Pawel Gawrychowski, Shay Mozes, Oren Weimann

1746 - 1818

 $M_{ik} + M_{jl} \geq M_{il} + M_{jk}$

1746 - 1818

$$M_{ik} + M_{jl} \geq M_{il} + M_{jk}$$

$$M_{ik} + M_{jl} ? M_{il} + M_{jk}$$

[Kaplan, Mozes, Nussbaum, Sharir SODA'12]

For an $n \ge n$ matrix:

Space $O(n \log n)$ O(n)Query $O(\log^2 n)$ $O(\log n)$

For an $n \ge n$ partial matrix:

Space $O(n \log n \alpha(n))$ O(n)Query $O(\log^2 n)$ $O(\log n \alpha(n))$

Applications

[Kaplan, Mozes, Nussbaum, Sharir SODA'12]

Application II: Largest empty rectangle

• Input: a set of *n* points

Application II: Largest empty rectangle

- Input: a set of *n* points
- Query: find largest empty rectangle containing a point

Application II: Largest empty rectangle

- Input: a set of *n* points
- Query: find largest empty rectangle containing a point

Easier: sub-column ranges

Enough to compute list of breakpoints *****

O(n) time SMAWK [Shor, Moran, Aggarwal, Wilber, Klawe 1987]

Enough to compute list of breakpoints *****

O(n) time SMAWK [Shor, Moran, Aggarwal, Wilber, Klawe 1987] $O(n\alpha(n))$ time for partial matrices [Klawe, Kleitman 1990]

[Kaplan, Mozes, Nussbaum, Sharir SODA'12]

Each node computes the breakpoints of its submatrix

By merging the breakpoints of its two children (overall $O(n \log n)$ time and space)

[Kaplan, Mozes, Nussbaum, Sharir SODA'12]

Each node computes the breakpoints of its submatrix

By merging the breakpoints of its two children (overall $O(n \log n)$ time and space)

[Kaplan, Mozes, Nussbaum, Sharir SODA'12]

Each node computes the breakpoints of its submatrix

By merging the breakpoints of its two children (overall $O(n \log n)$ time and space)

Each node stores RMQ data structure on max's between breakpoints

[Kaplan, Mozes, Nussbaum, Sharir SODA'12]

A subcolumn query

[Kaplan, Mozes, Nussbaum, Sharir SODA'12]

A subcolumn query is covered by $O(\log n)$ canonical nodes. Search the breakpoints of each canonical node

 $O(\log^2 n)$ time, $O(\log n)$ via fractional cascading

[Kaplan, Mozes, Nussbaum, Sharir SODA'12]

A submatrix query is covered by $O(\log n)$ canonical nodes.

[Kaplan, Mozes, Nussbaum, Sharir SODA'12]

A submatrix query is covered by $O(\log n)$ canonical nodes.

The range is covered by:

- submatrices bounded by breakpoints (RMQ)

- two row intervals per submatrix (row tree)

Total query: O(log² n) (no fractional cascading)

A submatrix query is covered by $O(\log n)$ canonical nodes.

The range is covered by:

- submatrices bounded by breakpoints (RMQ)

- two row intervals per submatrix (row tree)

Total query: O(log n) Fractional cascading

A submatrix query is covered by $O(\log n)$ canonical nodes.

The range is covered by:

- submatrices bounded by breakpoints (RMQ)
 - two row intervals per submatrix (row tree)

Total query: O(log n)

A submatrix query is covered by $O(\log n)$ canonical nodes.

The range is covered by:

- submatrices bounded by breakpoints (RMQ)
 - two row intervals per submatrix (row tree)

Total query: O(log n)

A submatrix query is covered by $O(\log n)$ canonical nodes.

The range is covered by:

- submatrices bounded by breakpoints (RMQ)
 - two row intervals per submatrix (row tree)

Total query: O(log n)

Improving the query-time

A submatrix query is covered by $O(\log n)$ canonical nodes.

The range is covered by:

- submatrices bounded by breakpoints (RMQ)

- two row intervals per submatrix (row tree)

Total query: O(log n) SMAWK

Improving the space

from $O(n \log n)$ to O(n)

Improving the space

<u>Theorem</u>: Given an m-by-n matrix, after $O(m \log n)$ time and O(m) space we can answer entire-column queries in $O(\log m)$ time.

Mega Row entries fetched in O(log m) time using the above

Improving the space + Improving the query-time

<u>Theorem</u>: The number of breakpoints of an m-by-n partial matrix is O(m).

The rows of the column maxima increases monotonically

<u>Theorem</u>: The number of breakpoints of an m-by-n partial matrix is O(m).

<u>Theorem</u>: The number of breakpoints of an m-by-n partial matrix is O(m).

<u>Theorem</u>: The number of breakpoints of an m-by-n partial matrix is O(m).

Each row appears in at most three staircase matrices

<u>Theorem</u>: The number of breakpoints of an m-by-n partial matrix is O(m).

Each row appears in at most three staircase matrices

		_	_		_			_	_		_
		-	-	-	-	-		-	-		-

• Shortest paths in planar graphs

• Shortest paths in planar graphs

• Shortest paths in planar graphs

- In the beginning all rows are deactivated

- O(log²n) activate a row and add k to all its entries
- O(log²n) delete column
- O(log²n) report minimum active entry

[Fakcharoenphol Rao, 2006]

m-by-n staircase

• Shortest paths in planar graphs

- In the beginning all rows are deactivated

- O(log²n) activate a row and add k to all its entries
- O(log²n) delete column
- O(log²n) report minimum active entry

[Fakcharoenphol Rao, 2006]

• Find the O(m) breakpoints in linear time

m-by-n staircase

• Shortest paths in planar graphs

- In the beginning all rows are deactivated

- O(log²n) activate a row and add k to all its entries
- O(log²n) delete column
- O(log²n) report minimum active entry [Fakcharoenphol Rao, 2006]

- Find the O(m) breakpoints in linear time
 - $-O((m+n)\alpha(n)))$ [Klawe Kleitman, 1990]
 - O(mlogn) [Here]

m-by-n staircase

Thank You!