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Applications

easible circulation

easible flow

erfect matching
Image segmentation
Stereo matching




Related Work

General graphs:
® Dijkstra (non-negative lengths) - O (n log n + m)
® Bellman-Ford - O(nm)

Planar graphs:

® O(n’?) - [Lipton, Rose and Tarjan 1979]

e O(n*31og??3 D) - [Henzinger, Klein, Rao, Subramanian 1994]
also, O(n) for non-negative lengths

® O(n log’ n) time O(n log n) space - [Fakcharoenphol and
Rao 2001]

Our Contribution:
® O(n log? n) time, O(n) space
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Price Functions,
Reduced Lengths

® Price function: p(v)

e Reduced length:  [,(uv) = p(u) + l(uv) - p(v)
® | ength of any s-t path changes by ¢(s)-¢(?)

® p(v) preserves shortest paths

® Price function is feasible if /, is non-negative

e Converts a problem with negative lengths to
non-negative lengths

® Single source distances form a feasible price
function because ¢(u) + l(uv) = op(v)
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Rerooting

¢ VWe want distances from s

e |t suffices to find distances from

any node r

- Use distances from ras a
feasible price function
- Run Dijkstra’s algorithm from s
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Righ-Level View
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Righ-Level View
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® At most 2n/3 nodes in each part O

e Can be found in O (n) time
[Lipton-Tarjan 79, Miller 86]
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Planar Separator:

e O (v/n) boundary nodes G
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. Recursive Step

® Choose an arbitrary

boundary node r
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. Recursive Step

® Choose an arbitrary
boundary node r

® Recursively compute
distances from r within Go
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lll. -to-boundary Distances in G

e Compute distances from r to all
boundary nodes
® Shortest path in G consists of
alternating boundary-to-boundary
shortest paths in Goand G
® “Bellman-Ford” using just
boundary-to-boundary distances

Vv e;lv] = mui}n {e;_1|w] + &;|w, v}




lll. -to-boundary Distances in G

Vv ej|lv| :=min{e;_1|w| + d;|w, v]}
W
¢ All iterations in O (n3/2) [Lipton-Rose-Tarjan 1979]

® 0 has a Monge non-crossing property [Fakcharoenphol-
Rao 20017 = O (n log? n) time

® We show: O (na(n)) time




lll. -to-boundary Distances in G

Vv € [U] L Hluijn {ej_l[w] + 52[?1},?}]}

&

® Think of a matrix whose w,v element is
¢ VWe want to find all column minima of this matrix




Monge Matrices
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Monge Matrices

e A matrix is Monge if for any i <j k </
o(i,k) +0(j,1) = o(i,l) +o(j,k) S— k
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lll. -to-boundary Distances in G

Vv € [U] L Hluijn {Gj_l[UJ] + 52[21},?}]}

&

e Think of a matrix whose w,v element is
¢ We want to find all column minima of this matrix
® Show that this matrix is Monge
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Partial Monge Matrices

 Column Minima of a triangular Monge

matrix can be found in O(na(n)) time ; B

[Klawe-Kleitman 1990]




lll. -to-boundary Distances in G

Vo e;[v] = mi w
w

® 0;is partially Monge even when adding ¢;.;/[w] to row w

e Each iteration takes O(y/na(/n))
e O(v/n) iterations

e All iterations in O(na(n)) time




So Far We Have:

® r-to-boundary distances in G

e r-to-all distances in Gi
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V. From-r Distances in G

® Add r-to-boundary edges. Use distances in G as edge lengths
® Distances from r in this graph are equal to distances in G

® Distances from r in G, are almost feasible price function

® Setting ¢(7) to a sufficiently large value makes it feasible




Analysis

step techniques time

| | recursion planar separator

boundary to boundary | multiple-source planar shortest
| distances in G; paths [Klein 2005] G} log(IG1)

1 r-to-boundary distances | “Bellman-Ford”, partial Monge G| a(|G))
in G searching [Klawe-Kleitman 1990]

augmented graph, feasible price | |G| log(|G))

|V | distances from r in G function, Dijkstra (can be done in O(G)))

|G| log(/G|)

rerooting -
v (can be done in O(|G]))

. . feasible price function, Dijkstra
distances from s in G P J

O(log n) levels = O(n log? n) time
O(n) space




Monge in Other Planar
Problems

e Use of efficient Monge searching may be
applicable in other planar graphs problem
® Example:
improvement on the running time of an

algorithm for the replacement path
problem [Emek, Peleg, Roditty SODAOQS]




Thank You!



