Shortest Paths in Directed Planar Graphs with Negative Lengths: a Linear-Space $O(n \log^2 n)$ -Time Algorithm

Shay Mozes (Brown University)

joint work with

Philip Klein (Brown University)

Oren Weimann (MIT)

Single-Source shortest paths

- Planar graph
- Directed
- Positive and negative lengths
- No negative cycles

Single-Source shortest paths

- Planar graph
- Directed
- Positive and negative lengths
- No negative cycles

Single-Source shortest paths

10

-4

- Planar graph
- Directed
- Positive and negative lengths
- No negative cycles

Applications

- Feasible circulation
- Feasible flow
- Perfect matching
- Image segmentation
- Stereo matching

Related Work

General graphs:

- Dijkstra (non-negative lengths) $O(n \log n + m)$
- Bellman-Ford O(nm)

Planar graphs:

- $O(n^{3/2})$ [Lipton, Rose and Tarjan 1979]
- $O(n^{4/3} \log^{2/3} D)$ [Henzinger, Klein, Rao, Subramanian 1994] also, O(n) for non-negative lengths
- O(n log³ n) time O(n log n) space [Fakcharoenphol and Rao 2001]

Our Contribution:

• $O(n \log^2 n)$ time, O(n) space

- We want distances from s
- It suffices to find distances from any node r

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$

• Length of any s-t path changes by $\varphi(s)-\varphi(t)$

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$

- Length of any s-t path changes by $\varphi(s)-\varphi(t)$
- $\varphi(v)$ preserves shortest paths

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$
- Length of any s-t path changes by $\varphi(s)-\varphi(t)$
- $\varphi(v)$ preserves shortest paths

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$
- Length of any s-t path changes by $\varphi(s)-\varphi(t)$
- $\varphi(v)$ preserves shortest paths

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$
- Length of any s-t path changes by $\varphi(s)-\varphi(t)$
- $\varphi(v)$ preserves shortest paths
- Price function is feasible if l_{φ} is non-negative
- Converts a problem with negative lengths to non-negative lengths

- Price function: $\varphi(v)$
- **Reduced length:** $l_{\varphi}(uv) = \varphi(u) + l(uv) \varphi(v)$
- Length of any s-t path changes by $\varphi(s)-\varphi(t)$
- $\varphi(v)$ preserves shortest paths
- Price function is feasible if l_{φ} is non-negative
- Converts a problem with negative lengths to non-negative lengths
- Single source distances form a feasible price function because $\varphi(u) + l(uv) \ge \varphi(v)$

- We want distances from s
- It suffices to find distances from any node r

- We want distances from s
- It suffices to find distances from any node r
 - Use distances from r as a feasible price function

- We want distances from s
- It suffices to find distances from any node r
 - Use distances from r as a feasible price function
 - Run Dijkstra's algorithm from s

- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

- I. recursion
- II. boundary to boundary distances in G_i
- III. r-to-boundary distances in G
- IV. distances from r in G
- V. rerooting

Planar Separator:

- $O\left(\sqrt{n}\right)$ boundary nodes
- At most 2n/3 nodes in each part
- Can be found in *O*(*n*) time [Lipton-Tarjan 79, Miller 86]

Planar Separator:

- $O\left(\sqrt{n}\right)$ boundary nodes
- At most 2n/3 nodes in each part
- Can be found in *O*(*n*) time [Lipton-Tarjan 79, Miller 86]

Planar Separator:

- $O\left(\sqrt{n}\right)$ boundary nodes
- At most 2n/3 nodes in each part
- Can be found in *O*(*n*) time [Lipton-Tarjan 79, Miller 86]

• Choose an arbitrary boundary node r

- Choose an arbitrary boundary node r
- Recursively compute distances from r within G₀

- Choose an arbitrary boundary node r
- Recursively compute distances from r within G₀
- Recursively compute distances from r within G₁

- Compute all boundary-to-boundary distances within G₁
 - O(n) pairs of boundary nodes
 - algorithm: multiple-source shortest paths [Klein 2005] in O (n log n) time
 - Uses from-r distances in G₁
- Repeat for G₀

- Compute all boundary-to-boundary distances within G₁
 - O(n) pairs of boundary nodes
 - algorithm: multiple-source shortest paths [Klein 2005] in O (n log n) time
 - Uses from-r distances in G₁
- Repeat for G₀

G

- Compute all boundary-to-boundary distances within G₁
 - O(n) pairs of boundary nodes
 - algorithm: multiple-source shortest paths [Klein 2005] in O (n log n) time
 - Uses from-r distances in G₁
- Repeat for G₀

G

- Compute all boundary-to-boundary distances within G₁
 - O(n) pairs of boundary nodes
 - algorithm: multiple-source shortest paths [Klein 2005] in O (n log n) time
 - Uses from-r distances in G₁
- Repeat for G₀

 Compute distances from r to all boundary nodes

- Compute distances from r to all boundary nodes
 - \bullet Shortest path in G consists of alternating boundary-to-boundary shortest paths in G_0 and G_1

- Compute distances from r to all boundary nodes
 - \bullet Shortest path in G consists of alternating boundary-to-boundary shortest paths in G_0 and G_1
 - "Bellman-Ford" using just boundary-to-boundary distances

$$\forall v \ e_j[v] := \min_{w} \{e_{j-1}[w] + \delta_i[w,v]\}$$

$$\forall v \ e_j[v] := \min_w \{e_{j-1}[w] + \delta_i[w, v]\}$$

- All iterations in $O\left(n^{3/2}
 ight)$ [Lipton-Rose-Tarjan 1979]
- δ has a Monge non-crossing property [Fakcharoenphol-Rao 2001] $\Rightarrow O(n \log^2 n)$ time
- We show: $O(n\alpha(n))$ time

$\forall v \ e_j[v] := \min_{w} \{ e_{j-1}[w] + \delta_i[w, v] \}$

- Think of a matrix whose *w*,*v* element is
- We want to find all column minima of this matrix

Monge Matrices

A Contraction of the second se

• A matrix is Monge if for any $i \leq j,k \leq l$ $\delta(i,k) + \delta(j,l) \geq \delta(i,l) + \delta(j,k)$

Monge Matrices

Monge Matrices

- A matrix is Monge if for any $i \leq j,k \leq l$ $\delta(i,k) + \delta(j,l) \geq \delta(i,l) + \delta(j,k)$
- All column minima of an n x n Monge matrix can be found in O(n) time [SMAWK 1989]

$\forall v \ e_j[v] := \min_{w} \{ e_{j-1}[w] + \delta_i[w, v] \}$

- Think of a matrix whose *w*,*v* element is
- We want to find all column minima of this matrix
- Show that this matrix is Monge

Crossings and the Monge Property

 $\delta(i,k) + \delta(j,l)$

$\delta(i,k) + \delta(j,l) \ge \delta(i,l) + \delta(j,k)$

$\delta(i,k) + \delta(j,l) \geq \delta(i,l) + \delta(j,k)$

$\delta(i,k) + \delta(j,l) \geq \delta(i,l) + \delta(j,k)$

 $\delta(i,k) + \delta(j,l) \geq \delta(i,l) + \delta(j,k)$

Partial Monge Matrices

 Column Minima of a triangular Monge matrix can be found in O(nα(n)) time [Klawe-Kleitman 1990]

III. r-to-boundary Distances in G

$$\forall v \ e_j[v] := \min_{w} \{e_{j-1}[w] + \delta_i[w,v]\}$$

- δ_i is partially Monge even when adding $e_{j-1}[w]$ to row w
- Each iteration takes $O(\sqrt{n}\alpha(\sqrt{n}))$
- $O\left(\sqrt{n}\right)$ iterations
- All iterations in $O(n\alpha(n))$ time

So Far We Have:

• r-to-boundary distances in G

• r-to-all distances in G_i

 G_0

- Add r-to-boundary edges. Use distances in G as edge lengths
- Distances from r in this graph are equal to distances in G

- Add r-to-boundary edges. Use distances in G as edge lengths
- Distances from r in this graph are equal to distances in G
- \bullet Distances from r in G_{I} are almost feasible price function

- Add r-to-boundary edges. Use distances in G as edge lengths
- Distances from r in this graph are equal to distances in G
- \bullet Distances from r in $G_{\rm I}$ are almost feasible price function
- Setting $\varphi(r)$ to a sufficiently large value makes it feasible

- Add r-to-boundary edges. Use distances in G as edge lengths
- Distances from r in this graph are equal to distances in G
- \bullet Distances from r in $G_{\rm I}$ are almost feasible price function
- Setting $\varphi(r)$ to a sufficiently large value makes it feasible

Analysis

	step	techniques	time
Ι	recursion	planar separator	
П	boundary to boundary distances in G _i	multiple-source planar shortest paths [Klein 2005]	$ G \log(G)$
ш	r-to-boundary distances in G	"Bellman-Ford", partial Monge searching [Klawe-Kleitman 1990]	$ G \alpha(G)$
IV	distances from r in G	augmented graph, feasible price function, Dijkstra	$ G \log(G)$ (can be done in $O(G)$)
V	rerooting - distances from s in G	feasible price function, Dijkstra	$ G \log(G)$ (can be done in $O(G)$)

$O(\log n)$ levels $\Rightarrow O(n \log^2 n)$ time O(n) space

Monge in Other Planar Problems

• Use of efficient Monge searching may be applicable in other planar graphs problem

• Example:

improvement on the running time of an algorithm for the replacement path problem [Emek, Peleg, Roditty SODA08]

Thank You!