problem

• Example:
improvement on the running time of an
algorithm for the replacement path
problem [Emek, Peleg, Roditty SODA08]

Thank You!

