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Edit Distance: Quick Review 

 The min cost of transforming one string into 
another via insertion/deletion/replacement. 

 One of the fundamental problems in 
computer science. 

 Standard solution: dynamic programming 
(DP). Time complexity on strings of length 
N: O(N2). 

 Recent approximation algorithms:  Rabani 
et al.   



Edit Distance: Quick Review 

T[i,j]  = min 
T[i-1,j] + cost of deleting ai 

T[i,j-1] + cost of inserting bj 

T[i-1,j-1] + cost of replacing ai with bj 
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Acceleration via Compression 

 Use compression to accelerate the 
above DP solution 

 Basic idea: 
1.  Compress the strings 
2.  Compute edit-distance of 

compressed strings 



  Run-Length encoding 
  Bunke and Csirik ’95 
  Series of results: Apostolico et al. O(n2lgn) for LCS. Arbel et 

al. O(nN) for edit-distance. 
  LZW-LZ78 

  Crochemore et al ‘03 
•  O(nN) 
•  Constant size alphabets: O(N2/logN) 

  Masek, Paterson ’80 
  Exploit repetitions + “Four-Russians technique” O(N2/log2N) 

for any strings, rational scoring function 
  Bille, Farach-Colton ‘05 extend to general alphabets  

N  = total length of strings 
n  = length of compression 

Acceleration via Compression 



 Find a general compression-based 
edit distance acceleration for any 
compression scheme… 

 Can handle two strings that compress 
well on different schemes 

 Towards breaking the quadratic 
barrier of edit-distance computation 

A Unified Acceleration 



  Basic idea of the Crochemore 
et al. algorithm 

1.  Divide DP-grid into blocks 
2.  Build a repository of DIST 

tables for all blocks 
3.  Compute edit distance by 

computing boundaries of 
each block  
•  propagate DP-values 

using SMAWK 

compressed compressed 

A Unified Acceleration 



 Definition: xy-partition of G: 
 Partitioning of G into blocks: 

•  Boundary size of blocks: O(x) 
•  O(y) blocks in each row and each column  
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A Unified Acceleration 



  Running-time: 
  Constructing the repository: 

•  #DIST × O(x2lgx) time (Apostolico et al. ‘90) 
  Propagating the DP-values: 

•  O(Ny) time (SMAWK).  
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A Unified Acceleration 
N  = total length of strings 
n  = length of compression 

hopefully many 
repetitions 



A Unified Accelerator 

 Find a good xy-partition for any pair of 
compressible strings. 

 How can we achieve this?  

Using Straight-Line Programs 



Straight-line Programs (SLP) 

  Context-free grammar 
  Every grammar generates exactly one string 
  Allow 2 types of productions: 

  Xi → a (a is a unique terminal) 
  Xi → XpXq (i > p,q) 



Straight-line Programs (SLP) 

S=abaababaabaab Example: 

Use Fibonacci SLP: 
X1 → a 
X2 → b 
X3 → X2X1 
X4 → X3X2 
X5 → X4X3 
X6 → X5X4 
X7 → X6X5 
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Straight-line Programs (SLP) 

 Why SLP? 
 Result of most compression schemes can 

be transformed into SLP (Rytter ‘03) 
•  LZ, RLE, Byte-Pair, Dictionary methods… 
•  Compressed approximation:  

•  String length: N 
•  Encoding produces n blocks 
•  Get SLP of size m=O(nlogN) in O(m) time 
•  m within logN factor from minimal SLP   



  Rytter, Lifshits - used SLP for accelerating pattern 
matching via compression 

  Lifshits –  
  various hardness results for SLP e.g.: edit-distance, 

Hamming distance 
  O(n3) for determining equality of SLPs 

  Tiskin –  
  O(nN1.5) algorithm for computing longest common 

subsequence between two SLPs 

  Can be extended at constant factor to compute edit 
distance between SLPs 

Straight-line Programs (SLP) 



 Use SLP to create a xy-
partition of G 
  At most O(n2) DIST tables. 
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Constructing the xy-partition 

 For any x, we can construct an xy-partition with 
y=O(nN/x) in O(N) time. 
 We will choose x later. 
 Use SLP parse tree. 



  Choose nN/x “key vertices” in tree s.t. each vertex is variable generating 
substring of length O(x)  

1.  Find O(N/x) variables in A’ generating disjoint substrings of 
length between x and 2x 

2.  Substrings in A not yet covered can be generated using O(n) 
additional variables for each 2 found in step 1 

3.  Total – O(nN/x) vertices (A is the concatenation of all generated 
substrings of key vertices)  

Constructing the xy-partition 



Putting it all together 
 Using SLP to compute edit-distance 

1.  Create xy-partition of G according to SLP 
2.  Build a repository of DIST tables of blocks in xy-

partition 
3.  Compute edit distance by computing boundaries of 

each block (propagate DP values using SMAWK) 

 Total running time O(n2x2lgx+Ny)  

constructing repository 
of all DIST tables 

propagating 
DP values 



Putting it all together 

 Total running time O(n2x2lgx+Ny) 

 For all x we can build xy-partition with y=O(nN/x). 

 Choose x so as to balance both terms above. 

 Total: O(n1.34N1.34) time. 

constructing repository 
of all DIST tables 

propagating 
DP values 



Extensions 
1.  O(n1.4N1.2) time  for rational Scoring: 

  use recursive construction of DIST tables, compute 
repository in O(n2x1.5) 

  Based on: 
•  x*x DIST table stored succinctly in O(x) space (Schmidt) 
•  This allows to merge 2 DIST tables in O(x1.5) time (Tiskin) 

2.  Arbitrary scoring and “Four Russians”: 
  Ω(lg N) speedup for any string (not necessarily 

compressible) 
  Short enough substrings must appear many times (Masek 

and Paterson) 
  With SLP we expand this idea to arbitrary scoring functions 



Thank You!!! 


