
A Unified Algorithm
for Accelerating
Edit-Distance
Computation via Text-
Compression
Danny Hermelin, Gad M. Landau,
Shir Landau and Oren Weimann

Edit Distance: Quick Review

 The min cost of transforming one string into
another via insertion/deletion/replacement.

 One of the fundamental problems in
computer science.

 Standard solution: dynamic programming
(DP). Time complexity on strings of length
N: O(N2).

 Recent approximation algorithms: Rabani
et al.

Edit Distance: Quick Review

T[i,j] = min
T[i-1,j] + cost of deleting ai

T[i,j-1] + cost of inserting bj

T[i-1,j-1] + cost of replacing ai with bj

i-1, j-1

i, j-1

i-1, j

i, j

…

…

……

ai

bj

Acceleration via Compression

 Use compression to accelerate the
above DP solution

 Basic idea:
1.  Compress the strings
2.  Compute edit-distance of

compressed strings

  Run-Length encoding
  Bunke and Csirik ’95
  Series of results: Apostolico et al. O(n2lgn) for LCS. Arbel et

al. O(nN) for edit-distance.
  LZW-LZ78

  Crochemore et al ‘03
•  O(nN)
•  Constant size alphabets: O(N2/logN)

  Masek, Paterson ’80
  Exploit repetitions + “Four-Russians technique” O(N2/log2N)

for any strings, rational scoring function
  Bille, Farach-Colton ‘05 extend to general alphabets

N = total length of strings
n = length of compression

Acceleration via Compression

 Find a general compression-based
edit distance acceleration for any
compression scheme…

 Can handle two strings that compress
well on different schemes

 Towards breaking the quadratic
barrier of edit-distance computation

A Unified Acceleration

  Basic idea of the Crochemore
et al. algorithm

1.  Divide DP-grid into blocks
2.  Build a repository of DIST

tables for all blocks
3.  Compute edit distance by

computing boundaries of
each block
•  propagate DP-values

using SMAWK

compressed compressed

A Unified Acceleration

 Definition: xy-partition of G:
 Partitioning of G into blocks:

•  Boundary size of blocks: O(x)
•  O(y) blocks in each row and each column

O(x)

O(x)

O(y)

O(y)

A Unified Acceleration

  Running-time:
  Constructing the repository:

•  #DIST × O(x2lgx) time (Apostolico et al. ‘90)
  Propagating the DP-values:

•  O(Ny) time (SMAWK).

O(x)

O(x)

O(y)

O(y)

A Unified Acceleration
N = total length of strings
n = length of compression

hopefully many
repetitions

A Unified Accelerator

 Find a good xy-partition for any pair of
compressible strings.

 How can we achieve this?

Using Straight-Line Programs

Straight-line Programs (SLP)

  Context-free grammar
  Every grammar generates exactly one string
  Allow 2 types of productions:

  Xi → a (a is a unique terminal)
  Xi → XpXq (i > p,q)

Straight-line Programs (SLP)

S=abaababaabaab Example:

Use Fibonacci SLP:
X1 → a
X2 → b
X3 → X2X1
X4 → X3X2
X5 → X4X3
X6 → X5X4
X7 → X6X5

X7

X6 X5

X4 X3 X4

X1 X2 X2

X5

X3 X3 X2 X4 X3

X3 X2 X2 X1

X1

X2 X1

X2

X1 X2

a a bb abaa a b a a b

Straight-line Programs (SLP)

 Why SLP?
 Result of most compression schemes can

be transformed into SLP (Rytter ‘03)
•  LZ, RLE, Byte-Pair, Dictionary methods…
•  Compressed approximation:

•  String length: N
•  Encoding produces n blocks
•  Get SLP of size m=O(nlogN) in O(m) time
•  m within logN factor from minimal SLP

  Rytter, Lifshits - used SLP for accelerating pattern
matching via compression

  Lifshits –
  various hardness results for SLP e.g.: edit-distance,

Hamming distance
  O(n3) for determining equality of SLPs

  Tiskin –
  O(nN1.5) algorithm for computing longest common

subsequence between two SLPs

  Can be extended at constant factor to compute edit
distance between SLPs

Straight-line Programs (SLP)

 Use SLP to create a xy-
partition of G
  At most O(n2) DIST tables.

A

C

B

B

B

C A B C A

B

B

B

C

B

B

Y4

X5

X4
X3

X3

X1 X1

X2

Y3

Y3

Y2

Y1

Y2

Y1

Constructing the xy-partition

Constructing the xy-partition

 For any x, we can construct an xy-partition with
y=O(nN/x) in O(N) time.
 We will choose x later.
 Use SLP parse tree.

  Choose nN/x “key vertices” in tree s.t. each vertex is variable generating
substring of length O(x)

1.  Find O(N/x) variables in A’ generating disjoint substrings of
length between x and 2x

2.  Substrings in A not yet covered can be generated using O(n)
additional variables for each 2 found in step 1

3.  Total – O(nN/x) vertices (A is the concatenation of all generated
substrings of key vertices)

Constructing the xy-partition

Putting it all together
 Using SLP to compute edit-distance

1.  Create xy-partition of G according to SLP
2.  Build a repository of DIST tables of blocks in xy-

partition
3.  Compute edit distance by computing boundaries of

each block (propagate DP values using SMAWK)

 Total running time O(n2x2lgx+Ny)

constructing repository
of all DIST tables

propagating
DP values

Putting it all together

 Total running time O(n2x2lgx+Ny)

 For all x we can build xy-partition with y=O(nN/x).

 Choose x so as to balance both terms above.

 Total: O(n1.34N1.34) time.

constructing repository
of all DIST tables

propagating
DP values

Extensions
1.  O(n1.4N1.2) time for rational Scoring:

  use recursive construction of DIST tables, compute
repository in O(n2x1.5)

  Based on:
•  x*x DIST table stored succinctly in O(x) space (Schmidt)
•  This allows to merge 2 DIST tables in O(x1.5) time (Tiskin)

2.  Arbitrary scoring and “Four Russians”:
  Ω(lg N) speedup for any string (not necessarily

compressible)
  Short enough substrings must appear many times (Masek

and Paterson)
  With SLP we expand this idea to arbitrary scoring functions

Thank You!!!

