
 On Cartesian Trees,
Lowest Common Ancestors,
and Range Minimum Queries

2 0 4 3 5 1 7 6

min?

0

2 1

3

4 5

6

7

LCA?

Parallel Computing Day Ben-Gurion University
Tuesday, October 20, 2009

2 0 4 3 5 1 7 6

RMQ

Tuesday, October 20, 2009

RMQ

2 0 4 3 5 1 7 6

min?

Tuesday, October 20, 2009

RMQ

2 0 4 3 5 1 7 6

min?• Applications:

• String Processing & Computational Biology
• Search Engines and Document Retrieval
• Equivalence to LCA
• Database Queries

Tuesday, October 20, 2009

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

0

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

0

2 1

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

0

2 1

3

4 5

6

7

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

2 0 4 3 5 1 7 6

min?

0

2 1

3

4 5

6

7

RMQ
& Cartesian Trees

LCA?

Tuesday, October 20, 2009

2 0 4 3 5 1 7 6

min?

0

2 1

3

4 5

6

7

RMQ
& Cartesian Trees

LCA?

O(n) [Gabow, Bentley, Tarjan 1984]

Tuesday, October 20, 2009

0

2 3

4 5

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

0

2 3

4 5

1 O(n) [Gabow, Bentley, Tarjan 1984]

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

0

2 3

4 5

1 O(n) [Gabow, Bentley, Tarjan 1984]

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

0

2 3

4 51

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

0

2 3

4 51

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

0

2 3

4 5

1

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

0

2

4 5

31

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

0

2

4 5

3

1

O(n) [Gabow, Bentley, Tarjan 1984]

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

1

O(n) [Gabow, Bentley, Tarjan 1984]

0

2

4 5

3 6

7

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

1

LCA: O(n) prep. O(1) query [Harel, Tarjan 1984]

O(n) [Gabow, Bentley, Tarjan 1984]

0

2

4 5

3 6

7

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

1

LCA: O(n) prep. O(1) query [Harel, Tarjan 1984]

O(n) [Gabow, Bentley, Tarjan 1984]

[Schieber, Vishkin 1988]
[Berkman, Vishkin 1993]
[Bender et al. 2005]

[Fischer, Heun 2006]

0

2

4 5

3 6

7

RMQ
& Cartesian Trees

2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

RMQ
& Cartesian Trees

1

LCA: O(n) prep. O(1) query [Harel, Tarjan 1984]

O(n)

[Schieber, Vishkin 1988]
[Berkman, Vishkin 1993]
[Bender et al. 2005]

[Fischer, Heun 2006]

0

2

4 5

3 6

7

{
Tuesday, October 20, 2009

RMQ
& Cartesian Trees

1

LCA: O(n) prep. O(1) query [Harel, Tarjan 1984]

O(n)

[Schieber, Vishkin 1988]
[Berkman, Vishkin 1993]
[Bender et al. 2005]

[Fischer, Heun 2006]

0

2

4 5

3 6

7

{

0 2 0 1 3 4 3 5 3 1 6 7 6 1 0

Tuesday, October 20, 2009

RMQ
& Cartesian Trees

1

LCA: O(n) prep. O(1) query [Harel, Tarjan 1984]

O(n)

[Schieber, Vishkin 1988]
[Berkman, Vishkin 1993]
[Bender et al. 2005]

[Fischer, Heun 2006]

0

2

4 5

3 6

7

{

0 2 0 1 3 4 3 5 3 1 6 7 6 1 0

Tuesday, October 20, 2009

RMQ
& Cartesian Trees

1

LCA: O(n) prep. O(1) query [Harel, Tarjan 1984]

O(n)

[Schieber, Vishkin 1988]
[Berkman, Vishkin 1993]
[Bender et al. 2005]

[Fischer, Heun 2006]

0

2

4 5

3 6

7

{

0 1 0 1 2 3 2 3 2 1 2 3 2 1 0

0 2 0 1 3 4 3 5 3 1 6 7 6 1 0

Tuesday, October 20, 2009

RMQ
& Cartesian Trees

1

LCA: O(n) prep. O(1) query [Harel, Tarjan 1984]

O(n)

[Schieber, Vishkin 1988]
[Berkman, Vishkin 1993]
[Bender et al. 2005]

[Fischer, Heun 2006]

0

2

4 5

3 6

7

{

0 1 0 1 2 3 2 3 2 1 2 3 2 1 0

0 2 0 1 3 4 3 5 3 1 6 7 6 1 0

Tuesday, October 20, 2009

RMQ
& Cartesian Trees

1

LCA: O(n) prep. O(1) query [Harel, Tarjan 1984]

O(n)

[Schieber, Vishkin 1988]
[Berkman, Vishkin 1993]
[Bender et al. 2005]

[Fischer, Heun 2006]

0

2

4 5

3 6

7

{

min?
0 1 0 1 2 3 2 3 2 1 2 3 2 1 0

0 2 0 1 3 4 3 5 3 1 6 7 6 1 0

0 1 0 1 2 3 2 3 2 1 2 3 2 1 0

Tuesday, October 20, 2009

RMQ

• Warmup: O(n log n) prep. O(1) query:

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

Tuesday, October 20, 2009

• Warmup: O(n log n) prep. O(1) query:
• Compute min of every interval I s.t | I | is a power of two

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

RMQ

Tuesday, October 20, 2009

• Warmup: O(n log n) prep. O(1) query:
• Compute min of every interval I s.t | I | is a power of two

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

min = 3

RMQ

Tuesday, October 20, 2009

• Warmup: O(n log n) prep. O(1) query:
• Compute min of every interval I s.t | I | is a power of two

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

min = 3 min = 1

RMQ

Tuesday, October 20, 2009

• Warmup: O(n log n) prep. O(1) query:
• Compute min of every interval I s.t | I | is a power of two
• Query is composed of two overlapping intervals

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

min?

RMQ

Tuesday, October 20, 2009

• Warmup: O(n log n) prep. O(1) query:
• Compute min of every interval I s.t | I | is a power of two
• Query is composed of two overlapping intervals

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

min?

RMQ

Tuesday, October 20, 2009

0 0 1 22 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

RMQ

Tuesday, October 20, 2009

0 0 1 22 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

¼ log n ¼ log n ¼ log n ¼ log n

RMQ

Tuesday, October 20, 2009

0 0 1 2

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

¼ log n ¼ log n ¼ log n ¼ log n

RMQ

Tuesday, October 20, 2009

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

min?

RMQ

Tuesday, October 20, 2009

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

min?

✓

RMQ

Tuesday, October 20, 2009

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

min?

RMQ

Tuesday, October 20, 2009

• RMQ LCA RMQ 1

RMQ 1

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

Tuesday, October 20, 2009

• RMQ LCA RMQ 1

RMQ 1

• # different Blocks = # different 1 vectors = 2¼ log n = n¼
• Lookup table

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

Tuesday, October 20, 2009

Recursive Solution

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

• Use the “Warmup” solution on each block

Tuesday, October 20, 2009

Recursive Solution

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4{

• Use the “Warmup” solution on each block

Tuesday, October 20, 2009

Recursive Solution

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4{
O(log n loglog n) prep.

• Use the “Warmup” solution on each block

Tuesday, October 20, 2009

Recursive Solution

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4{
O(log n loglog n) prep.

• Use the “Warmup” solution on each block
• O(n loglog n) prep. O(1) query

Tuesday, October 20, 2009

• Use the “Warmup” solution on each block
• O(n loglog n) prep. O(1) query
• O(n logloglog n) prep. O(1) query

Recursive Solution

0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

¼ log n ¼ log n ¼ log n ¼ log n

Tuesday, October 20, 2009

• Use the “Warmup” solution on each block
• O(n loglog n) prep. O(1) query
• O(n logloglog n) prep. O(1) query
• O(n αk(n)) prep. O(k) query [Alon&Schieber 1987, Chazelle&Rosenberg 1989]

Recursive Solution

0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

¼ log n ¼ log n ¼ log n ¼ log n

Tuesday, October 20, 2009

• Use the “Warmup” solution on each block
• O(n loglog n) prep. O(1) query
• O(n logloglog n) prep. O(1) query
• O(n αk(n)) prep. O(k) query [Alon&Schieber 1987, Chazelle&Rosenberg 1989]

• Why?
• MIN any semiring operation
• RMQ generalizations
• Parallel Computing

Recursive Solution

0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

¼ log n ¼ log n ¼ log n ¼ log n

Tuesday, October 20, 2009

Parallel RMQ

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

Parallel RMQ

• Min of n elements in O(1) time using n2 processors [Valiant 1975]

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

Parallel RMQ

• Min of n elements in O(1) time using n2 processors [Valiant 1975]

• O(1) RMQ using n4 processors

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

Parallel RMQ

• Min of n elements in O(1) time using n2 processors [Valiant 1975]

• O(1) RMQ using n4 processors
• O(1) RMQ using n2.5 processors

0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

√n √n √n √n

 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

Parallel RMQ

• Min of n elements in O(1) time using n2 processors [Valiant 1975]

• O(1) RMQ using n4 processors
• O(1) RMQ using n2.5 processors
• O(1/ε) RMQ using n1+ε processors

0 0 1 2

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

√n √n √n √n

 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

Parallel RMQ 1
 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

• Min of n integers each between 1 and n
in O(1) time using n processors [Fich, Ragde and Wigderson 1984]

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

Parallel RMQ 1
 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

• Min of n integers each between 1 and n
in O(1) time using n processors [Fich, Ragde and Wigderson 1984]

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

Parallel RMQ 1
 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

• Min of n integers each between 1 and n
in O(1) time using n processors [Fich, Ragde and Wigderson 1984]

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

Parallel RMQ 1
 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

• Min of n integers each between 1 and n
in O(1) time using n processors [Fich, Ragde and Wigderson 1984]

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

Parallel RMQ 1
 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

• Min of n integers each between 1 and n
in O(1) time using n processors [Fich, Ragde and Wigderson 1984]

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

Parallel RMQ 1
 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

• Min of n integers each between 1 and n
in O(1) time using n processors [Fich, Ragde and Wigderson 1984]

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

Parallel RMQ 1
 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

• Min of n integers each between 1 and n
in O(1) time using n processors [Fich, Ragde and Wigderson 1984]

• n log3 n processors, O(1) time, O(1) query

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

Parallel RMQ 1
 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

• Min of n integers each between 1 and n
in O(1) time using n processors [Fich, Ragde and Wigderson 1984]

• n log3 n processors, O(1) time, O(1) query
• n αk(n) processors, O(k) time, O(k) query

1 0 1 2 3 2 1 0 1 2 1 2 3 4 5 4 3 2 3 4

Parallel RMQ 1
 [Berkman and Vishkin 1993]

Tuesday, October 20, 2009

• RMQ LCA RMQ 1

Problems with RMQ 1

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

Tuesday, October 20, 2009

• RMQ LCA RMQ 1

• inefficient in parallel
• inefficient in terms of cache-misses (can’t be done via scans)

Problems with RMQ 1

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

Tuesday, October 20, 2009

• RMQ LCA RMQ 1

• inefficient in parallel
• inefficient in terms of cache-misses (can’t be done via scans)

• # different Blocks = # different Cartesian trees = 4¼ log n =
[Fischer, Heun 2006]

Problems with RMQ 1

√
n

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

Tuesday, October 20, 2009

• RMQ LCA RMQ 1

• inefficient in parallel
• inefficient in terms of cache-misses (can’t be done via scans)

• # different Blocks = # different Cartesian trees = 4¼ log n =
[Fischer, Heun 2006]

• Lookup table: index, construct

Problems with RMQ 1

√
n

¼ log n ¼ log n ¼ log n ¼ log n
0 0 1 2

2 0 4 3 5 4 7 0 5 6 1 4 8 6 7 3 4 2 5 4

Tuesday, October 20, 2009

Cache-Oblivious RMQ

• An optimal RMQ solution that only makes sequential scans

O(n) prep. O(1) query (serial algorithm)

 [Demaine, Landau and W. 2009]

Tuesday, October 20, 2009

A Cache-Oblivious
Cartesian Tree

¼ log n
2 0 4 3 5 1 7 6

Tuesday, October 20, 2009

A Cache-Oblivious
Cartesian Tree

¼ log n
2 0 4 3 5 1 7 6

0

2 1

3

4 5

6

7

Tuesday, October 20, 2009

A Cache-Oblivious
Cartesian Tree

¼ log n
2 0 4 3 5 1 7 6

0

2 1

3

4 5

6

7

• cache-oblivious stack holds rightmost path

Tuesday, October 20, 2009

A Cache-Oblivious
Cartesian Tree

¼ log n
2 0 4 3 5 1 7 6

0

2 1

3

4 5

6

7

• cache-oblivious stack holds rightmost path
• when we climb (pop) i vertices, concatenate 0111 11 ... {

i

Tuesday, October 20, 2009

• cache-oblivious stack holds rightmost path
• when we climb (pop) i vertices, concatenate 0111 11

A Cache-Oblivious
Cartesian Tree

¼ log n
2 0 4 3 5 1 7 6

0

2 1

3

4 5

6

7

... {
i

011 1011 1011 1011 1...{

i1

{
i2

{
i3

{

i4

Tuesday, October 20, 2009

• cache-oblivious stack holds rightmost path
• when we climb (pop) i vertices, concatenate 0111 11

 []

A Cache-Oblivious
Cartesian Tree

¼ log n
2 0 4 3 5 1 7 6

0

2 1

3

4 5

6

7

... {
i

011 1011 1011 1011 1...{

i1

{
i2

{
i3

{

i4

∈ √n

Tuesday, October 20, 2009

• cache-oblivious stack holds rightmost path
• when we climb (pop) i vertices, concatenate 0111 11

{

A Cache-Oblivious
Cartesian Tree

¼ log n
2 0 4 3 5 1 7 6

0

2 1

3

4 5

6

7

... {
i

011 1011 1011 1011 1
i1 i2

{
i3

{

i4

∈ √n

• ∀ binary string and ∀ query:

min?
{ []

Tuesday, October 20, 2009

• cache-oblivious stack holds rightmost path
• when we climb (pop) i vertices, concatenate 0111 11

{011⋄⋄⋄1011⋄⋄⋄1011⋄⋄⋄1011⋄⋄⋄1

A Cache-Oblivious
Cartesian Tree

¼ log n
2 0 4 3 5 1 7 6

0

2 1

3

4 5

6

7

... {
i

i1 i2

{
i3

{

i4

∈ √n

• ∀ binary string and ∀ query:

min?
{ []

Tuesday, October 20, 2009

RMQ Generalization I:
A Cartesian Tree of a Tree

 [Demaine, Landau and W. 2009]

Tuesday, October 20, 2009

RMQ Generalization I:
A Cartesian Tree of a Tree

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph

Tuesday, October 20, 2009

RMQ Generalization I:
A Cartesian Tree of a Tree

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

Tuesday, October 20, 2009

RMQ Generalization I:
A Cartesian Tree of a Tree

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]

Tuesday, October 20, 2009

2

RMQ Generalization I:
A Cartesian Tree of a Tree

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]

6

3

5 1

6 3

Tuesday, October 20, 2009

2

RMQ Generalization I:
A Cartesian Tree of a Tree

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]

6

3

5 1

6 3
u

v

Tuesday, October 20, 2009

22

RMQ Generalization I:
A Cartesian Tree of a Tree

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]

6

3

5 1

6 3
u

v

Tuesday, October 20, 2009

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]
•The Minimum Spanning Tree Verification problem

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3
u

v

Tuesday, October 20, 2009

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]
•The Minimum Spanning Tree Verification problem

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3
u

v
5

Tuesday, October 20, 2009

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]
•The Minimum Spanning Tree Verification problem

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3
u

v
5

6

Tuesday, October 20, 2009

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v along

any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]
•The Minimum Spanning Tree Verification problem

 O(n αk(n)) prep. O(k) query [Alon and Schieber 1987]
 Ω(n αk(n)) prep. for O(k) query [Pettie 2002]

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3

Tuesday, October 20, 2009

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]
•The Minimum Spanning Tree Verification problem

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3

Tuesday, October 20, 2009

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]
•The Minimum Spanning Tree Verification problem

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3

1

Tuesday, October 20, 2009

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]
•The Minimum Spanning Tree Verification problem

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3

1 1

Tuesday, October 20, 2009

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]
•The Minimum Spanning Tree Verification problem

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3

1 1

Tuesday, October 20, 2009

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]
•The Minimum Spanning Tree Verification problem

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3

1 1

Tuesday, October 20, 2009

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]
•The Minimum Spanning Tree Verification problem

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3

1 1

Tuesday, October 20, 2009

• The Bottleneck Edge Query problem (RMQ on graphs\trees):
• preprocess an edge-weighted graph
• query asks for max flow that can be routed between u,v

along any simple path

• Undirected graphs: solve problem on the Maximum Spanning
Tree [Hu 1961]
•The Minimum Spanning Tree Verification problem

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3

1 1

Tuesday, October 20, 2009

• Construct Cartesian tree of an input tree in O(n + sort(edges))

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3

1 1

Tuesday, October 20, 2009

• Construct Cartesian tree of an input tree in O(n + sort(edges))
• Tight lower bound

2

RMQ Generalization I:
A Cartesian Tree of a Tree

6

3

5 1

6 3

1 1

Tuesday, October 20, 2009

• Construct Cartesian tree of an input tree in O(n + sort(edges))
• Tight lower bound

2

RMQ Generalization I:
Compared to AlonSchieber

6

3

5 1

6 3

1 1

Tuesday, October 20, 2009

• Construct Cartesian tree of an input tree in O(n + sort(edges))
• Tight lower bound

2

RMQ Generalization I:
Compared to AlonSchieber

6

3

5 1

6 3

1 1

• Linear-time if edge-weights are sorted or integers

Tuesday, October 20, 2009

• Construct Cartesian tree of an input tree in O(n + sort(edges))
• Tight lower bound

2

RMQ Generalization I:
Compared to AlonSchieber

6

3

5 1

6 3

1 1

• Linear-time if edge-weights are sorted or integers
• Otherwise we get linear-space, O(n log[k]

 n) prep. O(k) query

Tuesday, October 20, 2009

• Construct Cartesian tree of an input tree in O(n + sort(edges))
• Tight lower bound

2

RMQ Generalization I:
Compared to AlonSchieber

6

3

5 1

6 3

1 1

• Linear-time if edge-weights are sorted or integers
• Otherwise we get linear-space, O(n log[k]

 n) prep. O(k) query
• Maintain dynamic Cartesian tree and LCA info

Tuesday, October 20, 2009

• Construct Cartesian tree of an input tree in O(n + sort(edges))
• Tight lower bound

2

RMQ Generalization I:
Compared to AlonSchieber

6

3

5 1

6 3

1 1

• Linear-time if edge-weights are sorted or integers
• Otherwise we get linear-space, O(n log[k]

 n) prep. O(k) query
• Maintain dynamic Cartesian tree and LCA info
• Distributed: LCA labeling of the Cartesian tree

Tuesday, October 20, 2009

RMQ Generalization II:
2D Cartesian Tree
 [Demaine, Landau and W. 2009]

Tuesday, October 20, 2009

RMQ Generalization II:
2D Cartesian Tree

• The 2D-RMQ problem:

Tuesday, October 20, 2009

RMQ Generalization II:
2D Cartesian Tree

• The 2D-RMQ problem: 2 0 4 3 1 9 3 3
7 3 4 3 5 0 7 6
2 0 3 8 5 6 4 4
4 7 4 3 5 8 8 6
2 8 1 8 5 1 7 6
2 0 4 3 5 5 7 6

Tuesday, October 20, 2009

RMQ Generalization II:
2D Cartesian Tree

• The 2D-RMQ problem: 2 0 4 3 1 9 3 3
7 3 4 3 5 0 7 6
2 0 3 8 5 6 4 4
4 7 4 3 5 8 8 6
2 8 1 8 5 1 7 6
2 0 4 3 5 5 7 6

Tuesday, October 20, 2009

• The 2D-RMQ problem:

• O(n2 log n) prep. O(log n) query [Gabow, Bentley,Tarjan 1984]
• O(n2

 αk(n)2) prep. O(k) query [Chazelle, Rosenberg 1989]
• O(n2 log[k]

 n) prep, O(n2) space, O(k) query [Amir, Fischer,
Lewenstein 2007]

RMQ Generalization II:
2D Cartesian Tree

2 0 4 3 1 9 3 3
7 3 4 3 5 0 7 6
2 0 3 8 5 6 4 4
4 7 4 3 5 8 8 6
2 8 1 8 5 1 7 6
2 0 4 3 5 5 7 6

Tuesday, October 20, 2009

• The 2D-RMQ problem:

• O(n2 log n) prep. O(log n) query [Gabow, Bentley,Tarjan 1984]
• O(n2

 αk(n)2) prep. O(k) query [Chazelle, Rosenberg 1989]
• O(n2 log[k]

 n) prep, O(n2) space, O(k) query [Amir, Fischer,
Lewenstein 2007]

RMQ Generalization II:
2D Cartesian Tree

No 2D Cartesian tree:
different 2D-RMQ matrices ≈ n2!

2 0 4 3 1 9 3 3
7 3 4 3 5 0 7 6
2 0 3 8 5 6 4 4
4 7 4 3 5 8 8 6
2 8 1 8 5 1 7 6
2 0 4 3 5 5 7 6

Tuesday, October 20, 2009

• The 2D-RMQ problem:

• O(n2 log n) prep. O(log n) query [Gabow, Bentley,Tarjan 1984]
• O(n2

 αk(n)2) prep. O(k) query [Chazelle, Rosenberg 1989]
• O(n2 log[k]

 n) prep, O(n2) space, O(k) query [Amir, Fischer,
Lewenstein 2007]
• O(n2) prep. O(1) query [Yuan, Atallah 2010]
•

RMQ Generalization II:
2D Cartesian Tree

No 2D Cartesian tree:
different 2D-RMQ matrices ≈ n2!

2 0 4 3 1 9 3 3
7 3 4 3 5 0 7 6
2 0 3 8 5 6 4 4
4 7 4 3 5 8 8 6
2 8 1 8 5 1 7 6
2 0 4 3 5 5 7 6

Tuesday, October 20, 2009

Thank You!

Tuesday, October 20, 2009

