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Applications

• Feasible circulation
• Feasible flow
• Perfect matching
• Image segmentation
• Stereo matching

, 

Figure 3. The edge connectivity in the stereo 

case. 

Figure 4. The effect of the term gD. Four sam- 
ple frames equally spaced from a sequence 

consisting of a total of 25 frames. 

tionary while the left-hand circle moves to the right. Due to 

the intensity gradient, is non-zero for the moving circle, 

while i t  is zero for the stationary circle. This results in  the 

correct identification of the moving circle over each triple 

of frames, with the identified boundary switching from the 

right- to the left-hand circle when the former stops and the 

latter begins to move. Note that the identification of the 

right-hand circle occurs in  spite of the fact that by mov- 

ing up in the image this circle acquires a reduced average 

intensity flow across its boundary, and hence a weaker n u -  

merator, N [ d R ] .  To emphasize this, i t  is worth noting that 

when the still image version ofthe model is applied to these 

images, i t  consistently identifies whichever circle is lower 

in  the image. 

In figures 5 and 6 are shown the results of the appli- 

cation of the model to several stereo pairs and image se- 

quences. The examples took about 5 to 20 minutes to run  

on stereo pairs of 135x 152, 148x 148, and 230x260 pix- 

els and triples of images from motion sequences of 75 x 5 0  

and 55x70 pixels. The model successfully identifies cor- 

responding regions within each image, and is consistent 

across consecutive triples of motion sequence images, even 

though no initialization was used to pass from one triple 

to the next. Note that although there is a tendency for the 
boundaries to lie on discontinuities, this tendency can be 

overruled by other propertics of the region model, in  this 

case the tendency to find boundaries lying on high intensity 

Figure 5. The results, shown on the right, of 

applying the algorithm to some stereo pairs, 
shown on the left. The algorithm was iterated 

on the images, the numbers showing the or- 
der in which the regions were found. 

gradients. This is to be expected: a sharp intensity gradi- 

ent may signal the boundary of an object even though there 

is no discontinuity present. Both are indicators of such a 

boundary. 

5. Conclusions 

We have presented a method for the extraction of regions 

from multiple images simultaneously with their correspon- 

dences. This method falls within the category of methods 

that search for regions in images possessing certain proper- 

ties directly, without performing dense computations, a par- 

ticularly relevantexample being active contours. The model 

allowsa broad range of possibilities for the description both 

of regions in the individual images and of their correspon- 

dences. For any of these possibilities, the optimal regions 

and boundary correspondences can be found in polynomial 

time. We have illustrated the model using the simplest (and 

hence most likely to be broadly useful) choices for the terms 

in the energy. In addition, we have introduced an energy 

term based on a novel heuristic that favours boundaries ly- 

ing on discontinuities in  the disparity or optical flow. This 

energy should be useful beyond the specific model used in 

this paper. 

The principle drawback of the method lies in the nature 

of the object models. Object recognition in images is a 

hard problem, and although equation 2.1 can incorporate 

a great variety of different information, i t  is all in the form 

of summations over the region or boundary. The same crit- 

icism applies to active contours and segmentation by parti- 

tion methods. It is clear that using this type of information 
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Related Work
General graphs: 
• Dijkstra (non-negative lengths) - O (n log n + m)
• Bellman-Ford - O(nm)

Planar graphs:
• O(n3/2) - [Lipton, Rose and Tarjan 1979]

• O(n4/3 log2/3 D) - [Henzinger, Klein, Rao, Subramanian 1994]
also, O(n) for non-negative lengths

• O(n log3 n) time O(n log n) space - [Fakcharoenphol and 
Rao 2001]

Our Contribution:
• O(n log2 n) time,  O(n) space
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Price Functions, 
Reduced Lengths

• Price function: φ(v)
• Reduced length:    lφ(uv) = φ(u) + l(uv) - φ(v)
• Length of any s-t path changes by φ(s)-φ(t)
• φ(v) preserves shortest paths

• Price function is feasible if lφ is non-negative
• Converts a problem with negative lengths to 

non-negative lengths
• Single source distances form a feasible price 

function because φ(u) + l(uv)  ≥  φ(v)
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Rerooting
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• We want distances from s
• It suffices to find distances from 

any node r 

- Use distances from r as a 
feasible price function

- Run Dijkstra’s algorithm from s
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• Compute all boundary-to-boundary 
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• Compute distances from r to all 
boundary nodes
• Shortest path in G consists of 

alternating  boundary-to-boundary 
shortest paths in G0 and G1

• “Bellman-Ford” using just 
boundary-to-boundary distances

r

III. r-to-boundary Distances in G
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∀v ej [v] := min
w

{ej−1[w] + δi[w, v]}



δ1δ0

• All iterations in                [Lipton-Rose-Tarjan 1979]
• δ has a Monge non-crossing property [Fakcharoenphol-

Rao 2001] ⇒ O (n log2 n) time

• We show: O (nα(n)) time

III. r-to-boundary Distances in G

∀v ej [v] := min
w

{ej−1[w] + δi[w, v]}
O

(
n3/2

)
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• Think of a matrix whose w,v element is
• We want to find all column minima of this matrix
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• All column minima of an n x n Monge 
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[SMAWK 1989]
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δ1δ0

• Think of a matrix whose w,v element is
• We want to find all column minima of this matrix
• Show that this matrix is Monge
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Partial Monge Matrices
• Column Minima of a triangular Monge 

matrix can be found in O(nα(n)) time 
[Klawe-Kleitman 1990] i

j

k l



•  δi is partially Monge even when adding ej-1[w] to row w
• Each iteration takes 
•               iterations

• All iterations in O(nα(n)) time

δ1δ0

III. r-to-boundary Distances in G

∀v ej [v] := min
w

{ej−1[w] + δi[w, v]}∀v ej [v] := min
w

{ej−1[w] + δi[w, v]}

O
(√

n
) O(

√
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So Far We Have:
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Analysis
step techniques time

I

II

III

IV

V

recursion planar separator

boundary to boundary 
distances in Gi

multiple-source planar shortest 
paths [Klein 2005]

|G| log(|G|)

r-to-boundary distances 
in G

“Bellman-Ford”, partial Monge 
searching [Klawe-Kleitman 1990]

|G| α(|G|)

distances from r in G
augmented graph, feasible price 
function, Dijkstra

|G| log(|G|) 
(can be done in O(|G|))

rerooting - 
distances from s in G feasible price function, Dijkstra |G| log(|G|) 

(can be done in O(|G|))

O(log n) levels ⇒ O(n log2 n) time
O(n) space
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Monge in Other Planar 
Problems

• Use of efficient Monge searching may be 
applicable in other planar graphs problem

• Example:
improvement on the running time of an 
algorithm for the replacement path 
problem [Emek, Peleg, Roditty SODA08] 
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