A Unified Algorithm for Accelerating Edit-Distance Computation via Text-Compression

Danny Hermelin, Gad M. Landau, Shir Landau and Oren Weimann

• • Edit Distance: Quick Review

- The min cost of transforming one string into another via insertion/deletion/replacement.
- One of the fundamental problems in computer science.
- Standard solution: dynamic programming (DP). Time complexity on strings of length N: $O(N^2)$.
- Recent approximation algorithms: Rabani et al.

• • Acceleration via Compression

- Use compression to accelerate the above DP solution
- o Basic idea:
 - 1. Compress the strings
 - Compute edit-distance of compressed strings

• • Acceleration via Compression

 $N = total \ length \ of \ strings$

n = length of compression

- Run-Length encoding
 - Bunke and Csirik '95
 - Series of results: Apostolico et al. $O(n^2 lgn)$ for LCS. Arbel et al. O(nN) for edit-distance.
- o LZW-LZ78
 - Crochemore et al '03
 - \bullet O(nN)
 - Constant size alphabets: O(N²/logN)
- Masek, Paterson '80
 - Exploit repetitions + "Four-Russians technique" $O(N^2/log^2N)$ for any strings, rational scoring function
 - Bille, Farach-Colton '05 extend to general alphabets

• • A Unified Acceleration

- Find a general compression-based edit distance acceleration for <u>any</u> compression scheme...
- Can handle two strings that compress well on different schemes
- Towards breaking the quadratic barrier of edit-distance computation

• • A Unified Acceleration

- Basic idea of the Crochemore et al. algorithm
 - Divide DP-grid into blocks
 - Build a repository of DIST tables for all blocks
 - Compute edit distance by computing boundaries of each block
 - propagate DP-values using SMAWK

A Unified Acceleration Definition: xy-partition of G:

- - Partitioning of G into blocks:
 - Boundary size of blocks: O(x)
 - O(y) blocks in each row and each column

• • A Unified Acceleration

o Running-time:

 $N = total \ length \ of \ strings$ $n = length \ of \ compression$

- Constructing the repository:
 - #DIST × $O(x^2 lgx)$ time (Apostolico et al. '90)
- Propagating the DP-values:

• • • A Unified Accelerator

- Find a good xy-partition for any pair of compressible strings.
- o How can we achieve this?

Using Straight-Line Programs

• • • Straight-line Programs (SLP)

- Context-free grammar
- Every grammar generates exactly one string
- Allow 2 types of productions:
 - $X_i \rightarrow a$ (a is a unique terminal)
 - $X_i \rightarrow X_p X_q \ (i > p, q)$

• • • Straight-line Programs (SLP)

• • • Straight-line Programs (SLP)

• Why SLP?

- Result of most compression schemes can be transformed into SLP (Rytter '03)
 - LZ, RLE, Byte-Pair, Dictionary methods...
 - Compressed approximation:
 - String length: *N*
 - Encoding produces n blocks
 - Get SLP of size m = O(nlogN) in O(m) time
 - m within logN factor from minimal SLP

Straight-line Programs (SLP)

- Rytter, Lifshits used SLP for accelerating pattern matching via compression
- Lifshits
 - various hardness results for SLP e.g.: edit-distance,
 Hamming distance
 - O(n³) for determining equality of SLPs
- o Tiskin -
 - O(nN^{1.5}) algorithm for computing longest common subsequence between two SLPs
 - Can be extended at constant factor to compute edit distance between SLPs

Constructing the xy-partition

 Use SLP to create a xypartition of G

At most O(n²) DIST tables.

Constructing the xy-partition

- For any x, we can construct an xy-partition with y=O(nN/x) in O(N) time.
 - We will choose x later.
 - Use SLP parse tree.

Constructing the xy-partition

- Choose nN/x "key vertices" in tree s.t. each vertex is variable generating substring of length O(x)
 - 1. Find O(N/x) variables in A generating disjoint substrings of length between x and 2x
 - 2. Substrings in A not yet covered can be generated using O(n) additional variables for each 2 found in step 1
 - 3. Total O(nN/x) vertices (A is the concatenation of all generated substrings of key vertices)

Putting it all together Using SLP to compute edit-distance

- - Create xy-partition of G according to SLP
 - 2. Build a repository of DIST tables of blocks in xypartition
 - 3. Compute edit distance by computing boundaries of each block (propagate DP values using SMAWK)
- Total running time $O(n^2x^2lgx+Ny)$

constructing repository propagating of all DIST tables DP values

Putting it all together

• Total running time $O(n^2x^2lgx+Ny)$

- For all x we can build xy-partition with y=O(nN/x).
- Choose x so as to balance both terms above.
- Total: $O(n^{1.34}N^{1.34})$ time.

• • • Extensions

- 1. $O(n^{1.4}N^{1.2})$ time for rational Scoring:
 - use recursive construction of DIST tables, compute repository in $O(n^2x^{1.5})$
 - Based on:
 - x*x DIST table stored succinctly in O(x) space (Schmidt)
 - This allows to merge 2 DIST tables in $O(x^{1.5})$ time (Tiskin)
- 2. Arbitrary scoring and "Four Russians":
 - $\Omega(\lg N)$ speedup for any string (not necessarily compressible)
 - Short enough substrings must appear many times (Masek and Paterson)
 - With SLP we expand this idea to arbitrary scoring functions

Thank You!!!