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Predecessor Search

O(npolylogn) space requires ()(loglogn) query-time
[Patrascu, Thorup STOC’06]

Given n integers in {1,2,..., n*}
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Submatrix Maximum Queries
in Monge Matrices
are Equivalent to Predecessor Search

[Kaplan,Mozes, [Gawrychowski, [Gawrychowski,
Nussbaum,Sharir Mozes, W. Mozes, W.
SODA’12] ICALP’ 4] ICALP’15]
n x n Monge:
Space O(nlogn) O(n) O(n)
Query O(log?n) O(logn) O(loglogn)
n x n partial:
Space O(n logn a(n)) O(n) O(n)

Query O(log?n) O(logn a(n)) O(loglogn)



Applications
[Kaplan,Mozes,Nussbaum,Sharir SODA’I 2]
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Application II:
Largest empty rectangle

* Input: a set of n points
* Query: find largest empty rectangle containing a point




Submatrix Maximum Queries




Today: Subcolumn Maximum Queries




Even easier: entire-column ranges




Even easier: entire-column ranges

The rows of the column maxima increase monotonically



Even easier: entire-column ranges

The rows of the column maxima increase monotonically



Even easier: entire-column ranges

Enough to compute list of breakpoints 3¢ (predecessor search)
O(n) time SMAWK [Shor,Moran,Aggarwal,Wilber,Klawe 1987]

The rows of the column maxima increase monotonically



Even easier: entire-column ranges

Enough to compute list of breakpoints 3¢ (predecessor search)
O(n) time SMAWK [Shor,Moran,Aggarwal,Wilber,Klawe 1987]

O(na(n)) time for partial matrices [Klawe, Kleitman 1990]
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The tree of breakpoints

[Kaplan,Mozes,Nussbaum,Sharir SODA’12]
[Gawrychowski, Mozes,W. |CALP’ 4]

Each node computes the breakpoints of its submatrix

By merging the breakpoints of its two children
(overall O(nlogn) time and space)
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The tree of breakpoints

[Kaplan,Mozes,Nussbaum,Sharir SODA’12]
[Gawrychowski, Mozes,W. |CALP’ 4]

A subcolumn query is covered by O(log n) canonical nodes.
In each canonical node, find predecessor(j) in its breakpoints.

J

O(logn loglogn) time

O(logn) via fractional cascading




Our Tree

Each node stores breakpoints of every suffix/prefix of rows




Our Tree

Each node stores breakpoints of every suffix/prefix of rows




Our Tree - Query

A subcolumn query only two predecessor(j) searches

LCA
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A subcolumn query

LCA




Our Tree - Construction
A subcolumn query

= 2 x predecessor queries on a root-to-leaf path
= 2 x weighted ancestor queries
= O(l) predecessor queries in O(loglogn) time

g -

LCA

size of this tree = m

(each row adds one breakpoints and kills some others)

size of all trees = O(nlogn) space



Improving the space
from O(nlogn) to O(n)




Improving the space

Theorem [Gawrychowski, Mozes,W. ICALP’ 14]

Given a logn-by-n Monge matrix, there is a O(logn) space data
structure that answers entire-column queries in O(1) time.

Mega Row entries fetched in O(1) time using the above Theorem.
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Lower Bound

Given n integers in {1,2,..., n?}:
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Iwo challenges:

Matrix has to be Monge

Implicit O(n polylogn) rep.
fetching entries in O(1) time
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Partial Monge matrices

Decomposition |: Reduction to staircase matrices




Partial Monge matrices

Decomposition |: Reduction to staircase matrices
Decomposition ll: Cover staircase matrices by full matrices

Much more...

Ty
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Open Problems

« Shortest paths in planar graphs
— In the beginning all rows are deactivated
O(log®n) » activate a row and add k to all its entries
O(log?n) « delete column

O(log?n) « report minimum active entry
[Fakcharoenphol Rao, 2006]
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Open Problems

m-by-n staircase

« Shortest paths in planar graphs
— In the beginning all rows are deactivated

O(log?n) « activate a row and add k to all its entries
O(log?n) « delete column

O(log?n) « report minimum active entry
[Fakcharoenphol Rao, 20006]

* Find the O(m) breakpoints in linear time
— O((m+n)a(n))) [Klawe Kleitman, 1990]
— O(mlogn) [Gawrychowski, Mozes, W. ICALP’14]



Arigato!



