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For an n x n matrix: 	

!

  Space              O(n log n)             O(n)	

  Query            O(log2

 n)              O(log n)	

 	


!
For an n x n partial matrix: 	

!

  Space              O(n log n α(n))      O(n)	

  Query            O(log2

 n)              O(log n α(n))	


[Kaplan,Mozes,Nussbaum,Sharir SODA’12]	
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Application II:  
Largest empty rectangle

• Input:  a set of n points	
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Application II:  
Largest empty rectangle

• Input:  a set of n points	

• Query:  find largest empty rectangle containing a point 



Max ?

Improved Submatrix Maximum Queries 
in Monge Matrices 



Easier: sub-column ranges



Even easier: entire-column ranges



Even easier: entire-column ranges

✓
✓ ✓

✓
✓ ✓ ✓

✓ ✓ ✓
     The rows of the column maxima increase monotonically



Even easier: entire-column ranges

     The rows of the column maxima increase monotonically

✓

✓ ✓
✓ ✓

✓
✓

✓
✓

✓



Even easier: entire-column ranges

     The rows of the column maxima increase monotonically

Enough to compute list of breakpoints     

O(n) time SMAWK [Shor,Moran,Aggarwal,Wilber,Klawe 1987]	
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     The rows of the column maxima increase monotonically

O(n α(n)) time for partial matrices [Klawe, Kleitman 1990]

Even easier: entire-column ranges

O(n) time SMAWK [Shor,Moran,Aggarwal,Wilber,Klawe 1987]	

Enough to compute list of breakpoints     
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The tree of breakpoints  

Each node computes the breakpoints of its submatrix	


By merging the breakpoints of its two children                  
(overall O(n log n) time and space)
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The tree of breakpoints  

Each node computes the breakpoints of its submatrix	


By merging the breakpoints of its two children                  
(overall O(n log n) time and space)

Each node stores RMQ data structure                                         
on max’s between breakpoints	
 max

max

max
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The tree of breakpoints  

A subcolumn query 	




[Kaplan,Mozes,Nussbaum,Sharir SODA’12]	

The tree of breakpoints  

A subcolumn query is covered by O(log n) canonical nodes. 
Search the breakpoints of each canonical node 	


O(log2
 n) time, O(log n) via fractional cascading
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The tree of breakpoints  
[Kaplan,Mozes,Nussbaum,Sharir SODA’12]	


A submatrix query 	
                            is covered by O(log n)                      
canonical nodes. 

The range is covered by:	

- submatrices bounded by breakpoints (RMQ)	

- two row intervals per submatrix (row tree)	


Total query: O(log2
 n)                      

(no fractional cascading)



Improving the query-time
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Improving the query-time

A submatrix query 	
                            is covered by O(log n)                      
canonical nodes. 

The range is covered by:	

- submatrices bounded by breakpoints (RMQ)	

- two row intervals per submatrix (row tree)	


Total query: O(log n)                      

✓
✓

SMAWK



Improving the space
from O(n log n) to O(n) 



Improving the space

m = logn

m = logn

m = logn

m = logn

n

Theorem:  Given an m-by-n matrix, after O(m log n) time and O(m) 
space we can answer entire-column queries in O(log m) time.

Mega Row

Mega Row entries fetched in O(log m) time using the above

Mega Row

Mega Row

Mega Row



Improving the space

Improving the query-time
+



Partial Monge matrices



     The rows of the column maxima increases monotonically

Partial Monge matrices

Theorem:  The number of breakpoints of an m-by-n partial matrix is O(m).
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Partial Monge matrices

Theorem:  The number of breakpoints of an m-by-n partial matrix is O(m).

Each row appears in at most three staircase matrices



Open Problems



• Shortest paths in planar graphs
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Open Problems
m-by-n staircase



• Shortest paths in planar graphs
– In the beginning all rows are deactivated

• activate a row and add k to all its entries 
• delete column
• report minimum active entry
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Open Problems
m-by-n staircase

[Fakcharoenphol Rao, 2006]

O(log2n) 
O(log2n) 
O(log2n) 
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Open Problems
m-by-n staircase

[Fakcharoenphol Rao, 2006]

O(log2n) 
O(log2n) 
O(log2n) 

• Find the O(m) breakpoints in linear time
– O((m+n)α(n)))       [Klawe Kleitman, 1990]
– O(mlogn)              [Here]



Thank  You!


