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* What is the 1'th character?
O(n) space
* What is the substring [1,]? O(log N + j-i) query
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* Does the pattern “A G G A” appear in the text!?
* perhaps with k errors

* Total time complexity: (log N + m + BlackBox(m)) n




Our Algorithm
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* The way to i goes through O(log N) paths
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* The way to i goes through O(log N) paths
* Query: binary-search all paths on the way

-Otteg) - O(log N)
O(log N/x) telescopes to O(log N)
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* The way to i goes through O(log N) paths

* Query: binary-search all paths on the way
e Space: can't actually store all paths
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* Binary-search for i = Lowest ancestor of distance i.
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* Binary-search for i = Lowest ancestor of distance i.
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* in-path: O(log N/x) time, total O(n) space
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* Binary-search for i = Lowest ancestor of distance i.

* A heavy path decomp. of the heavy path representation

* in-path: O(log N/x) time, total O(n) space

* between-paths: O(log N/x) time, total SG+Hegn) space
O(na(n))




Thank You!



