Improved Submatrix Maximum Queries in Monge Matrices

Pawel Gawrychowski, Shay Mozes, Oren Weimann

Monge Matrices

1746-1818

Monge Matrices

$$
M_{i k}+M_{j l} \geq M_{i l}+M_{j k}
$$

Partial Monge Matrices

Partial Monge Matrices

$$
M_{i k}+M_{j l} \geq M_{i l}+M_{j k}
$$

Partial Monge Matrices

$$
M_{i k}+M_{j l} ? M_{i l}+M_{j k}
$$

Submatrix Maximum Queries in Monge Matrices

Improved Submatrix Maximum Queries in Monge Matrices

Improved Submatrix Maximum Queries in Monge Matrices
 [Kaplan,Mozes,Nussbaum,Sharir SODA'I2]

For an $n \times n$ matrix:
Space
$O(n \log n)$
Query
$O\left(\log ^{2} n\right)$
$\mathrm{O}(\mathrm{n})$
O(logn)

For an $n \times n$ partial matrix:
Space
$O(n \log n \alpha(n))$
$\mathrm{O}(\mathrm{n})$
Query
$O\left(\log ^{2} n\right)$
$O(\log n \alpha(n))$

Applications

[Kaplan,Mozes,Nussbaum,Sharir SODA'I2]

Application I

Shortest paths in planar graphs

Application I

Shortest paths in planar graphs

Application I

Shortest paths in planar graphs

$$
M_{i k}+M_{j l} \geq M_{i l}+M_{j k}
$$

Application I

Shortest paths in planar graphs

Application I

Shortest paths in planar graphs

closest vertex to i among l to k

Application II:

Largest empty rectangle

- Input: a set of n points

Application II:

Largest empty rectangle

- Input: a set of n points
- Query: find largest empty rectangle containing a point

Application II:

Largest empty rectangle

- Input: a set of n points
- Query: find largest empty rectangle containing a point

Improved Submatrix Maximum Queries in Monge Matrices

Easier: sub-column ranges

Even easier: entire-column ranges

Even easier: entire-column ranges

\checkmark							
	\checkmark						
			\checkmark	\checkmark	\checkmark		
						\checkmark	\checkmark

The rows of the column maxima increase monotonically

Even easier: entire-column ranges

The rows of the column maxima increase monotonically

Even easier: entire-column ranges

Enough to compute list of breakpoints * O(n) time SMAWK [Shor,Moran,Aggarwal,Wilber,Klawe 1987]

The rows of the column maxima increase monotonically

Even easier: entire-column ranges

Enough to compute list of breakpoints * O(n) time SMAWK [Shor,Moran,Aggarwal,Wilber,Klawe 1987] $\mathrm{O}(n \alpha(n))$ time for partial matrices [Klawe, Kleitman 1990]

The rows of the column maxima increase monotonically

The tree of breakpoints

[Kaplan,Mozes,Nussbaum,Sharir SODA'I2]

Each node computes the breakpoints of its submatrix
By merging the breakpoints of its two children (overall $O(n \log n)$ time and space)

The tree of breakpoints

[Kaplan,Mozes,Nussbaum,Sharir SODA'I2]

Each node computes the breakpoints of its submatrix
By merging the breakpoints of its two children (overall $O(n \log n)$ time and space)

The tree of breakpoints

[Kaplan,Mozes,Nussbaum,Sharir SODA'I2]

Each node computes the breakpoints of its submatrix
By merging the breakpoints of its two children (overall $O(n \log n)$ time and space)

Each node stores RMQ data structure on max's between breakpoints

The tree of breakpoints

[Kaplan,Mozes,Nussbaum,Sharir SODA'I2]

A subcolumn query

The tree of breakpoints

[Kaplan,Mozes,Nussbaum,Sharir SODA'I2]

A subcolumn query is covered by $\mathrm{O}(\log n)$ canonical nodes. Search the breakpoints of each canonical node $\mathrm{O}\left(\log ^{2} n\right)$ time, $\mathrm{O}(\log n)$ via fractional cascading

The tree of breakpoints

[Kaplan,Mozes,Nussbaum,Sharir SODA'12]

A submatrix query is covered by $O(\log n)$ canonical nodes.

The tree of breakpoints

[Kaplan,Mozes,Nussbaum,Sharir SODA'I2]

A submatrix query is covered by $O(\log n)$ canonical nodes.

The range is covered by:

- submatrices bounded by breakpoints (RMQ)
- two row intervals per submatrix (row tree)

Total query: $O\left(\log ^{2} n\right)$ (no fractional cascading)

Improving the query-time

A submatrix query is covered by $\mathrm{O}(\log n)$ canonical nodes.

The range is covered by:

- submatrices bounded by breakpoints (RMQ)
- two row intervals per submatrix (row tree)

Total query: $\mathrm{O}(\log n)$
Fractional cascading

Improving the query-time

A submatrix query is covered by $O(\log n)$ canonical nodes.

The range is covered by:

- submatrices bounded by breakpoints (RMQ)
- two row intervals per submatrix (row tree)

Total query: $\mathrm{O}(\log n)$

Improving the query-time

A submatrix query is covered by $\mathrm{O}(\log n)$ canonical nodes.

The range is covered by:

- submatrices bounded by breakpoints (RMQ)
- two row intervals per submatrix (row tree)

Total query: $\mathrm{O}(\log n)$

Improving the query-time

A submatrix query is covered by $O(\log n)$ canonical nodes.

The range is covered by:

- submatrices bounded by breakpoints (RMQ)
- two row intervals per submatrix (row tree)

Total query: $\mathrm{O}(\log n)$

Improving the query-time

A submatrix query is covered by $O(\log n)$ canonical nodes.

The range is covered by:

- submatrices bounded by breakpoints (RMQ)
- two row intervals per submatrix (row tree)

Total query: $\mathrm{O}(\log n)$
SMAWK

Improving the space from $\mathrm{O}(n \log n)$ to $\mathrm{O}(n)$

Improving the space

Theorem: Given an m-by-n matrix, after $O(m \log n)$ time and $O(m)$ space we can answer entire-column queries in $\mathrm{O}(\log m)$ time.

Mega Row entries fetched in $\mathrm{O}(\log m)$ time using the above

Improving the space

$+$ Improving the query-time

Partial Monge matrices

Partial Monge matrices

Theorem: The number of breakpoints of an m-by-n partial matrix is $O(m)$.

The rows of the column maxima increases monotonically

Partial Monge matrices

Theorem: The number of breakpoints of an m-by-n partial matrix is $O(m)$.

Partial Monge matrices

Theorem: The number of breakpoints of an m-by-n partial matrix is $\mathrm{O}(\mathrm{m})$.

Partial Monge matrices

Theorem: The number of breakpoints of an m-by-n partial matrix is $O(m)$.
Each row appears in at most three staircase matrices

Partial Monge matrices

Theorem: The number of breakpoints of an m-by-n partial matrix is $\mathrm{O}(\mathrm{m})$.
Each row appears in at most three $\overbrace{\text { staircase matrices }}$

Open Problems

Open Problems

- Shortest paths in planar graphs

Open Problems

- Shortest paths in planar graphs
m-by-n staircase

Open Problems

- Shortest paths in planar graphs
- In the beginning all rows are deactivated
$\mathrm{O}\left(\log ^{2} \mathrm{n}\right) \cdot$ activate a row and add k to all its entries
$\mathrm{O}\left(\log ^{2} \mathrm{n}\right) \cdot$ delete column
$\mathrm{O}\left(\log ^{2} \mathrm{n}\right) \cdot$ report minimum active entry
m-by-n staircase

[Fakcharoenphol Rao, 2006]

Open Problems

- Shortest paths in planar graphs
- In the beginning all rows are deactivated
$\mathrm{O}\left(\log ^{2} \mathrm{n}\right) \cdot$ activate a row and add k to all its entries
$\mathrm{O}\left(\log ^{2} \mathrm{n}\right) \cdot$ delete column
$\mathrm{O}\left(\log ^{2} \mathrm{n}\right) \cdot$ report minimum active entry
m-by-n staircase

[Fakcharoenphol Rao, 2006]
- Find the $\mathrm{O}(\mathrm{m})$ breakpoints in linear time

Open Problems

- Shortest paths in planar graphs
- In the beginning all rows are deactivated
$\mathrm{O}\left(\log ^{2} \mathrm{n}\right) \cdot$ activate a row and add k to all its entries
$\mathrm{O}\left(\log ^{2} \mathrm{n}\right) \cdot$ delete column
$\mathrm{O}\left(\log ^{2} \mathrm{n}\right) \cdot$ report minimum active entry
m-by-n staircase

[Fakcharoenphol Rao, 2006]
- Find the $O(m)$ breakpoints in linear time
$-\mathrm{O}((\mathrm{m}+\mathrm{n}) \alpha(\mathrm{n}))) \quad$ [Klawe Kleitman, 1990]
-O(mlogn) [Here]

Thank
 You!

