Random Access to Compressed Strings

Philip Bille
Gad Landau
Oren Weimann

Random Access to Compressed Strings

A

Random Access to Compressed Strings

Random Access to Compressed Strings

e What is the 1’'th character?

Grammar,
Random Access to'Compressed Strings

"N

et
text -f_
DNA :
HTML —

e What is the 1'th character!?

Grammar,
Random Access to'Compressed Strings

"N

et
text -f_
DNA :
HTML —

e What is the 1'th character!?

Grammar,
Random Access to'Compressed Strings

e What is the 1'th character!?

Grammar,
Random Access to'Compressed Strings

e What is the 1'th character!?

O(N) space
O(1) query

Grammar,
Random Access to'Compressed Strings

* What is the 1'th character?
O(N) space O(n) space
O(1) query O(n) query

Grammar,
Random Access to'Compressed Strings

)

3 X/\Q
/\X ;/\1
2/Q X1 X
3 X

* What is the 1'th character?
O(N) space O(n) space O(n) space
O(1) query O(n) query O(logN) query

Grammar,
Random Access to'Compressed Strings

)

3 X(\G
/\ ;/\1
X 2X51 X X
=N
(a3 A

* What is the 1'th character?
O(n) space
* What is the substring [1,]]? O(log V) query

Grammar,
Random Access to'Compressed Strings

)

3 X(\G
/\ ;/\1
X 2X51 X X
=N
(a3 A

* What is the 1'th character?
O(n) space
* What is the substring [1,]? O(log N + j-i) query

Application:
Black-box compressed pattern matching

)

3 X/H3
T 2\
2/XQ X1 X0

X4

X1 Xo

A GT A GT A G

Application:
Black-box compressed pattern matching

6 X7 2 DN

X 5/\(3
e A text :
2/Q 21 X1 X5 DNA :
X 3 1 X 3 X4 HTML \ ,

i L
= i

* Does the pattern “A G G A” appear in the text!?
* perhaps with k errors

Application:
Black-box compressed pattern matching

A GT A GT A G
A G G A

* Does the pattern “A G G A” appear in the text!?
* perhaps with k errors

Application:
Black-box compressed pattern matching

A GT A GT A G
A G G A

* Does the pattern “A G G A” appear in the text!?
* perhaps with k errors

Application:
Black-box compressed pattern matching

Al

A G T A G
m+km+k

* Does the pattern “A G G A” appear in the text!?
* perhaps with k errors

Application:
Black-box compressed pattern matching

Al

A G T A G
m+km+k

* Does the pattern “A G G A” appear in the text!?
* perhaps with k errors

* Total time complexity: (log N + m + BlackBox(m)) n

Our Algorithm

Heavy Path Decomposition [HT84]

6 X7 9
/\

Heavy Path Decomposition [HT84]

6 X7 -
/\

Heavy Path Decomposition [HT84]

6 X7 -
/\

Heavy Path Decomposition [HT84]

6 X7 -

3 Xms’
IR N
X1 Xo

Heavy Path Decomposition [HT84]

* The way to i goes through O(log N) paths

Random Access Query

* The way to i goes through O(log N) paths
* Query: binary-search all paths on the way

Random Access Query

* The way to i goes through O(log N) paths
* Query: binary-search all paths on the way
O(log n)

Random Access Query

* The way to i goes through O(log N) paths
* Query: binary-search all paths on the way

O(log n) - O(log N)

Random Access Query

* The way to i goes through O(log N) paths
* Query: binary-search all paths on the way

-Otteg1) - O(log N)

Interval Biased Search Tree

* The way to i goes through O(log N) paths
* Query: binary-search all paths on the way

-Otteg1) - O(log N)

Interval Biased Search Tree

n X; X X X
7\ N\
X; X0 X1 Xo

|
vA G T
12 1

-

* The way to i goes through O(log N) paths
* Query: binary-search all paths on the way

-Otteg1) - O(log N)
O(log N/x)

Interval Biased Search Tree

1X31 X4 1X31 X4
"\ N\
X; Xo

* The way to i goes through O(log N) paths
* Query: binary-search all paths on the way

-Otteg1) - O(log N)
O(log N/x)

Interval Biased Search Tree

* The way to i goes through O(log N) paths
* Query: binary-search all paths on the way

-Otteg1) - O(log N)
O(log N/x)

Interval Biased Search Tree

* The way to i goes through O(log N) paths
* Query: binary-search all paths on the way

-Otteg1) - O(log N)
O(log N/x)

Interval Biased Search Tree

* The way to i goes through O(log N) paths
* Query: binary-search all paths on the way

-Otteg1) - O(log N)
O(log N/x)

Interval Biased Search Tree

n X; X X X
7\ N\
X; X0 X1 Xo

|
vA G T
12 1

-

* The way to i goes through O(log N) paths
* Query: binary-search all paths on the way

-Otteg) - O(log N)
O(log N/x) telescopes to O(log N)

Interval Biased Search Tree

* The way to i goes through O(log N) paths

* Query: binary-search all paths on the way
e Space: can't actually store all paths

O(n) Representation of Heavy Paths

O(n) Representation of Heavy Paths

O(n) Representation of Heavy Paths

O(n) Representation of Heavy Paths

O(n) Representation of Heavy Paths
A A
x
W X

R
)/

X7 /‘m/\)(t

n

O(n) Representation of Heavy Paths
A A
x
W X

R
)/

X7 /‘m/\)(t

-«

n

* Binary-search for i = Lowest ancestor of distance i.

O(n) Representation of Heavy Paths
114
x
« X%

& o N

2
¢ x N

-«

n

* Binary-search for i = Lowest ancestor of distance i.
* A heavy path decomp. of the heavy path representation

O(n) Representation of Heavy Paths
114
x
« X%

& o N

2
¢ x N

-«

n

* Binary-search for i = Lowest ancestor of distance i.

* A heavy path decomp. of the heavy path representation
* in-path: O(log N/x) time, total O(n) space

O(n) Representation of Heavy Paths

\

A4

n

* Binary-search for i = Lowest ancestor of distance i.

* A heavy path decomp. of the heavy path representation
* in-path: O(log N/x) time, total O(n) space

* between-paths: O(log N/x) time, total O(nlogn) space

O(n) Representation of Hea

* Binary-search for i = Lowest ancestor of distance i.

* A heavy path decomp. of the heavy path representation
* in-path: O(log N/x) time, total O(n) space

* between-paths: O(log N/x) time, total O(nlogn) space

O(n) Representation of Hea

* Binary-search for i = Lowest ancestor of distance i.

* A heavy path decomp. of the heavy path representation
* in-path: O(log N/x) time, total O(n) space

* between-paths: O(log N/x) time, total O(nlogn) space

O(n) Representation of Hea

* Binary-search for i = Lowest ancestor of distance i.

* A heavy path decomp. of the heavy path representation
* in-path: O(log N/x) time, total O(n) space

* between-paths: O(log N/x) time, total O(nlogn) space

O(n) Representation of Hea

* Binary-search for i = Lowest ancestor of distance i.

* A heavy path decomp. of the heavy path representation

* in-path: O(log N/x) time, total O(n) space

* between-paths: O(log N/x) time, total SG+Hegn) space
O(na(n))

Thank You!

