On Cartesian Trees,

Lowest Common Ancestors, and Range Minimum Queries

Parallel Computing Day Ben-Gurion University

RMQ

RMQ

RMQ

- Applications:

- String Processing \& Computational Biology
- Search Engines and Document Retrieval
- Equivalence to LCA
- Database Queries

RMQ

\& Cartesian Trees

2	0	4	3	5	1	7	6

RMQ

\& Cartesian Trees

2	0	4	3	5	1	7	6

RMQ

\& Cartesian Trees

2	0	4	3	5	1	7	6

RMQ

\& Cartesian Trees

2	0	4	3	5	1	7	6

RMQ

\& Cartesian Trees

RMQ

\& Cartesian Trees

RMQ

\& Cartesian Trees

2	0	4	3	5	1	7	6

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ

\& Cartesian Trees

2	0	4	3	5	1	7	6

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ

\& Cartesian Trees

2	0	4	3	5	1	7	6

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ

\& Cartesian Trees

2	0	4	3	5	1	7	6

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ

\& Cartesian Trees

2	0	4	3	5	1	7	6

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ

\& Cartesian Trees

2	0	4	3	5	1	7	6

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ

\& Cartesian Trees

RMQ

\& Cartesian Trees

2	0	4	3	5	1	7	6

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ

\& Cartesian Trees

2	0	4	3	5	1	7	6

(4) (5) $7 \mathrm{O}^{2}(n)$ [Gabow, Bentley, Tarjan 1984]

RMQ

\& Cartesian Trees

RMQ

\& Cartesian Trees

RMQ

\& Cartesian Trees

[Harel, Tarjan 1984]
$\left\{\begin{array}{l}{[\text { Schieber, Vishkin 1988] }} \\ {[\text { Berkman, Vishkin 1993] }} \\ {[\text { Bender } \text { et al. 2005] }}\end{array}\right.$
[Fischer, Heun 2006]

RMQ

\& Cartesian Trees

RMQ

\& Cartesian Trees

RMQ

\& Cartesian Trees

$\left\{\begin{array}{l}{[\text { Schieber, Vishkin 1988] }} \\ {[\text { Berkman, Vishkin 1993] }} \\ {[\text { Bender } \text { et al. 2005] }}\end{array}\right.$
[Fischer, Heun 2006]

RMQ

\& Cartesian Trees

$\left\{\begin{array}{l}{[\text { Schieber, Vishkin 1988] }} \\ {[\text { Berkman, Vishkin 1993] }} \\ {[\text { Bender } \text { et al. 2005] }}\end{array}\right.$
[Fischer, Heun 2006]

RMQ

\& Cartesian Trees

LCA: O(n) prep. O(1) query [Harel, Tarjan 1984]
$\left\{\begin{array}{l}{[\text { Schieber, Vishkin 1988] }} \\ {[\text { Berkman, Vishkin 1993] }} \\ {[\text { Bender } \text { et al. 2005] }}\end{array}\right.$
[Fischer, Heun 2006]

RMQ

- Warmup: $\mathrm{O}(n \log n)$ prep. $\mathrm{O}(1)$ query:

2	0	4	3	5	4	7	0	5	6	1	4	8	6	7	3	4	2	5	4

RMQ

- Warmup: $\mathrm{O}(n \log n)$ prep. $\mathrm{O}(1)$ query:
- Compute min of every interval I s.t $|I|$ is a power of two

2	0	4	3	5	4	7	0	5	6	1	4	8	6	7	3	4	2	5	4

RMQ

- Warmup: $\mathrm{O}(n \log n)$ prep. $\mathrm{O}(1)$ query:
- Compute min of every interval I s.t $|I|$ is a power of two

RMQ

- Warmup: $\mathrm{O}(n \log n)$ prep. $\mathrm{O}(1)$ query:
- Compute min of every interval I s.t $|I|$ is a power of two

RMQ

- Warmup: $\mathrm{O}(n \log n)$ prep. $\mathrm{O}(1)$ query:
- Compute min of every interval I s.t $|I|$ is a power of two
- Query is composed of two overlapping intervals

RMQ

- Warmup: $\mathrm{O}(n \log n)$ prep. $\mathrm{O}(1)$ query:
- Compute min of every interval I s.t $|I|$ is a power of two
- Query is composed of two overlapping intervals

RMQ

$\left.$| 2 | 0 | 4 | 3 | 5 | 4 | 7 | 0 | 5 | 6 | 1 | 4 | 8 | 6 | 7 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $4_{4} \right\rvert\,$| 5 |
| :--- |

RMQ

RMQ

RMQ

RMQ

RMQ

$R M Q \pm 1$

$-\mathrm{RMQ} \Rightarrow \mathrm{LCA} \Rightarrow \mathrm{RMQ} \pm$

$R M Q \pm 1$

- $\mathrm{RMQ} \Rightarrow \mathrm{LCA} \Rightarrow \mathrm{RMQ} \pm 1$
- \# different Blocks $=\#$ different \pm vectors $=2^{1 / 4} \log n=n^{1 / 4}$
- Lookup table

Recursive Solution

- Use the "Warmup" solution on each block

Recursive Solution

- Use the "Warmup" solution on each block

Recursive Solution

- Use the "Warmup" solution on each block

Recursive Solution

- Use the "Warmup" solution on each block - $\mathrm{O}(n \log \log n)$ prep. $\mathrm{O}(1)$ query

Recursive Solution

- Use the "Warmup" solution on each block
- $\mathrm{O}(n \log \log n)$ prep. $\mathrm{O}(1)$ query
- O($n \log \log \log n)$ prep. O(1) query

Recursive Solution

- Use the "Warmup" solution on each block
- O($n \log \log n)$ prep. O(1) query
- O($n \log \log \log n)$ prep. O(1) query
- $\mathrm{O}\left(n \alpha_{\mathrm{k}}(n)\right)$ prep. $\mathrm{O}(\mathrm{k})$ query [Alon\&Schieber 1987, Chazelle\&Rosenberg 1989]

Recursive Solution

- Use the "Warmup" solution on each block
- O($n \log \log n)$ prep. O(1) query
- O($n \log \log \log n)$ prep. O(1) query
- $\mathrm{O}\left(n \alpha_{\mathrm{k}}(n)\right)$ prep. $\mathrm{O}(\mathrm{k})$ query [Alon\&Schieber 1987, Chazelle\&Rosenberg 1989]

- Why?
- MAN \Rightarrow any semiring operation
- RMQ generalizations
- Parallel Computing

Parallel RMQ
 [Berkman and Vishkin 1993]

1	0	1	2	3	2	1	0	1	2	1	2	3	4	5	4	3	2	3	4

Parallel RMQ [Berkman and Vishkin 1993]

- Min of n elements in $\mathrm{O}(1)$ time using n^{2} processors [Valiant 1975]

1	0	1	2	3	2	1	0	1	2	1	2	3	4	5	4	3	2	3	4

Parallel RMQ [Berkman and Vishkin 1993]

- Min of n elements in $\mathrm{O}(1)$ time using n^{2} processors [Valiant 1975]
- O(1) RMQ using n^{\star} processors

1	0	1	2	3	2	1	0	1	2	1	2	3	4	5	4	3	2	3	4

Parallel RMQ
 [Berkman and Vishkin 1993]

- Min of n elements in $\mathrm{O}(1)$ time using n^{2} processors [Valiant 1975]
- O(1) RMQ using n^{4} processors
- O(1) RMQ using $n^{2.5}$ processors

Parallel RMQ
 [Berkman and Vishkin 1993]

- Min of n elements in $\mathrm{O}(1)$ time using n^{2} processors [Valiant 1975]
- O(1) RMQ using n^{4} processors
- O(1) RMQ using $n^{2.5}$ processors
- $\mathrm{O}(1 / \varepsilon) \mathrm{RMQ}$ using $n^{1+\varepsilon}$ processors

Parallel RMQ \pm I
 [Berkman and Vishkin 1993]

Parallel RMQ ± 1
 [Berkman and Vishkin 1993]

- Min of n integers each between 1 and n in $\mathrm{O}(1)$ time using n processors [Fich, Ragde and Wigderson 1984]

1	0	1	2	3	2	1	0	1	2	1	2	3	4	5	4	3	2	3	4

Parallel RMQ ± 1
 [Berkman and Vishkin 1993]

- Min of n integers each between 1 and n in $\mathrm{O}(1)$ time using n processors [Fich, Ragde and Wigderson 1984]

Parallel RMQ ± 1
 [Berkman and Vishkin 1993]

- Min of n integers each between 1 and n in $\mathrm{O}(1)$ time using n processors [Fich, Ragde and Wigderson 1984]

Parallel RMQ ± 1
 [Berkman and Vishkin 1993]

- Min of n integers each between 1 and n in $\mathrm{O}(1)$ time using n processors [Fich, Ragde and Wigderson 1984]

Parallel RMQ ± 1
 [Berkman and Vishkin 1993]

- Min of n integers each between 1 and n in $\mathrm{O}(1)$ time using n processors [Fich, Ragde and Wigderson 1984]

Parallel RMQ ± 1
 [Berkman and Vishkin 1993]

- Min of n integers each between 1 and n in $\mathrm{O}(1)$ time using n processors [Fich, Ragde and Wigderson 1984]

Parallel RMQ ± 1
 [Berkman and Vishkin 1993]

- Min of n integers each between 1 and n in $\mathrm{O}(1)$ time using n processors [Fich, Ragde and Wigderson 1984]

- $n \log ^{3} n$ processors, $\mathrm{O}(1)$ time, $\mathrm{O}(1)$ query

Parallel RMQ \pm I
 [Berkman and Vishkin 1993]

- Min of n integers each between 1 and n in $\mathrm{O}(1)$ time using n processors [Fich, Ragde and Wigderson 1984]

- $n \log ^{3} n$ processors, $\mathrm{O}(1)$ time, $\mathrm{O}(1)$ query
- $n \alpha_{\mathrm{k}}(n)$ processors, $\mathrm{O}(\mathrm{k})$ time, $\mathrm{O}(\mathrm{k})$ query

Problems with RMQ ± 1

$\cdot \mathrm{RMQ} \Rightarrow \mathrm{LCA} \Rightarrow \mathrm{RMQ} \pm 1$

2	0	4	3	5	4	7	0	5	6	1	4	8	6	7	3	4	2	5	4

Problems with RMQ ± 1

- $\mathrm{RMQ} \Rightarrow \mathrm{LCA} \Rightarrow \mathrm{RMQ} \pm$
- inefficient in parallel
- inefficient in terms of cache-misses (can't be done via scans)

2	0	4	3	5	4	7	0	5	6	1	4	8	6	7	3	4	2	5	4

Problems with RMQ ± 1

- $\mathrm{RMQ} \Rightarrow \mathrm{LCA} \Rightarrow \mathrm{RMQ} \pm$
- inefficient in parallel
- inefficient in terms of cache-misses (can't be done via scans)

- \# different Blocks = \# different Cartesian trees = $4^{1 / 4 \log n=\sqrt{n}}$
[Fischer, Heun 2006]

Problems with RMQ ± 1

- $\mathrm{RMQ} \Rightarrow \mathrm{LCA} \Rightarrow \mathrm{RMQ} \pm$
- inefficient in parallel
- inefficient in terms of cache-misses (can't be done via scans)

- \# different Blocks = \# different Cartesian trees = $4^{1 / 4 \log n=\sqrt{n}}$
[Fischer, Heun 2006]
- Lookup table: index, construct

Cache-Oblivious RMQ [Demaine, Landau and W. 2009]

- An optimal RMQ solution that only makes sequential scans \uparrow
$\mathrm{O}(n)$ prep. $\mathrm{O}(1)$ query (serial algorithm)

A Cache-Oblivious Cartesian Tree

A Cache-Oblivious

 Cartesian Tree

A Cache-Oblivious

 Cartesian Tree

- cache-oblivious stack holds rightmost path

A Cache-Oblivious

 Cartesian Tree

- cache-oblivious stack holds rightmost path
- when we climb (pop) i vertices, concatenate $0 \underbrace{0111 \cdots 11}_{i}$

A Cache-Oblivious

Cartesian Tree

$$
0 \underbrace{11 \cdots}_{i_{1}} 0 \underbrace{11 \cdots 1}_{i_{2}} 0 \underbrace{11 \cdots 1}_{i_{3}} 0 \underbrace{11 \cdots 1}_{i_{4}}
$$

- cache-oblivious stack holds rightmost path
- when we climb (pop) i vertices, concatenate $\underbrace{0111 \cdots 11}_{i}$

A Cache-Oblivious

Cartesian Tree

$$
0 \underbrace{11 \cdots}_{i_{1}} 0 \underbrace{11 \cdots 1}_{i_{2}} \underbrace{11 \cdots 1}_{i_{3}} \underbrace{11 \cdots 1}_{i_{4}} \in[\sqrt{n}]
$$

- cache-oblivious stack holds rightmost path
- when we climb (pop) i vertices, concatenate $\underbrace{0111 \cdots 11}_{i}$

A Cache-Oblivious

Cartesian Tree

- \forall binary string and \forall query:

$$
0 \underbrace{11 \cdots 1}_{i_{1}} 0 \underbrace{1 \cdots 1}_{i_{2}} 0 \underbrace{11 \cdots 1}_{i_{3}} 0 \underbrace{11 \cdots 1}_{i_{4}} \in[\sqrt{n}]
$$

- cache-oblivious stack holds rightmost path
- when we climb (pop) i vertices, concatenate $0111 \cdots 11$

A Cache-Oblivious

Cartesian Tree

- \forall binary string and \forall query:

$$
0 \underbrace{11 \ldots}_{i_{1}} 10 \underbrace{11 \ldots 1}_{i_{2}} 0 \underbrace{11 \ldots 1}_{i_{3}} 0 \underbrace{11 \ldots 1}_{i_{4}} \in[\sqrt{n}]
$$

- cache-oblivious stack holds rightmost path
- when we climb (pop) i vertices, concatenate $0 \underbrace{0111 \cdots 11}_{i}$

RMQ Generalization I: A Cartesian Tree of a Tree [Demaine, Landau and W. 2009]

RMQ Generalization I:

 A Cartesian Tree of a Tree- The Bottleneck Edge Query problem (RMQ on graphsltrees): - preprocess an edge-weighted graph

RMQ Generalization I:

 A Cartesian Tree of a Tree- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path

RMQ Generalization I:

A Cartesian Tree of a Tree

- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]

RMQ Generalization I:

 A Cartesian Tree of a Tree- The Bottleneck Edge Query problem (RMQ on graphsltrees): - preprocess an edge-weighted graph - query asks for max flow that can be routed between u,v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]

RMQ Generalization I:

A Cartesian Tree of a Tree

- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]

RMQ Generalization I:

A Cartesian Tree of a Tree

- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]

RMQ Generalization I:

A Cartesian Tree of a Tree

- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]
- The Minimum Spanning Tree Verification problem

RMQ Generalization I:

A Cartesian Tree of a Tree

- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]
- The Minimum Spanning Tree Verification problem

RMQ Generalization I:

A Cartesian Tree of a Tree

- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]
- The Minimum Spanning Tree Verification problem

RMQ Generalization I:

A Cartesian Tree of a Tree

- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]
- The Minimum Spanning Tree Verification problem

RMQ Generalization I:

 A Cartesian Tree of a Tree- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]
-The Minimum Spanning Tree Verification problem

RMQ Generalization I:

 A Cartesian Tree of a Tree- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]
-The Minimum Spanning Tree Verification problem

RMQ Generalization I:

A Cartesian Tree of a Tree

- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]
- The Minimum Spanning Tree Verification problem

RMQ Generalization I:

A Cartesian Tree of a Tree

- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]
- The Minimum Spanning Tree Verification problem

RMQ Generalization I:

A Cartesian Tree of a Tree

- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]
- The Minimum Spanning Tree Verification problem

RMQ Generalization I:

A Cartesian Tree of a Tree

- The Bottleneck Edge Query problem (RMQ on graphsitrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]
- The Minimum Spanning Tree Verification problem

RMQ Generalization I:

A Cartesian Tree of a Tree

- The Bottleneck Edge Query problem (RMQ on graphsltrees):
- preprocess an edge-weighted graph
- query asks for max flow that can be routed between u, v along any simple path
- Undirected graphs: solve problem on the Maximum Spanning Tree [Hu 1961]
- The Minimum Spanning Tree Verification problem

RMQ Generalization I: A Cartesian Tree of a Tree

- Construct Cartesian tree of an input tree in $\mathrm{O}(n+\operatorname{sort}(\mathrm{edges}))$

RMQ Generalization I: A Cartesian Tree of a Tree

- Construct Cartesian tree of an input tree in $\mathrm{O}(n+\operatorname{sort}(e d g e s))$
- Tight lower bound

RMQ Generalization I: Compared to AlonSchieber

- Construct Cartesian tree of an input tree in $\mathrm{O}(n+$ sort(edges $))$
- Tight lower bound

RMQ Generalization I: Compared to AlonSchieber

- Construct Cartesian tree of an input tree in $\mathrm{O}(n+\operatorname{sort}(e d g e s))$
- Tight lower bound
- Linear-time if edge-weights are sorted or integers

RMQ Generalization I: Compared to AlonSchieber

- Construct Cartesian tree of an input tree in $\mathrm{O}(n+$ sort(edges $))$
- Tight lower bound
- Linear-time if edge-weights are sorted or integers
- Otherwise we get linear-space, $\mathrm{O}\left(n \log ^{[k]} n\right)$ prep. $\mathrm{O}(k)$ query

RMQ Generalization I:

Compared to AlonSchieber

- Construct Cartesian tree of an input tree in $\mathrm{O}(n+$ sort(edges $))$
- Tight lower bound
- Linear-time if edge-weights are sorted or integers
- Otherwise we get linear-space, $\mathrm{O}\left(n \log { }^{[k]} n\right)$ prep. $\mathrm{O}(k)$ query
- Maintain dynamic Cartesian tree and LCA info

RMQ Generalization I:

Compared to AlonSchieber

- Construct Cartesian tree of an input tree in $\mathrm{O}(n+$ sort(edges $))$
- Tight lower bound
- Linear-time if edge-weights are sorted or integers
- Otherwise we get linear-space, $\mathrm{O}\left(n \log { }^{[k]} n\right)$ prep. $\mathrm{O}(k)$ query
- Maintain dynamic Cartesian tree and LCA info
- Distributed: LCA labeling of the Cartesian tree

RMQ Generalization II: 2D Cartesian Tree [Demaine, Landau and W. 2009]

RMQ Generalization II: 2D Cartesian Tree

- The 2D-RMQ problem:

RMQ Generalization II: 2D Cartesian Tree

- The $2 \mathrm{D}-\mathrm{RMQ}$ problem:

2	0	4	3	1	9	3	3
7	3	4	3	5	0	7	6
2	0	3	8	5	6	4	4
4	7	4	3	5	8	8	6
2	8	1	8	5	1	7	6
2	0	4	3	5	5	7	6

RMQ Generalization II: 2D Cartesian Tree

- The $2 \mathrm{D}-\mathrm{RMQ}$ problem:

2	0	4	3	1	9	3	3
7	3	4	3	5	0	7	6
2	0	3	8	5	6	4	4
4	7	4	3	5	8	8	6
2	8	1	8	5	1	7	6
2	0	4	3	5	5	7	6

RMQ Generalization II: 2D Cartesian Tree

- The 2D-RMQ problem:

2	0	4	3	1	9	3	3
7	3	4	3	5	0	7	6
2	0	3	8	5	6	4	4
4	7	4	3	5	8	8	6
2	8	1	8	5	1	7	6
2	0	4	3	5	5	7	6

- $\mathrm{O}\left(n^{2} \log n\right)$ prep. $\mathrm{O}(\log n)$ query [Gabow, Bentley, Tarjan 1984]
- $\mathrm{O}\left(n^{2} \alpha_{\mathrm{k}}(n)^{2}\right)$ prep. $\mathrm{O}(k)$ query [Chazelle, Rosenberg 1989]
- $\mathrm{O}\left(n^{2} \log ^{[k]} n\right)$ prep, $\mathrm{O}\left(n^{2}\right)$ space, $\mathrm{O}(k)$ query [Amir, Fischer, Lewenstein 2007]

RMQ Generalization II: 2D Cartesian Tree

- The 2D-RMQ problem:

No 2D Cartesian tree:
\# different 2D-RMQ matrices $\approx n^{2}$!

2	0	4	3	1	9	3	3
7	3	4	3	5	0	7	6
2	0	3	8	5	6	4	4
4	7	4	3	5	8	8	6
2	8	1	8	5	1	7	6
2	0	4	3	5	5	7	6

- $\mathrm{O}\left(n^{2} \log n\right)$ prep. $\mathrm{O}(\log n)$ query [Gabow, Bentley, Tarjan 1984]
- $\mathrm{O}\left(n^{2} \alpha_{\mathrm{k}}(n)^{2}\right)$ prep. $\mathrm{O}(k)$ query [Chazelle, Rosenberg 1989]
- $\mathrm{O}\left(n^{2} \log { }^{[k]} n\right)$ prep, $\mathrm{O}\left(n^{2}\right)$ space, $\mathrm{O}(k)$ query [Amir, Fischer, Lewenstein 2007]

RMQ Generalization II: 2D Cartesian Tree

- The 2D-RMQ problem:

No 2D Cartesian tree:
\# different 2D-RMQ matrices $\approx n^{2}$!

2	0	4	3	1	9	3	3
7	3	4	3	5	0	7	6
2	0	3	8	5	6	4	4
4	7	4	3	5	8	8	6
2	8	1	8	5	1	7	6
2	0	4	3	5	5	7	6

- $\mathrm{O}\left(n^{2} \log n\right)$ prep. $\mathrm{O}(\log n)$ query [Gabow, Bentley,Tarjan 1984]
- $\mathrm{O}\left(n^{2} \alpha_{k}(n)^{2}\right)$ prep. $\mathrm{O}(k)$ query [Chazelle, Rosenberg 1989]
- $\mathrm{O}\left(n^{2} \log ^{[k]} n\right)$ prep, $\mathrm{O}\left(n^{2}\right)$ space, $\mathrm{O}(k)$ query [Amir, Fischer, Lewenstein 2007]
- $\mathrm{O}\left(n^{2}\right)$ prep. $\mathrm{O}(1)$ query [Yuan, Atallah 2010]

Thank You!

