Shortest Paths in Directed Planar Graphs
with Negative Lengths:
a Linear-Space O(n log? n)-Time Algorithm

Shay Mozes (Brown University)

joint work with

Philip Klein (Brown University)

Oren Weimann (MIT)

Single-Source shortest paths

Single-Source shortest paths

Single-Source shortest paths

Applications

easible circulation

easible flow

erfect matching
Image segmentation
Stereo matching

Related Work

General graphs:
® Dijkstra (non-negative lengths) - O (n log n + m)
® Bellman-Ford - O(nm)

Planar graphs:

® O(n’?) - [Lipton, Rose and Tarjan 1979]

e O(n*31og??3 D) - [Henzinger, Klein, Rao, Subramanian 1994]
also, O(n) for non-negative lengths

® O(n log’ n) time O(n log n) space - [Fakcharoenphol and
Rao 2001]

Our Contribution:
® O(n log? n) time, O(n) space

Rerooting

Rerooting

M S

O
S
o

(7))
Q
O
-
(g,
=
4
O
O
-
G—
O
s’
(7))
)
=
=
)
7y
s
o

L
Q
O
(@)
C
>N
C
(q)
-
(@)
.
G—

¢ VWe want distances

Price Functions,
Reduced Lengths

® Price function: p(v)
® Reduced length: [, (uv) = p(u) + l(uv) - p(v)

Price Functions,
Reduced Lengths

® Price function: p(v)
® Reduced length: [, (uv) = p(u) + l(uv) - p(v)

(1) e () e (1)

Price Functions,
Reduced Lengths

® Price function: p(v)
® Reduced length: [, (uv) = p(u) + l(uv) - p(v)

(1) e () e (1)
(&) e (20 P (8

Price Functions,
Reduced Lengths

® Price function: p(v)
® Reduced length: [, (uv) = p(u) + l(uv) - p(v)

(1) e () e (1)
) m— (20) e (8

Price Functions,
Reduced Lengths

® Price function: p(v)
® Reduced length: [, (uv) = p(u) + l(uv) - p(v)

O O —— O
() () —>©

Price Functions,
Reduced Lengths

® Price function: p(v)
® Reduced length: [, (uv) = p(u) + l(uv) - p(v)

(1) e () e (1)
S 6 ey 4O

Price Functions,
Reduced Lengths

® Price function: p(v)
® Reduced length: [, (uv) = p(u) + l(uv) - p(v)

(1) e () e (1)
(&) (20) e (0

Price Functions,
Reduced Lengths

® Price function: p(v)
® Reduced length: [, (uv) = p(u) + l(uv) - p(v)

(1) e () e (1)
(&) (20) e (0

® | ength of any s-t path changes by ¢(s)-¢(?)

Price Functions,
Reduced Lengths

® Price function: p(v)
® Reduced length: [, (uv) = p(u) + l(uv) - p(v)

(1) e () e (1)
(&) (20) e (0

® | ength of any s-t path changes by ¢(s)-¢(?)
® p(v) preserves shortest paths

Price Functions,
Reduced Lengths

® Price function: p(v)

e Reduced length: [,(uv) = p(u) + l(uv) - p(v)
® | ength of any s-t path changes by ¢(s)-¢(?)

® p(v) preserves shortest paths

Price Functions,
Reduced Lengths

® Price function: p(v)

e Reduced length: [,(uv) = p(u) + l(uv) - p(v)
® | ength of any s-t path changes by ¢(s)-¢(?)

® p(v) preserves shortest paths

Price Functions,
Reduced Lengths

® Price function: p(v)

e Reduced length: [,(uv) = p(u) + l(uv) - p(v)
® | ength of any s-t path changes by ¢(s)-¢(?)

® p(v) preserves shortest paths

® Price function is feasible if /, is non-negative

e Converts a problem with negative lengths to
non-negative lengths

Price Functions,
Reduced Lengths

® Price function: p(v)

e Reduced length: [,(uv) = p(u) + l(uv) - p(v)
® | ength of any s-t path changes by ¢(s)-¢(?)

® p(v) preserves shortest paths

® Price function is feasible if /, is non-negative

e Converts a problem with negative lengths to
non-negative lengths

® Single source distances form a feasible price
function because ¢(u) + l(uv) = op(v)

Rerooting

¢ VWe want distances from s
e |t suffices to find distances from

any node r

Rerooting

¢ VWe want distances from s
e |t suffices to find distances from
any node r

- Use distances from r as a
feasible price function

Rerooting

¢ VWe want distances from s

e |t suffices to find distances from

any node r

- Use distances from ras a
feasible price function
- Run Dijkstra’s algorithm from s

. recursion

Righ-Level View

. recursion

Righ-Level View

. recursion

Righ-Level View

Righ-Level View

|. recursion

Righ-Level View

|. recursion

Righ-Level View

recursion

@)
o 0o °
% O
Q ‘......‘ ‘O O
O:“ I..: O O
o ¢, OO
. ol
’ [
q-" ‘.‘-: O O
‘...lll.'.
O QO O O
O
“‘-“--‘C;~ .‘.,.“
: O .
r Q, OO ‘0-:
.“" OO O O-,
-‘ O ’.
* O O ’
0 4 i
o O @)
.Q.. O " @as G
..lll.’ O

®
[D) O ®

. > O O D

Ig - eve I eW Y wnt® - ..‘.- Yo
O : " v, () O
I o & .. QO
3 "r . : O (O
l. recursion Xty N e

O) () O
®

Righ-Level View

|. recursion

ll. boundary to boundary
distances in G;

High-Level View

:‘ ‘..‘
0"" ‘.'.
-"r ".
. > 2L
|. recursion “® M
* s"@as*
0.. '0
.lll’
ll. boundary to boundary

distances in G;

Righ-Level View

recursion

boundary to boundary
distances in G;

o)

Righ-Level View

recursion

boundary to boundary
distances in G;

o)

Righ-Level View

recursion

boundary to boundary
distances in G;

O

.'-t.
as

Righ-Level View

recursion

boundary to boundary
distances in G;

Righ-Level View

r R
e O,
. G &
% O "
O K
recursion 2-‘ ,9
*-Q ."’-‘-’

boundary to boundary
distances in G

r-to-boundary distances

in G

Righ-Level View

r o iy
."‘ Or,
P 4
“ {’
l. recursion x ?
'.‘ 0‘-."
----.’

ll. boundary to boundary
distances in Gj

[ll. r-to-boundary distances

in G

Righ-Level View

|. recursion

ll. boundary to boundary
distances in Gj

[ll. r-to-boundary distances

in G -

Righ-Level View

|. recursion

ll. boundary to boundary
distances in Gj

[ll. r-to-boundary distances
in G

High-Level View DEE

. [)
I. recursion o

ll. boundary to boundary —
distances in Gj

[ll. r-to-boundary distances
in G

|. recursion e)
ll. boundary to boundary .
distances in G;
[ll. r-to-boundary distances
in G
r ..

L
L .
‘.‘ .‘
a
L)
Ye
L]
Yo
q
L 4
oy
*
[
L
o
'0
Samm
C O] N
L 4
‘.“- .‘
2

Righ-Level View

|. recursion

ll. boundary to boundary
distances in Gj

1. r-to-boundary distances
in G

V. distances from r in G

Righ-Level View

|. recursion

ll. boundary to boundary
distances in Gj

1. r-to-boundary distances
in G

V. distances from r in G

Righ-Level View

|. recursion

ll. boundary to boundary
distances in Gj

1. r-to-boundary distances
in G

V. distances from r in G

Righ-Level View

|. recursion

ll. boundary to boundary
distances in Gj

1. r-to-boundary distances
in G

V. distances from r in G

V. rerooting

Righ-Level View

|. recursion

ll. boundary to boundary
distances in Gj

1. r-to-boundary distances
in G

V. distances from r in G

V. rerooting

Righ-Level View

|. recursion

ll. boundary to boundary
distances in Gj

1. r-to-boundary distances
in G

V. distances from r in G

V. rerooting

. Recursive Step

Planar Separator:

e O (v/n) boundary nodes
® At most 2n/3 nodes in each part O

e Can be found in O (n) time
[Lipton-Tarjan 79, Miller 86]

. Recursive Step

Planar Separator:

e O (v/n) boundary nodes
® At most 2n/3 nodes in each part O

e Can be found in O (n) time
[Lipton-Tarjan 79, Miller 86]

. Recursive Step

Planar Separator:

e O (v/n) boundary nodes G
e At most 2n/3 nodes in each part
® Can be found in O (n) time ... @& ‘-u.,_,o...‘_
[Lipton-Tarjan 79, Miller 86] ‘1Q ®-.,
:‘ “““ '.".:-
“““ ".’0
Go @
‘.’ o @

. Recursive Step

. Recursive Step

@)
o—=< X
O O ‘ll‘ O O O
O “‘-‘ ..‘.‘..‘
O-0'q ®. O O
O O ..“' ...‘ O O
o, "’ ."0 O K
O . @
". ¢I‘.: O O
.‘llll.'
O Q O O
O
“‘-“--‘., .‘.'.‘
: O
s’ O ©) L]
0' .'.
-‘ @) O 5 ”.
N e e
o O @)
Q

. Recursive Step

® Choose an arbitrary

boundary node r

O
O O P
OO0 @ OO Q
Q ‘,-‘ ..‘.‘.'"

O Q’Q‘ @ O O
O O ."" ..l‘ OO
O ”[B0 5
s @

O " . ‘l’. O O

0.‘... .'0
O O O O
O

. Recursive Step

® Choose an arbitrary
boundary node r

® Recursively compute
distances from r within Go

. Recursive Step

® O
O—Q . O O O
® Choose an arbitrary . It IRY)\
boundary node r o Y. 9 b
e Recursively compute VAR o o)
distances from r within Go K Ry L
® Recursively compute el

distances from r within G,

ll. Boundary-to-Boundary
Distances in G;

e Compute all boundary-to-boundary
distances within G

® O (n) pairs of boundary nodes N :
® algorithm: multiple-source shortest] .
paths [Klein 2005] in O (n log n) time /"
e Uses from-r distances in G 3 r .
e Repeat for Go S R s

ll. Boundary-to-Boundary
Distances in G;

e Compute all boundary-to-boundary
distances within G

® () (n) pairs of boundary nodes

® algorithm: multiple-source shortest 8O,

paths [Klein 2005] in O (n log n) time e, "

.' Yo

. . "’r 0:

e Uses from-r distances in G > ,;’
e .
e 0‘.."
® Repeat for Go ‘Q....0°

ll. Boundary-to-Boundary
Distances in G;

e Compute all boundary-to-boundary
distances within G

® () (n) pairs of boundary nodes

® algorithm: multiple-source shortest e,

paths [Klein 2005] in O (n log n) time e, ‘;s

.' Ve

. . "’r 0:

e Uses from-r distances in G > ,;’
~ :
e 0‘.."
® Repeat for Go Q...

ll. Boundary-to-Boundary
Distances in G;

e Compute all boundary-to-boundary
distances within G

® () (n) pairs of boundary nodes

® algorithm: multiple-source shortest e,

paths [Klein 2005] in O (n log n) time e, ‘;.:

.' Ve

. . "’r 0’.

e Uses from-r distances in G > ,;’
~ :
e 0‘.."
® Repeat for Go Q...

lll. -to-boundary Distances in G

lll. -to-boundary Distances in G

e Compute distances from r to all
boundary nodes SO o

lll. -to-boundary Distances in G

e Compute distances from r to all
boundary nodes
® Shortest path in G consists of
alternating boundary-to-boundary
shortest paths in Goand G

lll. -to-boundary Distances in G

e Compute distances from r to all
boundary nodes
® Shortest path in G consists of
alternating boundary-to-boundary
shortest paths in Goand G
® “Bellman-Ford” using just
boundary-to-boundary distances

Vv e;lv] = mui}n {e;_1|w] + &;|w, v}

lll. -to-boundary Distances in G

Vv ej|lv| :=min{e;_1|w| + d;|w, v]}
W
¢ All iterations in O (n3/2) [Lipton-Rose-Tarjan 1979]

® 0 has a Monge non-crossing property [Fakcharoenphol-
Rao 20017 = O (n log? n) time

® We show: O (na(n)) time

lll. -to-boundary Distances in G

Vv € [U] L Hluijn {ej_l[w] + 52[?1},?}]}

&

® Think of a matrix whose w,v element is
¢ VWe want to find all column minima of this matrix

Monge Matrices

AN AN AN RN RN LA AN EEAN AN NN AN ASEAANAN NN NANANEEEANEEEgEEEEY
"]] " "]]
" - - . . - -
"
Tannat snnhannstunnn snsnhannsnnnndann]
" ™ " w . &) =
"
"] "] " " "]]
" - . - . - - . -
EEEEEEEEENEEEENEEEEE FEEmsNEEEEEEEE EEEEEEEEEEEENEEEENEEEEEEEEEE
n]]] [l] L]] 0 .]]]]
" - . - . - - . -
"
u » u » u » u u n " u » u]
AEEEEEEEEEEEEEREEEEE sEsmsmEEEmgEEE EEEEEEEEEEEEEEEEAEEEEREEEEE
"
"] "] "] " " " " "] "]
" - . . - - . -
tasssanndunnndannnd sasnsdannnfannnlnnnntannnhannsnnnndannnfunnnl
" " "] " " " " " " . ' " L)]
" - . - . - . - - . -
"
"] "] "] "] " " " " "] "]
E NN NSRS EE A AN S EEE RS EEE NS NSRS EEEE S s EEEEEEEEEEEEEENEEEEEEEEEE
"])]] . 0]] . 0 .]]]]
"] "] "] "] " " " " " "] "]
" - . - . - . - - . -
" » . . » u . . » u -
Fummmn M . AEsEsssEsREsEEgEEEEg
n - . - . - . -
"
"] "] " "] "]

® Lammsl LR T snnfunnngunnnf
"] "]]
" - . - -
"
EEmEEw sEsmREEEEw]
"] . - . = .]
"
"] "] "] " " "]
n » . = . » » u . . » » u -
Aumumm EEEEEFEEEEEEEEEEEEEREEEEREEE EEEEEEEEEEENEEEEAEEEEREEEEE
" . " . " . " " " " u . u]
" - . - . - . . -
"
Frsaslans senfunandhuns afun LT T H
"
® = - - n - " -
" - - . - . -
EEmma EssmsEaEEEE sEsmsnEmmnn]
"] "] " 0]
" - . - . - -
"
u » Ol »]
FusssmmEn am Fusmspammnn mmum 2
"
"] "] "] "] " " " " "]
" - . - . - . - -
Frosshanaunnnfunnnfunnnfunnntannanndunnnfunnnfunnnfannnhannsinnafunnngunnnj
" - . - . - . - - . -
"
"] "] "] "] " " " " " "] "]
EEsssEssESEssEissEsisEssEsEsEEEEEsEEEENEEEEERnn assisEssEEEsNEEEESEEEndnnnnE
" .)] . . 0 .)] 0 .)]]]
"] "] "] "] " " " " "] "]
" - . - . - . - - . -
" » » » . . . » u [. . » » []
AR A NN N AN NSNS EANANEEEEEENANEEEEEAEEEEREEE EEEFEEEEEEEEEsEEEREEEEaEEEER
H - . - . - . - - . -
"
"] "] "] "] " " " " " "] "]
e T L Y L L E T TR RN R C R |

Monge Matrices

e A matrix is Monge if for any i <j k </
o(i,k) +0(j,1) = o(i,l) +o(j,k) S— k

"
"
"
"
" . . .
"] "]
n » . = .
AN NN NN NN NN SN NN NN N NN NN NN NN AN NN NN NN NN NN NN NN NAEENEREEEEEEEEER
" . " .
" - . -
" . . .
safunnnfunnnfunns
" . . .
® = - n - =
" - . - . -
EEsssEssESEEEEFEEEE AEsEsEEEEsEEEENEEEsFEEsEEEEsEEEEEEREERNEEEENEEEndnnnnE
"] "]
" - . -
" . . .
u » Ol »
FEsEEEEsEsEsEEgEEEE NN NN AN NSNS EEE LSS EEEEF NSNS AEREEEEEEREEEEgEEEE]
"
"] "]]
" - . - -
FLLEL-ELLL- i i i FELEL-LELE- i i i FELEL-LELE - i i
" -
"
"
B EEEsEEsESEssEiEsEsisEEEEEEEEEEEEEEEEENEEEsdEsEsEsEenEEEEnEEE R ERnnNRnnndnnnnE
"

Monge Matrices

e A matrix is Monge if for any i <j k </ —
S5(i,k) +5(,1) = 5G,1) +5(, k) RO, S A

--

e All column minima of an n x n Monge

lllllllllll

lllllllllll

lllllllllllll
imam I NN E NN NN NN NN NSNS NN EEEN NN EENN NN EEENNNEEEEEEEREEEC O EE

matrix can be found in O(n) time
[SMAWK [989] MW

lllllllllll
lllllllllll

EEEE NN NN N EEE N NN EE NN EEEE NN EEN NN NN ENEEENEEEEREE)
lllllllllll

lllllllllll

lllllllllll
lllllllllll

Emma L R s L R R R R RN TR R R R R LR L L Y |
lllllllllll
lllllllllll

llllllllllllll
mmmwE N EE NN EEE NN NN NN S EEEA SN EEEN NN EEEEN NN EENENEEEEEEREEED O AEE

lllllllllllll
lllllllllllll

lll. -to-boundary Distances in G

Vv € [U] L Hluijn {Gj_l[UJ] + 52[21},?}]}

&

e Think of a matrix whose w,v element is
¢ We want to find all column minima of this matrix
® Show that this matrix is Monge

Crossings and the Monge Property

Crossings and the Monge Property

o(i,k) + o(j, 1)

Crossings and the Monge Property

o(i,k) + 0(j,0) 2 0(i,]) + o(j,k)

Crossings and the Monge Property

k [
z _ -
J m N

o(i,k) + 0(j,0) 2 0(i,]) + o(j,k)

Crossings and the Monge Property

k [
z _ -
J m N

o(i,k) + 0(j,0) 2 0(i,]) + o(j,k)

Crossings and the Monge Property

k [
z _ -
J m N /

J

o(i,k) + 0(j,0) 2 0(i,]) + o(j,k)

Crossings and the Monge Property

Crossings and the Monge Property

Crossings and the Monge Property

Partial Monge Matrices

 Column Minima of a triangular Monge

matrix can be found in O(na(n)) time ; B

[Klawe-Kleitman 1990]

lll. -to-boundary Distances in G

Vo e;[v] = mi w
w

® 0;is partially Monge even when adding ¢;.;/[w] to row w

e Each iteration takes O(y/na(/n))
e O(v/n) iterations

e All iterations in O(na(n)) time

So Far We Have:

® r-to-boundary distances in G

e r-to-all distances in Gi

V. From-r Distances in G

V. From-r Distances in G

® Add r-to-boundary edges. Use distances in G as edge lengths
® Distances from r in this graph are equal to distances in G

V. From-r Distances in G

® Add r-to-boundary edges. Use distances in G as edge lengths
® Distances from r in this graph are equal to distances in G
® Distances from r in G, are almost feasible price function

V. From-r Distances in G

® Add r-to-boundary edges. Use distances in G as edge lengths
® Distances from r in this graph are equal to distances in G

® Distances from r in G, are almost feasible price function

® Setting ¢(7) to a sufficiently large value makes it feasible

V. From-r Distances in G

® Add r-to-boundary edges. Use distances in G as edge lengths
® Distances from r in this graph are equal to distances in G

® Distances from r in G, are almost feasible price function

® Setting ¢(7) to a sufficiently large value makes it feasible

Analysis

step techniques time

| | recursion planar separator

boundary to boundary | multiple-source planar shortest
| distances in G; paths [Klein 2005] G} log(IG1)

1 r-to-boundary distances | “Bellman-Ford”, partial Monge G| a(|G))
in G searching [Klawe-Kleitman 1990]

augmented graph, feasible price | |G| log(|G))

|V | distances from r in G function, Dijkstra (can be done in O(G)))

|G| log(/G|)

rerooting -
v (can be done in O(|G]))

. . feasible price function, Dijkstra
distances from s in G P J

O(log n) levels = O(n log? n) time
O(n) space

Monge in Other Planar
Problems

e Use of efficient Monge searching may be
applicable in other planar graphs problem
® Example:
improvement on the running time of an

algorithm for the replacement path
problem [Emek, Peleg, Roditty SODAOQS]

Thank You!

