
Improved Submatrix Maximum Queries
in Monge Matrices

Pawel Gawrychowski, Shay Mozes, Oren Weimann

Max ?

Improved Submatrix Maximum Queries
in Monge Matrices

1746 - 1818

Mik + Mjl ≥ Mil + Mjk

k l

i

j

Improved Submatrix Maximum Queries
in Monge Matrices

1746 - 1818

Improved Submatrix Maximum Queries
in Monge Matrices Partial

undefined

Mik + Mjl ≥ Mil + Mjk

undefined

Improved Submatrix Maximum Queries
in Monge Matrices Partial

undefined

Mik + Mjl ? Mil + Mjk

Improved Submatrix Maximum Queries
in Monge Matrices Partial

Max ?

Improved Submatrix Maximum Queries
in Monge Matrices

Improved Submatrix Maximum Queries
in Monge Matrices

Max ?

Improved Submatrix Maximum Queries
in Monge Matrices

For an n x n matrix: 	

!

 Space O(n log n) O(n)	

 Query O(log2

 n) O(log n)	

 	

!
For an n x n partial matrix: 	

!

 Space O(n log n α(n)) O(n)	

 Query O(log2

 n) O(log n α(n))	

[Kaplan,Mozes,Nussbaum,Sharir SODA’12]	

Application I  
Shortest paths in planar graphs

s
[Kaplan,Mozes,Nussbaum,Sharir SODA’12]	

Application I  
Shortest paths in planar graphs

A piece

Application I  
Shortest paths in planar graphs

i

k
j

l

Mik + Mjl ≥ Mil + Mjk

j i
l
k

Application I  
Shortest paths in planar graphs

i

k
j

l

Mik + Mjl ≥ Mil + Mjk

j i
l
k

Application I  
Shortest paths in planar graphs

i

k
j

l

closest vertex to i among l to k

j i
l
k

Application I  
Shortest paths in planar graphs

Application II:  
Largest empty rectangle

• Input: a set of n points	

• Input: a set of n points	

• Query: find largest empty rectangle containing a point

Application II:  
Largest empty rectangle

Databases	

GIS

Application II:  
Largest empty rectangle

• Input: a set of n points	

• Query: find largest empty rectangle containing a point

Max ?

Improved Submatrix Maximum Queries
in Monge Matrices

Easier: sub-column ranges

Even easier: entire-column ranges

Even easier: entire-column ranges

✓
✓ ✓

✓
✓ ✓ ✓

✓ ✓ ✓
 The rows of the column maxima increase monotonically

Even easier: entire-column ranges

 The rows of the column maxima increase monotonically

✓

✓ ✓
✓ ✓

✓
✓

✓
✓

✓

Even easier: entire-column ranges

 The rows of the column maxima increase monotonically

Enough to compute list of breakpoints

O(n) time SMAWK [Shor,Moran,Aggarwal,Wilber,Klawe 1987]	

✓

✓ ✓
✓ ✓

 The rows of the column maxima increase monotonically

O(n α(n)) time for partial matrices [Klawe, Kleitman 1990]

Even easier: entire-column ranges

O(n) time SMAWK [Shor,Moran,Aggarwal,Wilber,Klawe 1987]	

Enough to compute list of breakpoints

[Kaplan,Mozes,Nussbaum,Sharir SODA’12]	

The tree of breakpoints  

Each node computes the breakpoints of its submatrix	

By merging the breakpoints of its two children
(overall O(n log n) time and space)

[Kaplan,Mozes,Nussbaum,Sharir SODA’12]	

The tree of breakpoints  

Each node computes the breakpoints of its submatrix	

By merging the breakpoints of its two children
(overall O(n log n) time and space)

[Kaplan,Mozes,Nussbaum,Sharir SODA’12]	

The tree of breakpoints  

Each node computes the breakpoints of its submatrix	

By merging the breakpoints of its two children
(overall O(n log n) time and space)

Each node stores RMQ data structure
on max’s between breakpoints	
 max

max

max

[Kaplan,Mozes,Nussbaum,Sharir SODA’12]	

The tree of breakpoints  

A subcolumn query 	

[Kaplan,Mozes,Nussbaum,Sharir SODA’12]	

The tree of breakpoints  

A subcolumn query is covered by O(log n) canonical nodes.
Search the breakpoints of each canonical node 	

O(log2
 n) time, O(log n) via fractional cascading

The tree of breakpoints  
[Kaplan,Mozes,Nussbaum,Sharir SODA’12]	

A submatrix query 	
 is covered by O(log n)
canonical nodes.

The tree of breakpoints  
[Kaplan,Mozes,Nussbaum,Sharir SODA’12]	

A submatrix query 	
 is covered by O(log n)
canonical nodes.

The range is covered by:	

- submatrices bounded by breakpoints (RMQ)	

- two row intervals per submatrix (row tree)	

Total query: O(log2
 n)

(no fractional cascading)

Improving the query-time

A submatrix query 	
 is covered by O(log n)
canonical nodes.

The range is covered by:	

- submatrices bounded by breakpoints (RMQ)	

- two row intervals per submatrix (row tree)	

Total query: O(log n)

✓

Fractional cascading

Improving the query-time

A submatrix query 	
 is covered by O(log n)
canonical nodes.

The range is covered by:	

- submatrices bounded by breakpoints (RMQ)	

- two row intervals per submatrix (row tree)	

Total query: O(log n)

✓

Improving the query-time

A submatrix query 	
 is covered by O(log n)
canonical nodes.

The range is covered by:	

- submatrices bounded by breakpoints (RMQ)	

- two row intervals per submatrix (row tree)	

Total query: O(log n)

✓

Improving the query-time

A submatrix query 	
 is covered by O(log n)
canonical nodes.

The range is covered by:	

- submatrices bounded by breakpoints (RMQ)	

- two row intervals per submatrix (row tree)	

Total query: O(log n)

✓

Improving the query-time

A submatrix query 	
 is covered by O(log n)
canonical nodes.

The range is covered by:	

- submatrices bounded by breakpoints (RMQ)	

- two row intervals per submatrix (row tree)	

Total query: O(log n)

✓
✓

SMAWK

Improving the space
from O(n log n) to O(n)

Improving the space

m = logn

m = logn

m = logn

m = logn

n

Theorem: Given an m-by-n matrix, after O(m log n) time and O(m)
space we can answer entire-column queries in O(log m) time.

Mega Row

Mega Row entries fetched in O(log m) time using the above

Mega Row

Mega Row

Mega Row

Improving the space

Improving the query-time
+

Partial Monge matrices

 The rows of the column maxima increases monotonically

Partial Monge matrices

Theorem: The number of breakpoints of an m-by-n partial matrix is O(m).

Partial Monge matrices

Theorem: The number of breakpoints of an m-by-n partial matrix is O(m).

Partial Monge matrices

Theorem: The number of breakpoints of an m-by-n partial matrix is O(m).

Partial Monge matrices

Theorem: The number of breakpoints of an m-by-n partial matrix is O(m).

Each row appears in at most three staircase matrices

Partial Monge matrices

Theorem: The number of breakpoints of an m-by-n partial matrix is O(m).

Each row appears in at most three staircase matrices

Open Problems

• Shortest paths in planar graphs

48

Open Problems

• Shortest paths in planar graphs

49

Open Problems
m-by-n staircase

• Shortest paths in planar graphs
– In the beginning all rows are deactivated

• activate a row and add k to all its entries
• delete column
• report minimum active entry

50

Open Problems
m-by-n staircase

[Fakcharoenphol Rao, 2006]

O(log2n)
O(log2n)
O(log2n)

• Shortest paths in planar graphs
– In the beginning all rows are deactivated

• activate a row and add k to all its entries
• delete column
• report minimum active entry

51

Open Problems
m-by-n staircase

[Fakcharoenphol Rao, 2006]

O(log2n)
O(log2n)
O(log2n)

• Find the O(m) breakpoints in linear time
!

• Shortest paths in planar graphs
– In the beginning all rows are deactivated

• activate a row and add k to all its entries
• delete column
• report minimum active entry

52

Open Problems
m-by-n staircase

[Fakcharoenphol Rao, 2006]

O(log2n)
O(log2n)
O(log2n)

• Find the O(m) breakpoints in linear time
– O((m+n)α(n))) [Klawe Kleitman, 1990]
– O(mlogn) [Here]

Thank You!

