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Submatrix Maximum Queries
 in Monge Matrices 

are Equivalent to Predecessor Search

Given n integers in {1,2,…, n2} 

x x xxx
 ...987654321

O(n polylogn) space requires Ω(loglogn) query-time 
[Patrasçu, Thorup STOC’06]  

n2
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Space             O(n log n α(n))          O(n)                    O(n)
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n x n Monge: 

n x n partial: 
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Application I  
Shortest paths in planar graphs

s
[Kaplan,Mozes,Nussbaum,Sharir SODA’12]
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• Input:  a set of n points
• Query:  find largest empty rectangle containing a point 

Application II:  
Largest empty rectangle
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Even easier: entire-column ranges

     The rows of the column maxima increase monotonically

Enough to compute list of breakpoints     (predecessor search)  

O(n) time SMAWK [Shor,Moran,Aggarwal,Wilber,Klawe 1987]
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     The rows of the column maxima increase monotonically

O(n α(n)) time for partial matrices [Klawe, Kleitman 1990]

Even easier: entire-column ranges

O(n) time SMAWK [Shor,Moran,Aggarwal,Wilber,Klawe 1987]

Enough to compute list of breakpoints     (predecessor search)  
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The tree of breakpoints  
[Kaplan,Mozes,Nussbaum,Sharir SODA’12]

Each node computes the breakpoints of its submatrix

By merging the breakpoints of its two children                  
(overall O(n log n) time and space)

[Gawrychowski, Mozes, W.  ICALP’14]
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The tree of breakpoints  
[Kaplan,Mozes,Nussbaum,Sharir SODA’12]

A subcolumn query 

[Gawrychowski, Mozes, W.  ICALP’14]

j



The tree of breakpoints  
[Kaplan,Mozes,Nussbaum,Sharir SODA’12]

A subcolumn query is covered by O(log n) canonical nodes. 

O(log n loglog n) time

O(log n) via fractional cascading

[Gawrychowski, Mozes, W.  ICALP’14]

j
In each canonical node, find predecessor(j) in its breakpoints. 



Our Tree

Each node stores breakpoints of every suffix/prefix of rows



Each node stores breakpoints of every suffix/prefix of rows

Our Tree



A subcolumn query 

Our Tree

LCA

only two predecessor(j) searches

- Query

j



Our Tree - Construction
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Our Tree
A subcolumn query 

LCA

- Construction

j



A subcolumn query 
= 2 x predecessor queries on a root-to-leaf path

size of all trees = O(nlogn)

Our Tree

size of this tree = m

m

- Construction

LCA

j

space

(each row adds one breakpoints and kills some others) 

= 2 x weighted ancestor queries
= O(1) predecessor queries in O(loglogn) time



Improving the space
from O(n log n) to O(n) 



Improving the space

 logn

 logn

 logn

  logn

n

Theorem [Gawrychowski, Mozes, W.  ICALP’14]                                     
Given a logn-by-n Monge matrix, there is a O(logn) space data 
structure that answers entire-column queries in O(1) time.

Mega Row entries fetched in O(1) time using the above Theorem.

Mega Row

Mega Row

Mega Row

Mega Row



Lower Bound

Given n integers in {1,2,…, n2}: 

x  x x  x  
x

 x x
1 2 3 4 5 6 7 8 9 . . . n2

Max ? n

linear-time reduction

 n
Two challenges:

Matrix has to be Monge

Implicit O(n polylog n) rep.
fetching entries in O(1) time



Lower Bound

     n                    n                    n                     n                     n 

x  x x  x   x x
1 2 3 4 5 6 7 8 9 . . . n2

linear-time reduction



Lower Bound

     n                    n                    n                     n                     n 

x  x x  x   x x
1 2 3 4 5 6 7 8 9 . . . n2

linear-time reduction



Partial Monge matrices



     The rows of the column maxima increases monotonically

Partial Monge matrices



Partial Monge matrices



Partial Monge matrices

Decomposition I: Reduction to staircase matrices



Partial Monge matrices

Decomposition II: Cover staircase matrices by full matrices
Decomposition I: Reduction to staircase matrices

Much more…
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• Shortest paths in planar graphs
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Open Problems
m-by-n staircase



• Shortest paths in planar graphs
– In the beginning all rows are deactivated

• activate a row and add k to all its entries 
• delete column
• report minimum active entry
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Open Problems
m-by-n staircase

[Fakcharoenphol Rao, 2006]

O(log2n) 
O(log2n) 
O(log2n) 
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• Find the O(m) breakpoints in linear time



• Shortest paths in planar graphs
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Open Problems
m-by-n staircase

[Fakcharoenphol Rao, 2006]

O(log2n) 
O(log2n) 
O(log2n) 

• Find the O(m) breakpoints in linear time
– O((m+n)α(n)))       [Klawe Kleitman, 1990]
– O(mlogn)              [Gawrychowski, Mozes, W.  ICALP’14]



Arigato!


