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min?• Applications:

• String Processing & Computational Biology
• Search Engines and Document Retrieval
• Equivalence to LCA
• Database Queries
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• Warmup: O(n log n) prep. O(1) query:
• Compute min of every interval I s.t | I | is a power of two
• Query is composed of two overlapping intervals 
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• RMQ        LCA        RMQ  1

RMQ  1

• # different Blocks = # different  1 vectors = 2¼ log n  = n¼
• Lookup table

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4
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• Use the “Warmup” solution on each block

Tuesday, October 20, 2009



Recursive Solution

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4{

• Use the “Warmup” solution on each block

Tuesday, October 20, 2009



Recursive Solution

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4{
O(log n loglog n) prep. 

• Use the “Warmup” solution on each block

Tuesday, October 20, 2009



Recursive Solution

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4{
O(log n loglog n) prep. 

• Use the “Warmup” solution on each block
• O(n loglog n) prep. O(1) query

Tuesday, October 20, 2009



• Use the “Warmup” solution on each block
• O(n loglog n) prep. O(1) query
• O(n logloglog n) prep. O(1) query

Recursive Solution

0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

¼ log n ¼ log n ¼ log n ¼ log n

Tuesday, October 20, 2009



• Use the “Warmup” solution on each block
• O(n loglog n) prep. O(1) query
• O(n logloglog n) prep. O(1) query
• O(n αk(n)) prep. O(k) query [Alon&Schieber 1987, Chazelle&Rosenberg 1989] 
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• Use the “Warmup” solution on each block
• O(n loglog n) prep. O(1) query
• O(n logloglog n) prep. O(1) query
• O(n αk(n)) prep. O(k) query [Alon&Schieber 1987, Chazelle&Rosenberg 1989]

• Why? 
• MIN         any semiring operation
• RMQ generalizations
• Parallel Computing 

Recursive Solution
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¼ log n ¼ log n ¼ log n ¼ log n
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Parallel RMQ 
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 [Berkman and Vishkin 1993]
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Parallel RMQ

• Min of n elements in O(1) time using n2 processors [Valiant 1975]

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

 [Berkman and Vishkin 1993]
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Parallel RMQ

• Min of n elements in O(1) time using n2 processors [Valiant 1975]

• O(1) RMQ using n4 processors

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

 [Berkman and Vishkin 1993]
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Parallel RMQ

• Min of n elements in O(1) time using n2 processors [Valiant 1975]

• O(1) RMQ using n4 processors
• O(1) RMQ using n2.5 processors

0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

√n √n √n √n

 [Berkman and Vishkin 1993]
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Parallel RMQ

• Min of n elements in O(1) time using n2 processors [Valiant 1975]

• O(1) RMQ using n4 processors
• O(1) RMQ using n2.5 processors
• O(1/ε) RMQ using n1+ε processors

0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

√n √n √n √n

 [Berkman and Vishkin 1993]
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• Min of n integers each between 1 and n                                 
in O(1) time using n processors [Fich, Ragde and Wigderson 1984]
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Parallel RMQ  1
 [Berkman and Vishkin 1993]
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• Min of n integers each between 1 and n                                 
in O(1) time using n processors [Fich, Ragde and Wigderson 1984]

• n log3 n processors, O(1) time, O(1) query

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

Parallel RMQ  1
 [Berkman and Vishkin 1993]
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• Min of n integers each between 1 and n                                 
in O(1) time using n processors [Fich, Ragde and Wigderson 1984]

• n log3 n processors, O(1) time, O(1) query
• n αk(n) processors, O(k) time, O(k) query
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Problems with RMQ  1
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• inefficient in parallel
• inefficient in terms of cache-misses (can’t be done via scans)
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• RMQ        LCA        RMQ  1

• inefficient in parallel
• inefficient in terms of cache-misses (can’t be done via scans)

• # different Blocks = # different Cartesian trees = 4¼ log n  =
[Fischer, Heun 2006]

Problems with RMQ  1
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• RMQ        LCA        RMQ  1

• inefficient in parallel
• inefficient in terms of cache-misses (can’t be done via scans)

• # different Blocks = # different Cartesian trees = 4¼ log n  =
[Fischer, Heun 2006]

• Lookup table: index, construct

Problems with RMQ  1

√
n

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

Tuesday, October 20, 2009



Cache-Oblivious RMQ 

• An optimal RMQ solution that only makes sequential scans

O(n) prep. O(1) query (serial algorithm)

 [Demaine, Landau and W. 2009]
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• cache-oblivious stack holds rightmost path
• when we climb (pop) i vertices, concatenate 0111   11
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RMQ Generalization I:
A Cartesian Tree of a Tree

 [Demaine, Landau and W. 2009]
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• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
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• query asks for max flow that can be routed between u,v 

along any simple path

Tuesday, October 20, 2009



RMQ Generalization I:
A Cartesian Tree of a Tree

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v 

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning 
Tree [Hu 1961] 
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• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v along 

any simple path

• Undirected graphs: solve problem on the Maximum Spanning 
Tree [Hu 1961] 
•The Minimum Spanning Tree Verification problem

                           O(n αk(n)) prep. O(k) query [Alon and Schieber 1987] 
                                 Ω(n αk(n)) prep. for O(k) query [Pettie 2002]
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• Construct Cartesian tree of an input tree in O(n + sort(edges))
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• Construct Cartesian tree of an input tree in O(n + sort(edges))
• Tight lower bound

2

RMQ Generalization I:
Compared to AlonSchieber

6

3

5 1

6 3

1 1

• Linear-time if edge-weights are sorted or integers
• Otherwise we get linear-space, O(n log[k]

 n) prep. O(k) query
• Maintain dynamic Cartesian tree and LCA info
• Distributed: LCA labeling of the Cartesian tree
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RMQ Generalization II:
2D Cartesian Tree
 [Demaine, Landau and W. 2009]
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RMQ Generalization II:
2D Cartesian Tree

• The 2D-RMQ problem:
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RMQ Generalization II:
2D Cartesian Tree

• The 2D-RMQ problem: 2 0 4 3 1 9 3 3
7 3 4 3 5 0 7 6
2 0 3 8 5 6 4 4
4 7 4 3 5 8 8 6
2 8 1 8 5 1 7 6
2 0 4 3 5 5 7 6
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RMQ Generalization II:
2D Cartesian Tree

• The 2D-RMQ problem: 2 0 4 3 1 9 3 3
7 3 4 3 5 0 7 6
2 0 3 8 5 6 4 4
4 7 4 3 5 8 8 6
2 8 1 8 5 1 7 6
2 0 4 3 5 5 7 6
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• The 2D-RMQ problem:

• O(n2 log n) prep. O(log n) query [Gabow, Bentley,Tarjan 1984]
• O(n2

 αk(n)2) prep. O(k) query [Chazelle, Rosenberg 1989]
• O(n2 log[k]

 n) prep, O(n2) space, O(k) query [Amir, Fischer, 
Lewenstein 2007]

RMQ Generalization II:
2D Cartesian Tree

2 0 4 3 1 9 3 3
7 3 4 3 5 0 7 6
2 0 3 8 5 6 4 4
4 7 4 3 5 8 8 6
2 8 1 8 5 1 7 6
2 0 4 3 5 5 7 6
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• The 2D-RMQ problem:

• O(n2 log n) prep. O(log n) query [Gabow, Bentley,Tarjan 1984]
• O(n2

 αk(n)2) prep. O(k) query [Chazelle, Rosenberg 1989]
• O(n2 log[k]

 n) prep, O(n2) space, O(k) query [Amir, Fischer, 
Lewenstein 2007]

RMQ Generalization II:
2D Cartesian Tree

No 2D Cartesian tree:
# different 2D-RMQ matrices ≈ n2!

2 0 4 3 1 9 3 3
7 3 4 3 5 0 7 6
2 0 3 8 5 6 4 4
4 7 4 3 5 8 8 6
2 8 1 8 5 1 7 6
2 0 4 3 5 5 7 6
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• The 2D-RMQ problem:

• O(n2 log n) prep. O(log n) query [Gabow, Bentley,Tarjan 1984]
• O(n2

 αk(n)2) prep. O(k) query [Chazelle, Rosenberg 1989]
• O(n2 log[k]

 n) prep, O(n2) space, O(k) query [Amir, Fischer, 
Lewenstein 2007] 
• O(n2) prep. O(1) query [Yuan, Atallah 2010]
•

RMQ Generalization II:
2D Cartesian Tree

No 2D Cartesian tree:
# different 2D-RMQ matrices ≈ n2!

2 0 4 3 1 9 3 3
7 3 4 3 5 0 7 6
2 0 3 8 5 6 4 4
4 7 4 3 5 8 8 6
2 8 1 8 5 1 7 6
2 0 4 3 5 5 7 6
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Thank You!
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