A Unified Algorithm
for Accelerating
Edit-Distance
Computation via Text-
Compression

Danny Hermelin, Gad M. Landau,
Shir Landau and Oren Weimann

Edit Distance: Quick Review

o The min cost of transforming one string into
another via insertion/deletion/replacement.

o One of the fundamental problems in
computer science.

o Standard solution: dynamic programming
(DP). Time complexity on strings of length
N: O(N?).

o Recent approximation algorithms: Rabani
et al.

e © = | Edit Distance: Quick Review

-
T[i-1,j] + cost of deleting a,

T[i,j] =min < T[i,j-1] + cost of inserting b,

T[i-1,j-1] + cost of replacing a; with b,
-

b.

J

Acceleration via Compression

o Use compression to accelerate the
above DP solution

o Basic idea:
Compress the strings

Compute edit-distance of
compressed strings

o Acceleration via Compression

o Run_ _ength enCOding N _: total length OfSl‘I/'l'V%gS
n = length of compression
Bunke and Csirik '95

Series of results: Apostolico et al. O(n?lgn) for LCS. Arbel et
al. O(nN) for edit-distance.

o LZW-LZ78

Crochemore et al ‘03
O(nN)
Constant size alphabets: O(N?/logN)
o Masek, Paterson '80

Exploit repetitions + “Four-Russians technique” O(N-/log’N)
for any strings, rational scoring function

Bille, Farach-Colton ‘05 extend to general alphabets

A Unified Acceleration

o Find a general compression-based
edit distance acceleration for any
compression scheme...

o Can handle two strings that compress
well on different schemes

o Towards breaking the quadratic
barrier of edit-distance computation

A Unified Acceleration

compressed compressed

o Basic idea of the Crochemore : * w * \

et al. algorithm

1. Divide DP-grid into blocks

2. Build a repository of DIST

tables for all blocks

3. Compute edit distance by

computing boundaries of
each block

propagate DP-values

using SMAWK

A Unified Acceleration

o Definition: xy-partition of G:

Partitioning of G into blocks:
Boundary size of blocks: O(x)

O(y) blocks in each row and eac);h column
ol
A

(p(x) \

O(x)

O) 7 -

A Unified Acceleration

O Running'time: N = total length of strings

Constructing the repository: n = length of compression
#DIST x O(x*lgx) time (Apostolico et al. ‘90)

Pr?ﬁagating the DP-values:

O(Ny) time (SMAWK).
hopefully m(anJ)//) () Ol(y)
repetitions l O(x) !
O(x) 7

O) 7 -

A Unified Accelerator

o Find a good xy-partition for any pair of
compressible strings.

o How can we achieve this?

Using Straight-Line Programs

Straight-line Programs (SLP)

o Context-free grammar
o Every grammar generates exactly one string

o Allow 2 types of productions:
X; —a (ais a unique terminal)

X, = XX, (i>pqg)

Straight-line Programs (SLP)

Example: S=abaababaabaab

,,,,,,,,,,, X, -

X X
Use Fibonacci SLP: - o
X —a X X X, X
X2 —-h S 7 - 4 ________ 3.
X, -Xx, X, XX\XX~XX X,
X, —-XxXXx, O oo
Xj - Xij Xs Xz X, X, %,X, | X, X,
Xsg = XX, X, X,
X; = XX]

a b a a b a b a a ba a b

Straight-line Programs (SLP)

o Why SLP?

Result of most compression schemes can
be transformed into SLP (Rytter ‘03)

LZ, RLE, Byte-Pair, Dictionary methods...

Compressed approximation:
« String length: N
« Encoding produces n blocks
» Get SLP of size m=0O(nlogN) in O(m) time
« m within logN factor from minimal SLP

o Straight-line Programs (SLP)

o Rytter, Lifshits - used SLP for accelerating pattern
matching via compression

o Lifshits —

various hardness results for SLP e.g.: edit-distance,
Hamming distance

O(n3) for determining equality of SLPs
o Tiskin —

O(nN'°) algorithm for computing longest common
subsequence between two SLPs

Can be extended at constant factor to compute edit
distance between SLPs

Constructing the xy-partition

o Use SLP to create a xy- /\X

partition of G X, X&
At most O(n2) DIST tables. :

Constructing the xy-partition

o For any x, we can construct an xy-partition with
y=0(nN/x) In O(N) time.
We will choose x later.
Use SLP parse tree.

Constructing the xy-partition

o Choose nN/x “key vertices” in tree s.t. each vertex is variable generating
substring of length O(x)
Find O(N/x) variables in 4’ generating disjoint substrings of
length between x and 2x

Substrings in 4 not yet covered can be generated using O(n)
additional variables for each 2 found in step 1

Total — O(nN/x) vertices (4 is the concatenation of all generated
substrings of key vertices)

Putting it all together

o Using SLP to compute edit-distance

Create xy-partition of G according to SLP

Build a repository of DIST tables of blocks in xy-
partition

Compute edit distance by computing boundaries of
each block (propagate DP values using SMAWK)

o Total running time O(n’x?lgx+Ny)

/ N

constructing repository propagating
of all DIST tables DP values

Putting it all together

o Total running time O(n’x’lgx+Ny)

constructing repository propagating
of all DIST tables DP values

o For all x we can build xy-partition with y=0(nN/x).
o Choose x so as to balance both terms above.

o Total: O!3*N'3) time.

o Extensions

1. Om!“*N'?) time for rational Scoring:
use recursive construction of DIST tables, compute
repository in O(n’x’?)
Based on:

x*x DIST table stored succinctly in O(x) space (Schmidt)
This allows to merge 2 DIST tables in O(x’~) time (Tiskin)

2. Arbitrary scoring and “Four Russians™:
Q(lg N) speedup for any string (not necessarily
compressible)
Short enough substrings must appear many times (Masek
and Paterson)
With SLP we expand this idea to arbitrary scoring functions

Thank You!!!

