Pawel Gawrychowski, Shay Mozes, Oren Weimann

1746 - 1818

Submatrix Maximum Queries in Monge Matrices

are Equivalent to Predecessor Search

$$M_{ik} + M_{jl} \geq M_{il} + M_{jk}$$

i 1746 - 1818

$$M_{ik} + M_{jl} \geq M_{il} + M_{jk}$$

$$M_{ik} + M_{jl}$$
? $M_{il} + M_{jk}$

Submatrix Maximum Queries in Monge Matrices

are Equivalent to Predecessor Search

O(n polylogn) space requires $\Omega(loglogn)$ query-time [Patraşcu, Thorup STOC'06]

Given *n* integers in $\{1,2,...,n^2\}$

[Kaplan, Mozes, Nussbaum, Sharir SODA' 12]

[Gawrychowski, Mozes, W. ICALP'14]

[Gawrychowski, Mozes, W. ICALP' 15]

[Kaplan, Mozes, Nussbaum, Sharir SODA' 12] [Gawrychowski, Mozes, W. ICALP' 14]

[Gawrychowski, Mozes, W. ICALP' 15]

n x *n* Monge:

Space Query $O(n \log n)$

 $O(\log^2 n)$

O(n)

 $O(\log n)$

O(n)

 $\Theta(\log\log n)$

[Kaplan, Mozes, Nussbaum, Sharir SODA'12]

[Gawrychowski, Mozes, W. ICALP'14]

[Gawrychowski, Mozes, W. ICALP'15]

n x n Monge:

Space

Query

 $O(n \log n)$

 $O(\log^2 n)$

O(n)

 $O(\log n)$

O(n)

 $\Theta(\log\log n)$

 $n \times n$ partial:

Space

Query

 $O(n \log n \alpha(n))$

 $O(\log^2 n)$

O(n)

 $O(\log n \alpha(n))$

O(n)

 $\Theta(\log\log n)$

Applications

[Kaplan, Mozes, Nussbaum, Sharir SODA' 12]

Application I Shortest paths in planar graphs

Application I Shortest paths in planar graphs

Application I Shortest paths in planar graphs

Application II: Largest empty rectangle

- Input: a set of n points
- Query: find largest empty rectangle containing a point

Submatrix Maximum Queries

Today: Subcolumn Maximum Queries

Enough to compute list of breakpoints \bigstar (predecessor search) O(n) time SMAWK [Shor, Moran, Aggarwal, Wilber, Klawe 1987]

Enough to compute list of breakpoints * (predecessor search)

O(n) time SMAWK [Shor, Moran, Aggarwal, Wilber, Klawe 1987]

 $O(n\alpha(n))$ time for partial matrices [Klawe, Kleitman 1990]

Subcolumn Maximum Queries

[Kaplan, Mozes, Nussbaum, Sharir SODA' 12] [Gawrychowski, Mozes, W. ICALP' 14]

Each node computes the breakpoints of its submatrix

By merging the breakpoints of its two children (overall $O(n \log n)$ time and space)

[Kaplan, Mozes, Nussbaum, Sharir SODA' 12] [Gawrychowski, Mozes, W. ICALP' 14]

Each node computes the breakpoints of its submatrix

By merging the breakpoints of its two children (overall $O(n \log n)$ time and space)

[Kaplan, Mozes, Nussbaum, Sharir SODA' 12] [Gawrychowski, Mozes, W. ICALP' 14]

Each node computes the breakpoints of its submatrix

By merging the breakpoints of its two children (overall $O(n \log n)$ time and space)

[Kaplan, Mozes, Nussbaum, Sharir SODA' 12] [Gawrychowski, Mozes, W. ICALP' 14]

A subcolumn query

[Kaplan, Mozes, Nussbaum, Sharir SODA' 12] [Gawrychowski, Mozes, W. ICALP' 14]

A subcolumn query is covered by $O(\log n)$ canonical nodes. In each canonical node, find predecessor(j) in its breakpoints.

 $O(\log n \log \log n)$ time $O(\log n)$ via fractional cascading

Our Tree

Each node stores breakpoints of every suffix/prefix of rows

Our Tree

Each node stores breakpoints of every suffix/prefix of rows

Our Tree - Query

A subcolumn query only two predecessor(j) searches

Our Tree - Construction

Our Tree - Construction

Our Tree - Construction

A subcolumn query

Our Tree - Construction

A subcolumn query

- = 2 x predecessor queries on a root-to-leaf path
- = 2 x weighted ancestor queries

= O(I) predecessor queries in O(loglogn) time LCA size of this tree = m (each row adds one breakpoints and kills some others)

size of all trees = O(nlogn) space

Improving the space

from $O(n \log n)$ to O(n)

Improving the space

Theorem [Gawrychowski, Mozes, W. ICALP'14]

Given a logn-by-n Monge matrix, there is a O(logn) space data structure that answers entire-column queries in O(1) time.

Mega Row entries fetched in O(1) time using the above Theorem.

Lower Bound

Given *n* integers in $\{1,2,...,n^2\}$:

Lower Bound

Lower Bound

The rows of the column maxima increases monotonically

Decomposition I: Reduction to staircase matrices

Decomposition I: Reduction to staircase matrices

Decomposition II: Cover staircase matrices by full matrices

Much more...

Shortest paths in planar graphs

Shortest paths in planar graphs

- Shortest paths in planar graphs
 - In the beginning all rows are deactivated
- O(log²n) activate a row and add k to all its entries
- O(log²n) delete column
- O(log²n) report minimum active entry

[Fakcharoenphol Rao, 2006]

- Shortest paths in planar graphs
 - In the beginning all rows are deactivated
- O(log²n) activate a row and add k to all its entries
- O(log²n) delete column
- O(log²n) report minimum active entry

[Fakcharoenphol Rao, 2006]

Find the O(m) breakpoints in linear time

- Shortest paths in planar graphs
 - In the beginning all rows are deactivated
- O(log²n) activate a row and add k to all its entries
- O(log²n) delete column
- O(log²n) report minimum active entry

[Fakcharoenphol Rao, 2006]

- Find the O(m) breakpoints in linear time
 - $-O((m+n)\alpha(n)))$ [Klawe Kleitman, 1990]
 - O(mlogn) [Gawrychowski, Mozes, W. ICALP'14]

Arigato!