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1 INTRODUCTION
Data structures for range queries and for predecessor queries are among the most studied data

structures in computer science. Given an n × n matrixM , a range maximum (also called submatrix

maximum) data structure can report themaximum entry in any query submatrix (a set of consecutive

rows and a set of consecutive columns) ofM . Given a set S ⊆ [0,U ) of n integers from a polynomial

universeU , a predecessor data structure can report the predecessor (and successor) in S of any query

integer x ∈ [0,U ). In this paper, we prove that these two seemingly unrelated problems are in fact

equivalent when the matrixM is a Monge matrix.
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0:2 P. Gawrychowski et al.

Range maximum queries. A long line of research over the last three decades including [4,

11, 12, 15, 25] achieved range maximum data structures of Õ (n2) space and Õ (1) query time
1
,

culminating with the O (n2)-space O (1)-query data structure of Yuan and Atallah [25]. In general

matrices, this is optimal since representing the input matrix already requires Θ(n2) space. In fact,

reducing the additional space toO (n2/c ) is known to incur an Ω(c ) query-time [6] and such tradeoffs

can indeed be achieved for any value of c [5, 6].
However, in many applications, the matrix M is not stored explicitly but any entry of M can

be computed when needed in O (1) time. One such case is when the matrix M is sparse, i.e., has

N = o(n2) nonzero entries. In this case the problem is known in computational geometry as the

orthogonal range searching problem on the n × n grid. In this case as well, various data structures

with Õ (N )-space and Õ (1)-query appear in a long history of results including [3, 9, 10, 13, 15]. For

a survey on orthogonal range searching see [23]. Another case where the additional space can be

made o(n2) (and in fact even O (n)) is when the matrix is a Monge matrix.

Range maximum queries in Monge matrices. A matrixM is Monge if for any pair of rows

i < j and columns k < ℓ we have thatM[i,k] +M[j, ℓ] ≥ M[i, ℓ] +M[j,k].2 A matrixM is Totally
Monotone (or TM) if for any pair of rows i < j and columns k < ℓ we have that ifM[i,k] ≤ M[j,k]
thenM[i, ℓ] ≤ M[j, ℓ]. Notice that the Monge property implies total monotonicity but the converse

is not true. Whenever possible, we state our results for the more general class of TM matrices.

Throughout the paper we use a top-down and left-to-right ordering of the elements of a matrix.

We say thatM[i,k] is aboveM[j, ℓ] if i < j, and to the left ofM[j, ℓ] if k < ℓ.
Submatrix maximum queries on Monge matrices have various important applications in combi-

natorial optimization and computational geometry such as problems involving distances in the

plane, and in problems on convex n-gons. See [7] for a survey on Monge matrices and their uses in

combinatorial optimization. Submatrix maximum queries on Monge matrices are used in algorithms

that efficiently find the largest empty rectangle containing a query point, in dynamic distance

oracles for planar graphs, and in algorithms for maximum flow in planar graphs. See [19] for more

details on the history of this problem and its applications.

Given an n × n Monge matrix M it is possible to obtain compact data structures of only Õ (n)
space that can answer submatrix maximum queries in Õ (1) time. The first such data structure

was given by Kaplan, Mozes, Nussbaum and Sharir [19]. They presented an O (n logn)-space data
structure with O (log2 n) query time. This was improved in [17] to O (n) space and O (logn) query
time.

Breakpoints and Partial Monge matrices. Given anm × n Monge matrixM , let r (c ) be the
row containing the maximum element in the c-th column of M . It is easy to verify that the r (·)
values are monotone, i.e., r (1) ≤ r (2) ≤ . . . ≤ r (n). Columns c such that r (c − 1) < r (c ) (or c = 1)

are called the breakpoints ofM . A Monge matrix consisting ofm < n rows has O (m) breakpoints,
which can be found in O (n) time using the SMAWK algorithm [2] (total monotonicity suffices for

SMAWK).

Some applications (such as that of finding the largest empty rectangle containing a query point)

involve partial Monge matrices rather than full Monge matrices. A partial matrix is a matrix where

some of the entries are undefined, but the defined entries in each row and in each column are

contiguous. A partial Monge matrix is a partial matrix in which the Monge inequality is satisfied

whenever all four involved entries are defined. The total number of breakpoints in a partial Monge

1
The Õ ( ·) notation hides polylogarithmic factors in n.

2
Monge matrices are often defined with a ≤ (rather than ≥) in the condition. Our results apply to both definitions, as well

as to minimum (rather than maximum) queries.
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matrix is still O (m) (as we show in Section 5), and they can be found in O (n · α (n)) time
3
using an

algorithm of Klawe and Kleitman [20]. This was used in [17, 19] to extend their solutions to partial

Monge matrices at the cost of an additional α (n) factor to the query time.
4

Our results. In this paper, we fully resolve the submatrix maximum query problem in n × n
Monge matrices by presenting a data structure of O (n) space and O (log logn) query time. We

complement our upper bound with a matching lower bound, showing that O (log logn) query-time

is optimal for any data structure of size O (n polylog(n)). Implicit in our upper and lower bound is

an equivalence between the predecessor problem in a universe of polynomial size and the range

maximum query problem in Monge matrices. The upper bound essentially reduces a submatrix

query to a constant number of predecessor queries, and vice versa, the lower bound reduces the

predecessor problem to a submatrix query. In fact, our lower bound holds even for the more

restricted case where the submatrix query is a subcolumn.

Our reductions allow us to establish an optimal tradeoff between space and query-time. In [17] we

showed that O (1) query-time for the submatrix maximum query problem is possible if one allows

O (n1+ε ) construction-time and space, for any fixed ε < 1, and now by combining our reduction

from the predecessor problem to subcolumn maximum queries with the known lower bounds on

the predecessor problem [24] we can conclude that such space is required for O (1) query-time.

Additionally, a straightforward modification of our reduction from submatrix maximum queries to

the predecessor problem together with the folklore predecessor structure for a set of s integers
from a universe {0, . . . ,n− 1} withO (1) query-time andO (snϵ ) construction-time and space allows

us to recover the result of [17].
5

Finally, we extend our result to partial Monge matrices with the exact same bounds (i.e., O (n)
space andO (log logn) query time). Our result is the first to achieve such extension with no overhead.

Consequently, we obtain an improved query time for the application of finding the largest empty

rectangle containing a query point [19].

Techniques. LetM be an n × n Monge matrix
6
. Consider a full binary tree T whose leaves are

the rows ofM . LetMu be the submatrix ofM composed of all rows (i.e., leaves) in the subtree of a

node u in T . Both existing data structures for submatrix maximum queries [17, 19] store, for each

node u in T a data structure Du . The goal of Du is to answer submatrix maximum queries that

include an arbitrary interval of columns and exactly all rows ofMu . This way, an arbitrary query is

covered in [17, 19] by querying the Du structures of O (logn) canonical nodes of T . An Ω(logn)
bound is thus inherent for any solution that examines the canonical nodes. We overcome this

obstacle by designing a stronger data structure Du . Namely, one that supports queries that include

an arbitrary interval of columns and a prefix of rows or a suffix of rows ofMu . This way, an arbitrary

query can be covered by just two Dus. The idea behind the new design is to efficiently encode the

changes in column maxima as we add rows toMu one by one. Retrieving this information is done

using weighted ancestor search and range maximum queries on trees. This is a novel use of these

techniques.

For our lower bound, we show that for any set of n integers S ⊆ [0,n2) there exists an n × n
Monge matrixM such that the predecessor of x in S can be found with submatrix maximum queries

onM . The predecessor lower bound of Pǎtraşcu and Thorup [24] then implies thatO (n polylog(n))

3
Here α (n) is the inverse-Ackermann function.

4
In [19], there was also an additional logn factor to the space.

5
Our reduction in Section 2 constructs several linear-size predecessor structures for various sets of elements. The calculations

of the preprocessing and space bounds need to be changed accordingly when using predecessor structures with superlinear

construction time and space. The modifications are straightforward.

6
We considerm × n matrices, but for simplicity we sometimes state the results for n × n matrices.
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0:4 P. Gawrychowski et al.

space requires Ω(log logn) query time. We overcome two technical difficulties here: First,M should

be Monge. Second, there must be an O (n polylog(n))-size representation ofM which can retrieve

any entryM[i, j] in O (1) time.

Finally, for handling partial Monge matrices, and unlike previous solutions for this case, we

do not directly adapt the solution for the full Monge case to partial Monge matrices. Instead we

decompose the partial Monge matrix into many full Monge matrices, that can be preprocessed to

be queried cumulatively in an efficient way. This requires significant technical work and careful

use of the structure of the decomposition.

Computational model. We assume the standard word RAM model with word size Ω(logn).
However, this is just an internal assumption and the elements of the matrixM are only accessed

through a comparison oracle, that is, we only assume that we are able to check in constant time if

M[i, j] ≤ M[i ′, j ′] and no arithmetical manipulation on the elements ofM is performed.

Roadmap. In Section 2 we present an O (n logn)-space data structure for Monge matrices that

answers submatrix maximum queries inO (log logn) time. In Section 3 we reduce the space toO (n).
Our lower bound is given in Section 4, and the extension to partial Monge matrices in Section 5.

2 DATA STRUCTURE FOR MONGE MATRICES
Our goal in this section is to construct, for a givenm × n Monge matrixM , a data structure of size

O (m logn) that answers submatrix maximum queries in O (log logn) time. In Section 3 we show

how to reduce the space from O (n logn) to O (n) whenm = n. We will actually show a stronger

result, namely the structure allows us to reduce in O (1) time a submatrix maximum query into

O (1) predecessor queries on a set consisting of n integers from a polynomial universe.

We denote by pred (m,n) the query complexity of an O (s )-space predecessor data structure

storing a set of s ≤ m integers from a universe {0, . . . ,n − 1}. It is well known that there are such

data structures achieving pred (m,n) = min{O (logm),O (log logn)}.
Recall that a submatrix maximum query returns the maximum M[i, j] over all i ∈ [i0, i1] and

j ∈ [j0, j1] for given i0 ≤ i1 and j0 ≤ j1. We start by answering the easier subcolumn maximum
queries within these space and time bounds. That is, finding the maximumM[i, j] over all i ∈ [i0, i1]
for given i0 ≤ i1 and j.
We construct a full binary tree T over the rows of M . Every leaf of the tree corresponds to a

single row of M , and every inner node corresponds to the range of rows in its subtree. To find

the maximumM[i, j] over all i ∈ [i0, i1] for given i0 ≤ i1 and j, we first locate the lowest common

ancestor (lca) u of the leaves corresponding to i0 and i1 in the tree. Then we decompose the

query into two parts: one fully within the range of rows Mℓ of the left child of u, and one fully

within the range of rows Mr of the right child of u. The former ends at the last row of Mℓ and

the latter starts at the first row ofMr . We equip every node with two data structures supporting

such simpler subcolumn maximum queries. Because of symmetry (ifM is Monge, so isM ′, where
M ′[i, j] = M[n + 1 − i,n + 1 − j]) it suffices to show how to answer subcolumn maximum queries

starting at the first row.

Lemma 2.1. Given anm × n TM matrix M , a data structure of size O (m) can be constructed in
O (m logn) time to answer in O (pred (m,n)) time subcolumn maximum queries starting at the first
row ofM .

Proof. Consider queries spanning an entire column c of M . To answer such a query, we only

need to find the corresponding r (c ). If we store the breakpoints of M in a predecessor structure,

where every breakpoint c links to its corresponding value of r (c ), a query can be answered with

a single predecessor search. More precisely, to determine the maximum in the c-th column ofM ,

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0. Publication date: 2017.
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we locate the largest breakpoint c ′ ≤ c , and then set r (c ) = r (c ′). Hence we can construct a data

structure of size O (m) to answer entire column maximum queries in O (pred (m,n)) time.

LetMi be a TM matrix consisting of the first i rows ofM . By applying the above reasoning to

everyMi separately, we immediately get a structure of sizeO (m2) answering subcolumn maximum

queries starting at the first row ofM inO (pred (m,n)) time. We want to improve on this by utilizing

the dependency of the structures constructed for different i’s. Observe that the list of breakpoints
ofMi+1 is a prefix of the list of breakpoints ofMi to which we append at most one new element. In

other words, if the breakpoints ofMi are stored on a stack, we need to pop zero or more elements

and push at most one new element to represent the breakpoints of Mi+1. Consequently, instead

of storing a separate list for everyMi , we can succinctly describe the content of all stacks with a

single tree T on at mostm + 1 nodes. For every i , we store a pointer to a node s (i ) ∈ T , such that

the ancestors of s (i ) (except for the root) are exactly the breakpoints ofMi . Whenever we pop an

element from the current stack, we move to the parent of the current node, and whenever we push

an element, we create a new node and make it a child of the current node. Initially, the tree consists

of just the root. Every node is labelled with a column number and by construction these numbers

are strictly increasing on any path starting at the root (the root is labelled with −∞). Therefore, a

predecessor search for j among the breakpoints ofMi reduces to finding the leafmost ancestor of

s (i ) whose label is at most j. This is known as the weighted ancestor problem. Weighted ancestor

queries on a tree of size O (m) are equivalent to predecessor searching on a number of sets of O (m)
total size [21],

7
achieving the claimed space and query time bounds.

To finish the proof, we need to bound the construction time. The bottleneck is constructing the

tree T . Let c1 < c2 < . . . < ck for some k ≤ i be the breakpoints of Mi . As long as M[i + 1, ck ] ≥
M[r (ck ), ck ] we decrease k by one, i.e., remove the last breakpoint. This process is repeated O (m)
times in total. If k = 0 we create a new breakpoint c1 = 1. If k ≥ 1 andM[i + 1, ck ] < M[r (ck ), ck ],
we check if M[i + 1,n] ≥ M[r (ck ),n]. If so, we need to create a new breakpoint. To this end, we

need to find the smallest j such thatM[i + 1, j] ≥ M[r (ck ), j]. This can be done in O (logn) using
binary search. Consequently, T can be constructed in O (m logn) time. Then augmenting it with a

weighted ancestor structure takes O (m) time. □

We apply Lemma 2.1 twice to every node of the full version treeT . Once for subcolumnmaximum

queries starting at the first row and once for queries ending at the last row. Since the total size

of all structures at the same level of the tree is O (m), the total size of our subcolumn maximum

data structure becomes O (m logm), and it can be constructed in O (m logm logn) time to answer

queries in O (pred (m,n)) time. Hence we have proved the following.

Theorem 2.2. Given anm×n TM matrixM , a data structure of sizeO (m logm) can be constructed
in O (m logm logn) time to answer subcolumn maximum queries in O (pred (m,n)) time.

By symmetry (a transpose of a Monge matrix is Monge) we can answer subrow maximum queries

(where the query is a single row and a range of columns) in O (pred (n,m)) time. We are now ready

to tackle general submatrix maximum queries.

At a high level, the idea is identical to the one used for subcolumnmaximum queries: we construct

a full binary tree T over the rows of M , where every node corresponds to a range of rows. To

find maximum M[i, j] over all i ∈ [i0, i1] and j ∈ [j0, j1] for given i0 ≤ i1 and j0 ≤ j1, we locate
the lowest common ancestor of the leaves corresponding to i0 and i1 and decompose the query

7
The reduction described in [21] needs O (log∗m) additional time and (adaptively) queries two sets. The additional time is

required to reduce the total size of the sets to O (m), which is done by recursively decomposing the tree. However, this

recursive decomposition can be avoided using atomic heaps as explained in Lemma 11 of [16]. Then in O (1) additional time

we are able to reduce a weighted ancestor query to a single predecessor query in one of the sets.
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0:6 P. Gawrychowski et al.

into two parts, the former ending at the last row of Mℓ and the latter starting at the first row of

Mr . Every node is equipped with two data structures allowing us to answer submatrix maximum

queries starting at the first row or ending at the last row. As before, it suffices to show how to

answer submatrix maximum queries starting at the first row.

Lemma 2.3. Given anm × n Monge matrixM , and a data structure that answers subrow maximum
queries onM inO (pred (n,m)) time, one can construct inO (m logm) time a data structure consuming
O (m) additional space, that answers submatrix maximum queries starting at the first row of M in
O (pred (m,n) + pred (n,m)) time.

Proof. We extend the proof of Lemma 2.1. Let c1 < c2 < . . . < ck be the breakpoints ofM stored

in a predecessor structure. For every i ≥ 2 we precompute and store the value

mi = max

j ∈[ci−1,ci )
M[r (ci−1), j].

These values are augmented with a (one dimensional) range maximum query data structure. To

begin with, consider a submatrix maximum query starting at the first row ofM and ending at the

last row ofM , i.e., we need to calculate the maximumM[i, j] over all i ∈ [1,m] and j ∈ [j0, j1]. We

find in O (pred (m,n)) the successor of j0, denoted ci , and the predecessor of j1, denoted ci′ . There
are three possibilities:

(1) The maximum is reached for j ∈ [j0, ci ),
(2) The maximum is reached for j ∈ [ci , ci′ ),
(3) The maximum is reached for j ∈ [ci′, j1).

The first and the third possibilities can be calculatedwith subrowmaximum queries inO (pred (n,m))
time, because both ranges span an interval of columns and a single row. The second possibility

can be calculated with a range maximum query on the range (i, i ′] over the precomputed values

mi associated to the breakpoints. Consequently, we can construct a data structure of size O (m) to
answer such submatrix maximum queries in O (pred (m,n) + pred (n,m)) time.

The above solution can be generalized to queries that start at the first row of M but do not

necessarily end at the last row ofM . This is done by considering the Monge matricesMi consisting

of the first i rows ofM . For every such matrix, we need a predecessor structure storing all of its

breakpoints, and additionally a range maximum structure over their associated valuesmi . Hence

now we need to construct a similar tree T as in Lemma 2.1 on O (m) nodes, but now every node

has both a weight and a value. The weight of a node is the column number of the corresponding

breakpoint ck , and the value is itsmk (or undefined if k = 1). As in Lemma 2.1, the breakpoints

of Mi are exactly the ancestors of the node s (i ). Note that everymk is defined in terms of ck−1
and ck , but this is not a problem because the predecessor of a breakpoint does not change during

the whole construction. We maintain a weighted ancestor structure using the weights (in order

to find ci and ci′ in O (pred (m,n)) time), and a generalized range maximum structure using the

values. A generalized range maximum structure of a treeT , given two query nodes u and v , returns
the maximum value on the unique u-to-v path in T . It can be implemented in O (m) space and
O (1) query time after O (m logm) preprocessing [12] once we have the values. The values can be

computed with subrow maximum queries in O (m · pred (n,m)) = O (m logm) total time. □

By applying Lemma 2.3 twice to every node of the full binary tree T , we construct inO (m log
2m)

time a data structure of size O (m logm) to answer submatrix maximum queries in O (pred (m,n) +
pred (n,m)) time. In order to apply Lemma 2.3 to a node of T we need a subrow maximum query

data structure for the corresponding rows of the matrix M . Note, however, that a single subrow

maximum query data structure forM can be used for all nodes of T . We thus obtained the following

theorem.
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Theorem 2.4. Given anm × n Monge matrixM , and a data structure answering subrow maximum
queries on M in O (pred (n,m)) time, one can construct in O (m log

2m) time a data structure taking
O (m logm) additional space, that answers submatrix maximum queries on M in O (pred (m,n) +
pred (n,m)) time.

By combining Theorem 2.2 with Theorem 2.4, given an n × n Monge matrixM , a data structure

of size O (n logn) can be constructed in O (n log2 n) time to answer submatrix maximum queries in

O (pred (n,n)) time.

3 OBTAINING LINEAR SPACE
In this section we show how to decrease the space of the data structure presented in Section 2 to be

linear. We extend the idea developed in our previous paper [17]. The previous linear space solution

was based on partitioning the matrix M into n/x matrices M1,M2, . . . ,Mn/x , where each Mi is a

slice ofM consisting of x = logn consecutive rows. Then, instead of working with the matrixM ,

we worked with the (n/x ) × n matrixM ′, whereM ′[i, j] is the maximum entry in the j-th column

ofMi .

Subcolumn queries. Consider a subcolumn query. Suppose the query is entirely contained in

someMi . This means it spans less than x = logn rows. In [17], since the desired query time was

O (logn), a query simply inspected all elements of the subcolumn. In our case however, since the

desired query time is only O (log logn), we apply the above partitioning scheme twice. We explain

this now.

We start with the following lemma, that provides an efficient data structure for queries consisting

of a single column and all rows in rectangular matrices.

Lemma 3.1 (the micro data structure). Given an x × n TM matrix and r > 0, one can construct
in O (x logn/ log r ) time, a data structure of size O (x ) that given a query column can report the
maximum entry in the entire column in O (r + pred (x ,n)) time.

Proof. Out of all n columns of the input matrixM , we will designate O (x ) columns as special
columns. For each of these special columns we will eventually compute its maximum element. The

first x special columns ofM are columns 1,n/x , 2n/x , 3n/x , . . . ,n and are denoted j1, . . . , jx .
Let X denote the x × x submatrix obtained by taking all x rows but only the x special columns

j1, . . . , jx . It is easy to verify that X is TM. We can therefore run the SMAWK algorithm [2] on

X in O (x ) time and obtain the column maxima of all special columns. Let r (j ) denote the row

containing the maximum element in column j 8. SinceM is TM, the r (j ) values are monotonically

non-decreasing. Consequently, r (j ) of a non-special column j must be between r (ji ) and r (ji+1)
where ji < j and ji+1 > j are the two special columns bracketing j (see Figure 1).

For every i , let xi = r (ji+1) − r (ji ). If xi ≤ r then no column between ji and ji+1 will ever be a
special column. When we will query such a column j we can simply check (at query-time) the r
elements of j between rows r (ji ) and r (ji+1) in O (r ) time. If, however, xi > r , then we designate

more special columns between ji and ji+1. This is done recursively on the xi × (n/x ) matrix Mi
composed of rows r (ji ), . . . , r (ji+1) and columns ji , . . . , ji+1. That is, we mark xi evenly-spread
columns of Mi as special columns, and run SMAWK in O (xi ) time on the xi × xi submatrix Xi
obtained by taking all xi rows but only these xi special columns. We continue recursively until

either xi ≤ r or the number of columns in Mi is at most r . In the latter case, before terminating,

the recursive call runs SMAWK in O (xi + r ) = O (xi ) time on the xi × r submatrix Xi obtained by

taking the xi rows and all columns ofMi (i.e., all columns ofMi will become special).

8
We assume that no elements of the matrix are equal. The ties are resolved lexicographically.
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Mixm

n

ji j ji+1

xi

r(ji)

r(ji+1)

n/x

Fig. 1. An x × n matrix inside an m × n matrix. The black columns are the first x special columns. The
(monotonically non-decreasing) gray cells inside these special columns are the column maxima (i.e., the r (ji )
values of breakpoints ji ). The maximum element of column j in the x × n matrix must be between r (ji ) and
r (ji+1) (i.e., in matrixMi ).

After the recursion terminates, every column j ofM is either special (in which case we computed

its maximum), or its maximum is known to be in one of at most r rows (these rows are specified by

the r (·) values of the two special columns bracketing j). Let s denote the total number of columns

that are marked as special. We claim that s = O (x logn/ log r ). To see this, notice that the number

of columns in every recursive call decreases by a factor of at least r and so the recursion depth

is O (logr n) = O (logn/ log r ). In every recursive level, the number of added special columns is∑
xi over all x

′
is in this level that are at least r . In every recursive level, this sum is bounded by 2x

because each one of the x rows ofM can appear in at most twoMi ’s (as the last row of one and the

first row of the other). Overall, we get 2x ·O (logn/ log r ) = O (x logn/ log r ).
Notice that s = O (x logn/ log r ) implies that the total time complexity of the above procedure is

also O (x logn/ log r ). This is because whenever we run SMAWK on a y × y matrix it takes O (y)
time and y new columns are marked as special. To complete the construction, we go over the s
special columns from left to right in O (s ) time and throw away (mark as non-special) any column

whose r (·) value is the same as that of the preceding special column. This way we are left with only

O (x ) special columns, and the difference in r (·) between consecutive special columns is at least 1

and at most r . In fact, it is easy to maintain O (x ) (and not O (s )) space during the construction by

only recursing on sub matrices Mi where xi > 1. We note that when r = 1, the eventual special

columns are exactly the set of breakpoints of the input matrixM .

The final data structure is a predecessor data structure that holds the O (x ) special columns and

their associated r (·) values. Upon query of some column j, we search in pred (x ,n) time for the

predecessor and successor of j and obtain the two r (·) values. We then search for the maximum of

column j by explicitly checking all the (at most r ) relevant rows of column j. The query time is

therefore O (r + pred (x ,n)) and the space O (x ). □

In the case of x = O (logn), using atomic heaps [14] (which support predecessor searches in

constant time) we obtain the following corollary:

Corollary 3.2. Given an x × n TM matrix, a data structure of size O (x ) can be constructed in
O (x logn) time to answer entire-column maximum queries in O (1) time, if x = O (logn).
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It is possible to use Lemma 3.1 to obtain a subcolumn data structurewith fasterO (n logn/ log logn)
preprocessing time, at the cost of slower O (logn) query time (cf. [17, Lemma 2]). We next describe

our new subcolumn data structure, which uses the above corollary and two applications of the

partitioning scheme.

Theorem 3.3. Given anm × n Monge matrixM , a data structure of size O (m) can be constructed
in O (m logn) time to answer subcolumn maximum queries in O (log log(n +m)) time.

Proof. We first partition M intom/x matrices M1,M2, . . . ,Mm/x , where x = logm. Every Mi
is a slice of M consisting of x consecutive rows. Next, we partition every Mi into x/x ′ matrices

Mi,1,Mi,2, . . . ,Mi,x ′ , where x
′ = log logm. EveryMi, j is a slice ofMi consisting of x ′ consecutive

rows (without loss of generality, assume that x dividesm and x ′ divides x ). Now we define a new

(m/x ) × n matrixM ′, whereM ′[i, j] is the maximum entry in the j-th column ofMi . Similarly, for

everyMi we define a new (x/x ′) × n matrixM ′i , whereM
′
i [j,k] is the maximum entry in the k-th

column ofMi, j .

We apply Corollary 3.2 on everyMi andMi, j in O (m logn) total time and O (m) total space, so
that any M ′[i, j] or M ′i [j,k] can be retrieved in O (1) time. Furthermore, it can be easily verified

thatM ′ and allM ′i s are also Monge. To prove this, it is enough to argue that if N is an 4 × 2 Monge

matrix, the 2 × 2 matrix N ′ created by partitioning N into two slices, each consisting of two rows,

whose elements are the maxima in every column of each slice, is also Monge. To this end, we need

to compare:

N ′[1, 1] + N ′[2, 2] = max(N [1, 1],N [2, 1]) +max(N [3, 2],N [4, 2])

and

N ′[1, 2] + N ′[2, 1] = max(N [1, 2],N [2, 2]) +max(N [3, 1],N [4, 1]).

Let max(N [1, 2],N [2, 2]) = N [i, 2], where i ∈ {1, 2}, and similarly max(N [3, 1],N [4, 1]) = N [i ′, 1],
where i ′ ∈ {3, 4}. Then

(N ′[1, 1] + N ′[2, 2]) − (N ′[1, 2] + N ′[2, 1]) ≥ (N [i, 1] + N [i ′, 2]) − (N [i, 2] + N [i ′, 1])

which is at least 0 because of N being Monge.

Therefore, because M ′ and all M ′i are all Monge, and by Corollary 3.2 their entries can be

accessed in O (1) time, we can apply Theorem 2.2 on M ′ and every M ′i . The total construction

time is O ((m/x ) log(m/x ) logn + (m/x ) (x/x ′) log(x/x ′) logn) = O (m logn), and the total size of

all structures constructed so far is O ((m/x ) log(m/x ) + (m/x ) (x/x ′) log(x/x ′)) = O (m).
Now consider a subcolumn maximum query. If the range of rows is fully within a singleMi, j ,

the query can be answered naively in O (x ′) = O (log logm) time. Otherwise, if the range of rows is

fully within a singleMi , the query can be decomposed into a prefix fully within someMi, j , an infix

corresponding to a range of rows inM ′i , and a suffix fully within someMi, j′ . The maximum in the

prefix and the suffix can be computed naively in O (x ′) = O (log logm) time, and the maximum in

the infix can be computed in O (log logn) time using the structure constructed for M ′i . Finally, if
the range of rows starts inside someMi and ends inside anotherMi′ , the query can be decomposed

into two queries fully withinMi andMi′ , respectively, which can be processed in O (log logn) time

as explained before, and an infix corresponding to a range of rows ofM ′. The maximum in the infix

can be computed in O (log logn) time using the structure constructed forM ′. □

Submatrix queries. We are ready to present the final version of our data structure. It is based

on two applications of the partitioning scheme, and an additional trick of transposing the matrix.

Theorem 3.4. Given an n × n Monge matrixM , a data structure of size O (n) can be constructed in
O (n logn) time to answer submatrix maximum queries in O (log logn) time.
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0:10 P. Gawrychowski et al.

Proof. We partitionM as described in the proof of Theorem 3.3, i.e.,M is partitioned into n/x
matricesM1,M2, . . . ,Mn/x , where x = logn, and everyMi is then partitioned into x/x ′ matrices

Mi,1,Mi,2, . . . ,Mi,x ′ , where x
′ = log logn. Then we define smaller Monge matrices M ′ and M ′i ,

and provide O (1) time access to their entries with Corollary 3.2. We apply Theorem 3.3 to the

transpose of M ′ to get a subrow maximum query data structure for M ′. This takes O (n) space
and O (n logn) time. With this data structure we can apply Theorem 2.4 on M ′, which takes an

additional O ( n
logn log

n
logn ) = O (n) space and O (n logn) time. We also apply Theorem 3.3 to the

transpose of the
n

log logn -by-n matrix obtained by stacking the
n

logn M ′i matrices. This takes O (n)

space and O (n logn) time. This serves as a subrow maximum data structure for eachM ′i , so we can

apply Theorem 2.4 to eachM ′i separately, which takes a total ofO ( n
logn

logn
log logn log(

logn
log logn )) = O (n)

additional space and O (n log logn) time.

We repeat the above preprocessing on the transpose ofM . Now consider a submatrix maximum

query. If the range of rows starts inside some Mi and ends inside another Mi′ , the query can be

decomposed into two queries fully within Mi and Mi′ , respectively, and an infix corresponding

to a range of rows of M ′. The maximum in the infix can be computed in O (log logn) time using

the structure constructed for M ′. Consequently, it is enough to show how to answer a query in

O (log logn) time when the range of rows is fully within a singleMi . In such case, if the range of

rows starts inside some Mi, j and ends inside another Mi, j′ , the query can be decomposed into a

prefix fully withinMi, j , an infix corresponding to a range of rows inM ′i and a suffix fully within

someMi, j′ . The query on the infix can be answered using the data structure forM ′i . Consequently,
we reduced the query in O (log logn) time to four queries such that the range of rows in each

query is fully within a singleMi, j . Since eachMi, j consists ofO (log logn) rows ofM , by taking the

union of the rows ofM corresponding to all theseMi, j ’s and also including the row containing the

maximum in the infixes, we have identified, in O (log logn) time, a set of O (log logn) rows of M
that contain the desired submatrix maximum.

Nowwe repeat the same procedure on the transpose ofM to identify a set ofO (log logn) columns

of M that contain the desired submatrix maximum. Since a submatrix of a Monge matrix is also

Monge, the submatrix of M corresponding to these sets of candidate rows and columns is an

O (log logn) ×O (log logn) Monge matrix. By running the SMAWK algorithm [2] in O (log logn)
time on this small Monge matrix, we can finally determine the answer. □

4 LOWER BOUND
A predecessor structure stores a set of n integers S ⊆ [0,U ), so that given x we can determine the

largest y ∈ S such that y ≤ x . As shown by Pǎtraşcu and Thorup [24], forU = n2 any predecessor

structure consisting ofO (n polylog(n)) words needs Ω(log logn) time to answer queries, assuming

that the word size is Θ(logn). We will use their result to prove that our structure is in fact optimal.

Given a set of n integers S ⊆ [0,n2) we want to construct an n × n Monge matrixM such that

the predecessor of any x in S can be found using one submatrix maximum query onM and O (1)
additional time (to decide which query to ask and then return the final answer). Then, assuming

that for any n × n Monge matrix there exists a data structure of size O (n polylog(n)) answering
submatrix maximum queries in o(log logn) time, we can construct a predecessor structure of

size O (n polylog(n)) answering queries in o(log logn) time, which is not possible. The technical

difficulty here is twofold. First, M should be Monge. Second, we are working in the indexing

model, i.e., the data structure for submatrix maximum queries should be able to access the matrix.

Therefore, for the lower bound to carry over,M should have the following property: there is a data

structure of size O (n polylog(n)) which retrieves anyM[i, j] in O (1) time. Guaranteeing that both

properties hold simultaneously is not trivial.
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Before we proceed, let us comment on the condition S ⊆ [0,n2). While quadratic universe is

enough to invoke the Ω(log logn) lower bound for structures of sizeO (n polylog(n)), our reduction
actually implies that even for larger polynomially bounded universes, i.e., S ⊆ [0,nc ), for any fixed

c , it is possible to construct an n × n Monge matrixM such that the predecessor of x in S can be

found with O (1) submatrix maximum queries onM and O (1) additional time (and, as previously,

anyM[i, j] can be retrieved in O (1) time with a structure of size O (n)). This is a consequence of
the following lemma.

Lemma 4.1. For any constant c ≥ 2, predecessor queries on a set of n integers S ⊆ [0,nc ) can be
reduced in O (1) time to O (1) predecessor queries on a set of n integers S ′ ⊆ [0,n2) with a structure of
size O (n).

Proof. First we describe a weaker version of the reduction for c = 4, where the resulting set of

integers is S ′ ⊆ [0, 3n2).
Let S = {x1,x2, . . . ,xn }. We represent every xi in base n2 as xi = yi ·n

2 +zi , where yi , zi ∈ [0,n
2).

We create a new set Y ⊆ [0,n2) storing all yis and a new set Z ⊆ [0,n2) storing all zis. For any
t ∈ [0,n2), let rankY (t ) and rankZ (t ) denote the rank of t in Y and Z , respectively, where rank is

the number of smaller elements in the set. We create another set R ⊆ [0,n2) storing elements of

the form rankY (yi ) · n + rankZ (zi ). We also create a perfect hash table of size O (n) mapping yi to
rankY (yi ) and zi to rankZ (zi ). To find the predecessor of x in S , we first represent it as x = y ·n2+z.
We claim that it is always possible to reduce locating the predecessor of x in S to the case where

y ∈ Y and z ∈ Z in two steps. Let y ′ denote the predecessor of y in Y and z ′ denote the predecessor
of z in Z .

(1) If z ′ is not defined, we decrease y by one (adjusting y ′ if necessary) and replace z by the

largest element of Z . Otherwise, we replace z by z ′.
(2) If y ′ is not defined, x has no predecessor in S . Otherwise, if y ′ , y we replace y by y ′ and z

by the largest element of Z .

Both steps maintain the predecessor of x in S and take O (1) time. Finally, having reduced the

general case so that y ∈ Y and z ∈ Z , we locate the predecessor of x ′ = rankY (y) · n + rankZ (z)
in R. Because y ∈ Y and z ∈ Z , both rankY (y) and rankZ (z) can be retrieved in O (1) time from

the perfect hash tables. The predecessor of x ′ in R corresponds to the predecessor of x in S ,
because comparing two elements of the same set is equivalent to comparing their ranks there.

Formally, xi ≤ x iff yi < y or yi = y and zi ≤ z, which is equivalent to rankY (yi ) < rankY (y)
or rankY (yi ) = rankY (y) and rankZ (zi ) ≤ rankZ (z), which because the ranks are all from [0,n)
can be stated as rankY (yi ) · n + rankZ (zi ) ≤ rankY (y) · n + rankZ (z). Consequently, a predecessor
query on S can be reduced into one predecessor query into each of Y ,Z ,R. These three sets can
be combined into a single set S ′ ⊆ [0, 3n2), such that predecessor queries in either of them can be

answered with predecessor queries on S ′, by simply shifting every element of Z by n2 and every

element of R by 2n2. Finally, the size of S ′, which is up to 3n right now, can be reduced to n as

follows. Let the elements of S ′ be x1 < x2 < . . . < x3n . We store every x3i , for i = 1, 2, . . . ,n in

the predecessor structure. Additionally, for every i we explicitly store x3i+1 and x3i+2. Knowing
the predecessor xi of x among the chosen elements allows us to find its predecessor among all

elements in O (1) time by additionally inspecting x3i+1 and x3i+2.
Now we explain how to extend the above reduction for any constant c ≥ 2, while also ensuring

that the resulting set of integers is S ′ ⊆ [0,n2). If n < 5, we answer predecessor queries naively in

O (1) time. If n ≥ 5, by modifying the above reduction so that every xi is represented as yi · n
2 + zi ,

where yi ∈ [0,n
c−2) and zi ∈ [0,n

2), we obtain a set of n integers from [0,nc−1). Hence, by iterating
c − 3 times we finally obtain a set of n integers from [0,n3). Then one final iteration, where we
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represent every xi as yi · B + zi , with yi , zi ∈ [0,B) with B = ⌈n1.5⌉, allows us to reduce the size of

the universe to 2B + n2, which is at most 2n2 for n ≥ 5. To reduce the size of the universe to n2,
we divide every xi by 2. Let the resulting set be x ′

1
< x ′

2
< . . . x ′n′ . We store a perfect hash table

mapping x ′i to x
′
i−1 (if it exists) and a list of elements x j such that ⌊x j/2⌋ = x ′i (note that there are

at most two such js). To find the predecessor of x , we then find the predecessor x ′i of ⌊x/2⌋ in the

obtained set. Then, we inspect all the elements stored on the lists of x ′i and x
′
i−1 (accessed from the

entry of x ′i in the perfect hash table) and return the largest not exceeding x in O (1) time. □

The following propositions are easy to verify:

Proposition 4.2. Anm×n matrixM is Monge iffM[i, j]+M[i +1, j +1] ≥ M[i +1, j]+M[i, j +1]
for all i = 1, 2, . . . ,m − 1 and j = 1, 2, . . . ,n − 1.

Proposition 4.3. If a matrixM is Monge, then for any vector H the matrixM ′, whereM ′[i, j] =
M[i, j] + H [j] for all i, j, is also Monge.

Proposition 4.4. If a matrix M is partial Monge, then it remains partial Monge after replacing
any element ofM by a blank, so long as the defined entries in each row and in each column remain
contiguous.

Proposition 4.5. If am-by-n matrixM is (partial) Monge, then the (m + 1)-by-n matrix resulting
by replacing any row ofM by two identical copies of that row is also (partial) Monge. An analogous
statement holds for duplicating any column ofM .

Theorem 4.6. For any set of n integers S ⊆ [0,n2), there exists a data structure of size O (n)
returning anyM[i, j] in O (1) time, whereM is a Monge matrix such that the predecessor of x can be
found using O (1) time and one submatrix maximum query onM .

Proof. We partition the universe [0,n2) inton parts [0,n), [n, 2n), . . .. The i-th part [i ·n, (i+1) ·n)
defines a Monge matrixMi consisting of 2 + |S ∩ [i · n, (i + 1) · n) | rows and n columns. The first

and the last row are artificial, and others encode the elements of S ∩ [i · n, (i + 1) · n). The idea is to
encode the predecessor of x ∈ [0,n2) by the maximum element in the (x mod n + 1)-th column

of M ⌊x/n ⌋ . We first describe how these matrices are defined, and then show how to stack them

together.

Consider any 0 ≤ i < n. Every element in S ∩ [i · n, (i + 1) · n) = {a1,a2, . . . ,ak } has a unique
corresponding row inMi . Let aj = i · n + a

′
j , so that a′

1
< a′

2
< . . . < a′k and a′j ∈ [0,n) for all j , and

also define a′k+1 = n. We describe an incremental construction of Mi . For technical reasons, we

start with an artificial top row containing n − 1,n − 2, . . . , 1. Then we add the rows corresponding

to a′
1
,a′

2
, . . . ,a′k . The row corresponding to a′j consists of three parts. The middle part starts at the

(a′j + 1)-th column, ends at the a′j+1-th column, and contains only n’s. The elements in the left part

increase by 1 and end with n − 1 at the a′j -th column, similarly the elements in the right part (if

any) start with n − 1 at the (a′j+1 + 1)-th column and decrease by 1. Formally, the k-th element of

the (j + 1)-th row, denotedMi [j + 1,k], is defined as follows.

Mi [j + 1,k] =




n − 1 − a′j + k if k ∈ [1,a′j ]

n if k ∈ [a′j + 1,a
′
j+1]

n − k + a′j+1 if k ∈ [a′j+1 + 1,n]

(1)

Finally, we end with an artificial bottom row containing 1, 2, . . . ,n. See Figure 2 for an example.

We need to argue that everyMi is Monge. By Proposition 4.2, it is enough to consider every pair of

adjacent rows r1, r2 there. Define r
′
1
[j] = r1[j] − r1[j − 1] and similarly r ′

2
[j] = r2[j] − r2[j − 1]. To

prove thatMi is Monge, it is enough to argue that r ′
2
[j] ≥ r ′

1
[j] for all j ≥ 2. By construction, both
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r ′
1
and r ′

2
are of the form 1, 1, . . . , 1, 0, 0, . . . , 0,−1,−1, . . . ,−1, and all 0’s in r ′

2
are on the right of all

0’s in r ′
1
. Therefore,Mi is Monge.

Now one can observe that the predecessor of x ∈ [0,n2) can be found by looking at the (x mod n+
1)-th column ofM ⌊x/n ⌋ . We check if x < a1, and if so return the predecessor of a1 in the whole S .
This can be done inO (1) time andO (n) additional space by explicitly storing a1 and its predecessor
for every i . Otherwise we know that the predecessor of x is aj such that x mod n ∈ [a′j ,a

′
j+1), and,

by construction, we only need to find j ∈ [1,k] such that the (x mod n + 1)-th element of row j + 1
inMi is n. This is exactly a subcolumn maximum query.

We cannot simply concatenate allMi ’s to form a larger Monge matrix. We use Proposition 4.3

instead. Initially, we set M = M0. Then we consider every other Mi one-by-one maintaining

invariant that the currentM is Monge and its last row is 1, 2, . . . ,n. In every step we add the vector

H = [n − 1,n − 3, . . . ,−n + 1] to the current matrix M , obtaining a matrix M ′ whose last row is

n,n − 1, . . . , 1. By Proposition 4.3,M ′ is Monge. Then we can construct the newM by appending

Mi without its first row toM ′. Because the first row ofMi is also n − 1,n − 2, . . . , 1, the newM is

also Monge. Furthermore, because we add the same value to all elements in the same column ofMi ,

answering subcolumn maximum queries onMi can be done with subcolumn maximum queries on

the finalM . The right side of Figure 2 depicts the final Monge matrixM .

We need to argue that elements ofM can be accessed in O (1) time using a data structure of size

O (n). To retrieveM[j,k], first we lookup in O (1) time the appropriateMi from which it originates.

This can be preprocessed and stored for every j in O (n) total space and allows us to reduce the

question to retrieving Mi [j
′,k]. Because Proposition 4.3 is applied exactly n − 1 − i times after

appendingMi to the currentM , then we can returnMi [j
′,k] + (n − 1 − i ) · H [k]. To findMi [j

′,k],
we just directly use Equation 1, which requires only storing a′

1
,a′

2
, . . . ,a′n in O (n) total space. □

5 DATA STRUCTURE FOR PARTIAL MONGE MATRICES
Our goal in this section is to extend the solution described in Section 3 to partial Monge matrices.

Recall that in a partial Monge matrixM , for any i < j and k < ℓ, the conditionM[i,k] +M[j, ℓ] ≥
M[i, ℓ] +M[j,k] holds only if all ofM[i,k],M[j, ℓ],M[i, ℓ],M[j,k] are defined. Not all entries inM
are defined, but the defined entries in every row and every column are contiguous. Let si and ti
denote the first and last columns containing defined entries in the i’th row respectively. We assume

that we know the coordinates of at least one of the defined entries. This allows us to find all si ’s
and ti ’s in O (n logn) time.

The following Lemma states that we can implicitly fill appropriate constants instead of the

undefined (blank) entries to turn a partial Monge matrix into a full Monge matrix:

Lemma 5.1. The blank entries in anm × n partial Monge matrixM can be implicitly replaced in
O (m + n) time so thatM becomes Monge and eachMi j can be returned in O (1) time.

Proof. Let si (resp. ti ) denote the index of the leftmost (resp. rightmost) column that is defined

in row i . Since the defined (non-blank) entries of each row and column are continuous we have

that the sequence s1, s2, . . . , sm starts with a non-increasing prefix s1 ≥ s2 ≥ . . . ≥ sa and ends with

a non-decreasing suffix sa ≤ sa+1 ≤ . . . ≤ sm . Similarly, the sequence t1, t2, . . . , tn starts with a

non-decreasing prefix t1 ≤ t2 ≤ . . . ≤ tb and ends with a non-increasing suffix tb ≥ tb+1 ≥ . . . ≥ tm .

We partition the blank region of M into four regions: (I) entries that are above and to the left

ofM[i, si ] for i = 1, . . . ,a, (II) entries that are below and to the left ofM[i, si ] for i = a + 1, . . . ,m,

(III) entries that are above and to the right of M[i, ti ] for i = 1, . . . ,b, (IV) entries that are below
and to the right ofM[i, ti ] for i = b + 1, . . . ,n. We first describe how to replace all entries in region
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M0 =



8 7 6 5 4 3 2 1

5 6 7 8 8 8 8 8

1 2 3 4 5 6 7 8



M1 =

[
8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8

]

M2 =



8 7 6 5 4 3 2 1

6 7 8 8 8 7 6 5

3 4 5 6 7 8 7 6

2 3 4 5 6 7 8 8

1 2 3 4 5 6 7 8



M3 =

[
8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8

]

M4 =

[
8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8

]

M5 =



8 7 6 5 4 3 2 1

6 7 8 8 8 8 7 6

2 3 4 5 6 7 8 8

1 2 3 4 5 6 7 8



M6 =

[
8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8

]

M7 =



8 7 6 5 4 3 2 1

7 8 8 8 7 6 5 4

4 5 6 7 8 8 8 8

1 2 3 4 5 6 7 8



M =



57 42 27 12 −3 −18 −33 −48

54 41 28 15 1 −13 −27 −41

50 37 24 11 −2 −15 −28 −41

43 32 21 10 −1 −12 −23 −34

41 32 23 13 3 −8 −19 −30

38 29 20 11 2 −7 −18 −29

37 28 19 10 1 −8 −17 −27

36 27 18 9 0 −9 −18 −27

29 22 15 8 1 −6 −13 −20

22 17 12 7 2 −3 −8 −13

20 17 14 10 6 2 −3 −8

16 13 10 7 4 1 −2 −6

15 12 9 6 3 0 −3 −6

8 7 6 5 4 3 2 1

7 8 8 8 7 6 5 4

4 5 6 7 8 8 8 8

1 2 3 4 5 6 7 8



Fig. 2. Reduction for n = 8 and S = {8 · 0 + 3, 8 · 2 + 2, 8 · 2 + 5, 8 · 2 + 6, 8 · 5 + 2, 8 · 5 + 6, 8 · 7 + 1, 8 · 7 + 4}.

I to make them non-blank and obtain a valid partial Monge matrix (whose blank entries are only in

regions II, III, and IV). The remaining regions are handled in a similar manner, one after the other.

We describe our method for filling in the blank entries in region I in two steps. In the first step we

show how to implicitly fill in the blanks in a lower right triangular Monge matrix so that each filled

blank entry can be computed in O (1) time. By a lower right triangular Monge matrix we mean a

partial Monge square matrix with n rows and columns, such that, for all 1 ≤ i ≤ n, si = n − i + 1. In
the second step we explain that anym-by-n partial Monge matrix whose blank entries are in region

I can be turned into a lower right triangular Monge matrix with at mostm + n rows and columns.

The only operations used in the transformation are duplicating rows, duplicating columns, and

turning elements into blanks. We will show an O (m + n) procedure for computing two tables. One

specifying, for each row index 1 ≤ i ≤ m, the corresponding row index in the larger O (m + n)
triangular matrix. The second is an analogous table for the columns indices. The lemma then

follows for the blank entries in region I. The other regions are treated by reducing to the region I

case, one after the other.

We now describe how to fill in the blank regions in a lower right triangular Monge matrix. Let

W denote the largest absolute value of any non-blank entry in M (We can findW by applying

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0. Publication date: 2017.



Submatrix MaximumQueries in Monge Matrices 0:15

the algorithm of Klawe and Kleitman [20]). Intuitively, we would like to make everyM[i, j] in the

upper left triangle very large. However, we cannot simply assign the same large value to all of them,

because then the Monge inequality would not be guaranteed to hold if more than one of the four

considered elements belongs to the replaced part of the matrix. A closer look at all possible cases

shows that setting all the entries of each diagonal to the same value does work. More precisely, we

replace the blank elementM[i, j] with 3W [2(n − i − j ) + 1]. Thus, each element in the first diagonal

off the main diagonal (i + j = n) is set to 3W , the elements of the second diagonal off the main

diagonal are set to 9W , etc. Note that the maximum element in the resulting matrix is O (nW ). To
prove that the resulting new matrixM ′ is Monge, it suffices, by Proposition 4.2, to show that, for

all 1 ≤ i,k < n,M ′[i,k] +M ′[i + 1,k + 1] −M ′[i,k + 1] −M ′[i + 1,k] ≥ 0. To this end we consider

the following cases:

(1) i+k > n, so allM[i,k],M[i+1,k+1],M[i,k+1],M[i+1,k] are non-blank, and the inequality
holds becauseM is partial Monge.

(2) i + k = n, soM[i,k] is blank andM[i + 1,k + 1],M[i,k + 1],M[i + 1,k] are non-blank. Then
M ′[i,k] +M ′[i + 1,k + 1] −M ′[i,k + 1] −M ′[i + 1,k] = 3W +M ′[i + 1,k + 1] −M ′[i,k +
1] −M ′[i + 1,k] ≥ 3W − 3W = 0.

(3) i + k = n − 1, so M[i,k],M[i,k + 1],M[i + 1,k] are blank, and M[i + 1,k + 1] is non-blank.
Then

M ′[i,k] +M ′[i + 1,k + 1] −M ′[i,k + 1] −M ′[i + 1,k] = 9W +M[i + 1,k + 1] − 3W − 3W ≥
3W −W ≥ 0.

(4) i + k < n − 1, so allM[i,k],M[i + 1,k + 1],M[i,k + 1],M[i + 1,k] are blank. Then,
M ′[i,k] +M ′[i + 1,k + 1] −M ′[i,k + 1] −M ′[i + 1,k] = 0.

Hence the new matrixM ′ is indeed Monge.

Next, we describe how to turn anym-by-n partial Monge matrix M whose blank entries are

in region I into a slightly larger lower right triangular matrix M ′. This is done by duplicating

some rows or columns of M and replacing by blanks a nonempty prefix in all but a single copy.

Thus, each row r (column c) of M has at least one appearance in M ′ in which no elements are

replaced by blanks. We say that r (c) is mapped to such an appearance in M ′. Propositions 4.4
and 4.5 guarantee thatM ′ is partial Monge. For ease of presentation we describe the process as if

we actually transform theM intoM ′, although in reality we only need to compute the mappings of

rows and columns.

The assumption that the blank entries are in region I implies that s1 ≥ s2 ≥ · · · ≥ sm = 1 and

that t1 = t2 = · · · = tm = n. We first guarantee that the si ’s are strictly decreasing. We do this by

iterating through the si ’s. If si = si−1, we duplicate the column si of M (i.e., shift all columns at

indices greater than i by one position, and insert a copy of column si at the vacant index si + 1),
make M[i − 1, si ] blank, and mark the column currently at index si as a duplicate (the index of

this column might change later if columns with smaller indices will be duplicated). This column

duplication has the effect of increasing by 1 all sj ’s for j < i . Let M ′ denote the matrix obtained

fromM at the end of this process, and let s ′i denote the index of the first defined entry in row i of
M ′. IfM ′ does not havem + n columns, we insert a sufficient number of copies of first column of

M ′ to make it so. We construct a table c[·] which keeps track of the mapping of columns ofM to

M ′ by recording for each non-duplicate row its original index in M and its index in M ′. Clearly,
computing c[·] and the indices s ′i ’s can be done in O (m) time without actually duplicating the

columns. See Figure 3 (middle) for an illustration.

We will further modify M ′ and use a table r [·] to keep track of the mapping from rows of M
to rows of M ′. For convenience, we define s ′

0
= m + n + 1, and r [0] = 0. We iterate through the

sequence s ′
1
, s ′

2
, . . . , s ′m . We add toM ′ s ′i−1−s

′
i copies of row i ofM ′, and, for j = 1, 2, . . . , s ′i−1−s

′
i −1,
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replace the prefix of length j from the j’th copy by blanks, so only the last copy remains unchanged.

We therefore set r [i] to r [i − 1] + s ′i−1 − s
′
i . Clearly, we can compute the table r [·] in O (m + n) time

without actually modifyingM ′. See Figure 3 (right) for an illustration.

Fig. 3. A staircase matrixM is transformed into a triangular matrixM ′ in two steps by duplicating columns
and rows. Defined entries are gray, undefined white, and duplicated columns/rows black.

Finally, to obtain the value with which the blank entry at M[i, j] should be replaced when

convertingM into a full Monge matrix, we return 3W [2(m + n − r [i] − c[j]) + 1].
Regions II, III, and IV can be handled symmetrically to region I. To handle undefined entries in

region II, we implicitly reverse the order of the rows and negate all the elements of the matrix. It

is easy to verify that the resulting matrix is Monge with undefined entries in region I. We then

implicitly fill in the undefined values using the method described above, negate all the elements

and revert the order of rows to its original order. The transformation for region III is reversing the

order of columns and negating all elements, and the transformation for region IV is reversing the

order of both rows and columns. Note that to makeM full Monge we first need to fill the blanks

in region I, then calculate the new value ofW and fill the blanks in region II accordingly, and so

on. □

For subcolumn (or subrow) maximum queries, the above lemma implies that we can handle

partial Monge matrices in the same bounds as full Monge matrices (i.e., the bounds of Theorem 3.3

and Corollary 3.2 also apply to partial Monge matrices). Upon subcolumn query (a column c and a

range of rows R) we first restrict R to the defined entries in the column c and only then query the

data structure.

For submatrix queries however, this trick only works if the query range is entirely defined. In

general, it does not work because the defined entries in the query range do not necessarily form a

submatrix. Handling submatrix queries is therefore more complicated. Our solution is based on the

following decomposition.

5.1 Decomposing a partial Monge matrix into staircase matrices
Our data structure relies on a decomposition ofM into staircasematrices. A partial matrix is staircase

if the defined entries in its rows either all begin in the first column and the ti s are monotone, or all

end in the last column and the si s are monotone. It is well known (cf. [1]) that by cuttingM along

columns and rows, it can be decomposed into staircase matrices {Mi } such that each row is covered

by at most two matrices, and each column is covered by at most three matrices. For completeness,

we describe such a decomposition below.
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Lemma 5.2. A partial matrixM can be decomposed into staircase matrices {Mi } such that each row
is covered by at most two matrices, and each column is covered by at most three matrices.

Proof. Let si and ti denote the smallest and largest column index in which an element in row

i is defined, respectively. The fact that the defined entries ofM are contiguous in both rows and

columns implies that the sequence s1, s2, . . . , sm consists of a non-increasing prefix and a non-

decreasing suffix. Similarly, the sequence t1, t2, . . . , tm consists of a non-decreasing prefix and a

non-increasing suffix. It follows that the rows ofM can be divided into three ranges - a prefix where

s is non-increasing and t is non-decreasing, an infix where both s and t have the same monotonicity

property, and a suffix where s is non-decreasing and t is non-increasing. The defined entries in

the prefix of the rows can be divided into two staircase matrices by splitting M at t1, the largest
column where the first row has a defined entry. Similarly, the defined entries in the suffix of the

rows can be divided into two staircase matrices by splitting it at tm , the largest column where the

last row has a defined entry. The defined entries in the infix of the rows form a double staircase

matrix. It can be broken into staircase matrices by dividing along alternating rows and columns as

shown in Figure 4.

Fig. 4. A decomposition of a partial matrix (where the defined entries are gray and the undefined white) into
staircase matrices (defined by solid thick black lines) and into blocks of consecutive columns with the same
defined entries (indicated by thin vertical red lines).

It is easy to verify that, in the resulting decomposition, each row is covered by at most two

staircase matrices, and each column is covered by at most three staircase matrices. Also note that

every set of consecutive columns whose defined elements are in exactly the same set of rows are

covered in this decomposition by the same three row-disjoint staircase matrices. □

Before we use the above decomposition for our data structure, we show how it can be used to

prove that, if M is anm × n TM (or Monge) staircase matrix, then the number of breakpoints of
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M is O (m). This result illustrates the use of the decomposition, it was used in the data structure

of [17], and we believe is of independent interest.

Theorem 5.3. LetM be a partialm ×n matrix in which the defined entries in each row and in each
column are contiguous. IfM is TM (i.e., for all i < j,k < ℓ whereM[i,k],M[i, ℓ],M[j,k],M[j, ℓ] are
all defined,M[i,k] ≤ M[j,k] =⇒ M[i, ℓ] ≤ M[j, ℓ]), then the number of breakpoints ofM is O (m).

Proof. We first show that the number of breakpoints of anm × n TM staircase matrix is at most

2m. We focus on the case where the defined entries of all rows begin in the first column and end in

non-decreasing columns. In other words, for all i , si=1 and ti ≤ ti+1. The other cases are symmetric.

A breakpoint is a situation where the maximum in column c is at row r1 and the maximum in

column c + 1 is at a different row r2. We say that r1 is the departure row of the breakpoint, and r2
is the entry row of the breakpoint. There are two types of breakpoints: decreasing (r1 < r2), and
increasing (r1 > r2). We show that (1) each row can be the entry row of at most one decreasing

breakpoint, and (2) each row can be the departure row of at most one increasing breakpoint.

(1) Assume that row r2 is an entry row of two decreasing breakpoints: One is the pair of

entries (r1, c1), (r2, c1 + 1) and the other is the pair (r3, c2), (r2, c2 + 1). We know that r1 < r2,
r3 < r2, and wlog c2 > c1 + 1. Since the maximum in column c1 + 1 is in row r2, we have
M[r3, c1 + 1] < M[r2, c1 + 1]. However, since the maximum in column c2 is in row r3, we
haveM[r3, c2] > M[r2, c2], contradicting the total monotonicity ofM . Note thatM[r2, c2] is
defined sinceM[r2, c2 + 1] is defined.

(2) Assume that row r1 is a departure row of two increasing breakpoints: One is the pair of entries

(r1, c1), (r2, c1 + 1) and the other is the pair (r1, c2), (r3, c2 + 1). We know that r1 > r2 and
r1 > r3. Since the maximum in column c1 is in row r1, we haveM[r2, c1] < M[r1, c1]. However,
since the maximum in column c1 + 1 is in row r2, we have M[r2, c1 + 1] > M[r1, c1 + 1],

contradicting the total monotonicity ofM . Note thatM[r1, c1 + 1] is defined sinceM[r1, c2] is
defined.

The above two claims prove that the number of breakpoints of a staircase matrix is at most 2m.

We use this fact, and the above decomposition to staircase matrices to prove an O (m) bound for

arbitrary partial matrices.

Let bp (Mi ) denote the number of breakpoints in matrixMi . Letmi denote the number of rows

inMi . Since each row appears in at most twoMi s,
∑

imi = O (m). The total number of breakpoints

in allMi s is O (m) since
∑

i bp (Mi ) =
∑

i O (mi ) = O (m).
Consider now a partition ofM into rectangular blocks Bj defined by maximal sets of contiguous

columns whose defined entries are at the same set of rows, see Figure 4. There are O (m) such
blocks. Notice that the number of breakpoints ofM is bp (M ) =

∑
j bp (Bj ) +O (m) (the O (m) term

accounts for the possibility of a new breakpoint between every two consecutive blocks). Therefore,

it suffices to bound

∑
j bp (Bj ).

Consider some block Bj . As we mentioned above, the columns of Bj appear in at most three

row-disjoint staircase matricesM1,M2,M3, in the decomposition ofM . The column maxima of Bj
are a subset of the column maxima ofM1,M2,M3. Assume wlog that the indices of rows covered

byMi are smaller than those covered byMi+1 for every i = 1, 2.
The breakpoints of Bj are either breakpoints ofM1,M2,M3, or breakpoints that occur when the

maxima in consecutive columns of Bj originate in differentMi . However, since Bj is a (non-partial)
TM matrix, its column maxima are monotone. So once a column maximum originates in Mi , no

maximum in greater columns will ever originate in Mj for j < i . It follows that the number of

breakpoints in Bj that are not breakpoints ofM1,M2,M3 is at most two. Since there areO (m) blocks,∑
j bp (Bj ) ≤

∑
i bp (Mi ) +O (m) = O (m). This completes the proof of Theorem 5.3. □
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5.2 The data structure
We begin with a weaker result (Theorem 5.5), which is that one can answer submatrix maximum

queries on an n × n staircase matrix inO (log logn) time with a structure of sizeO (n logn). We will

then (Theorem 5.7) show how to reduce the space toO (n), and finally (Theorem 5.8) how to handle

arbitrary partial Monge matrices using the decomposition into staircase matrices.

We will need the following preliminary lemma, that follows quite easily from the persistent

predecessor structure of Chan [8].

Lemma 5.4. A collection S of O (n) weighted points on an n × n grid can be preprocessed in
O (n log logn) time andO (n) space, so that, given any (x ,y), the maximum weight of a point (x ′,y ′) ∈
S such that x ′ ≥ x and y ′ ≥ y can be calculated in O (log logn) time.

Proof. We use the standard geometric idea of sweeping the grid with a horizontal line while

maintaining a data structure describing the current situation. The data structure is made partially

persistent so that after sweeping, given a query (x ,y), we can retrieve the version of the structure

corresponding to a horizontal line passing through (x ,y). Querying that version of the data structure
will allow us to answer the request. The data structurewill be a predecessor structuremade persistent

using the result of Chan [8]. See Theorem 5 of [22] for a more detailed description of a similar

lemma.

Denote the points by (xi ,yi ) and their corresponding weights bywi . We assume that the weights

are distinct. We sweep the grid with a horizontal line starting at y = n. The predecessor structure
stores x-coordinates of some of the already seen points. Coordinate xi is stored in the predecessor

structure iff yi ≥ y and there is no i ′ such that yi′ ≥ y, xi′ ≥ xi and wi′ > wi . This is because

otherwise the i ′-th point is a better answer than the i-th point for any query processed using this or

any future version of the data structure. Consequently, the points whose x-coordinates are stored
in the predecessor structure can be arranged so that their x-coordinates are increasing and the

weights decreasing. Then it follows that locating the maximum weight of a point (x ′,y ′) ∈ S such

that x ′ ≥ x and y ′ ≥ y can be done by finding the successor of x in the version of the predecessor

structure corresponding to y. Maintaining the structure while sweeping the grid is also done with

a predecessor search. After having seen a new point (xi ,yi ) we locate the predecessor of xi . If the
weight of the corresponding point is smaller thanwi , we remove it from the structure and repeat.

A persistent predecessor search structure can be implemented in space O (n) while keeping the
query time O (log logn) [8]. Consequently, we can build in O (n log logn) time a structure of size

O (n) answering queries in O (log logn) time. □

Theorem 5.5. Given an n × n staircase Monge matrix M , a data structure of size O (n logn) can be
constructed in O (n logn) time to answer submatrix maximum queries in O (log logn) time.

Proof. Because of left-right symmetry, we can assume that the defined entries in row i start in
the first column and end in column ti . Notice that either t1 ≤ t2 ≤ . . . ≤ tn or t1 ≥ t2 ≥ . . . ≥ tn .
Without loss of generality we will assume the latter. This is enough because we will not be explicitly

using the Monge property in our solution, except for applying Theorem 3.4 on a copy ofM (called

M̃) where the undefined entries are appropriately filled.

We partition M into full Monge matrices using a standard method: First, create a full Monge

matrix by taking the upper-left fragment [1,n/2] × [1, tn/2] of M . Then, recursively decompose

the staircase matrices created by taking the upper-right fragment [1,n/2] × [tn/2 + 1,n] and the

lower-left fragment [n/2+1,n]× [1,n] ofM . See Figure 5. It is easy to verify that the decomposition

consists of at most 2n full Monge matrices (called fragments). The decomposition has other useful

properties on which we elaborate further.
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i0

i1

j0 j1

A

B

C

j’

i’

(b) (c)(a)

Fig. 5. (a) A staircase n × n Monge matrix partitioned into 2n smaller full Monge matrices (fragments). (b) A
query range [i0, i1] × [j0, j1] decomposed into two full Monge matrices A and B and one dominance query C .
(c) The dominance query as vertical and horizontal lines (the green fragment is fully inside the range and the
blue and red fragment intersect the horizontal line).

Consider a query range [i0, i1]× [j0, j1]. To find the maximum (defined)M[i, j] over all i ∈ [i0, i1]
and j ∈ [j0, j1] we proceed as follows. The simple case is when the query range is fully within the

defined part ofM . To handle this case, we apply Theorem 3.4 on a copy ofM (denoted M̃) where

the undefined entries are appropriately (and implicitly) filled using Lemma 5.1. This allows us to

do submatrix queries in O (log logn) time when the query range is fully defined. Otherwise, we

decompose the query into three parts. The first part, which we call a dominance maximum query, is
to find the maximumM[i, j] over all i ≥ i ′ and j ≥ j ′, for i ′, j ′ to be defined shortly. The other two

are submatrix maximum queries fully within the defined part ofM (and hence can be processed

by querying the structure built for M̃ in O (log logn) time). The decomposition is performed in

O (1) time by setting j ′ = ti1+1 + 1 and choosing the smallest i ′ ≥ i0 such that ti′ < j1 (which can

be preprocessed for every possible j1 in O (n) space). The two submatrix maximum queries are

therefore over the full Monge matrices [i0, i1]× [j0, j
′−1] and [i0, i

′−1]× [j ′, j1]. Hence, it is enough
to focus on answering dominance maximum queries.

To answer a dominance maximum query (i.e., to find the maximum M[i, j] over all i ≥ i ′ and
j ≥ j ′) we use the partition of M into full Monge matrices (fragments). Every such fragment is

either fully inside the query range, fully outside of the query range, or intersected by the query

range boundary.

Fragments inside the query range. A fragment [r0, r1]× [c0, c1] is fully inside the query range
iff r0 ≥ i ′ and c0 ≥ j ′. This observation allows us to reduce computing the maximum over all

matrices fully inside the query to the problem defined in Lemma 5.4. The reduction is simply that

for every fragment [r0, r1] × [c0, c1] we create a point (r0, c0) and set its weight to be the maximum

inside the fragment. As a result, we create at mostO (n) points on the n ×n grid. Using Theorem 2.4

on M̃ to create every point separately takes total O (n log logn) in the preprocessing time, so in

O (n log logn) time we can construct a structure of sizeO (n) answering queries inO (log logn) time.

Fragments intersected by the query range. We are left only with finding the maximum over

all fragments intersected by the boundary of our dominance maximum query. We partition these

fragments into three groups. The first consists of the single fragment containing M[i ′, j ′]. The

maximum there can be found with a submatrix maximum query on M̃ in O (log logn) time. All

other fragments intersected by the boundary are either intersected by the horizontal line y = i ′
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or the vertical line x = j ′, but not both. We show how to find the maximum over all matrices

intersected by the horizontal line y = i ′ and fully to the right of the vertical line x = j ′ (the other
case is symmetric).

By the properties of our decomposition scheme, there are at most logn fragments intersected by

any horizontal line, and they can be arranged in the natural left-to-right order. For every possible

horizontal line, we store these at most logn fragments in an array. For every fragment we store the

coordinates of its corresponding submatrix ofM and the maximum in all of its entries below the

horizontal line. The array is additionally equipped with the maximum over all maxima in each one

of its suffixes. Such preprocessed data allows us to find the maximum over all fragments intersected

by a horizontal line y = i ′ and fully on the right of a vertical line x = j ′ in O (log logn) time: First,

we binary search over the array stored for y = i ′ to locate the leftmost fragment completely on the

right of x = j ′. Then we return the stored corresponding maximum. Notice that the binary search

also allow us to locate the fragment containing M[i ′, j ′]. Consequently, the whole query time is

O (log logn) using O (n logn) space for this part of the implementation. To guarantee O (n logn)
preprocessing time, we run the SMAWK algorithm on every fragment in the decomposition in total

O (n logn) time. This gives us the maximum in every row of every fragment. This is then enough

to construct all arrays in O (n logn) time. □

We now proceed to improving Theorem 5.5 so that the structure needs just linear space. The

main idea is to partition the n × n staircase matrixM into cells of size logn × logn and then define

a new smaller (n/ logn) × (n/ logn) staircase matrixM ′ (whose entries correspond to cell-maxima

in M) on which we apply Theorem 5.5. To implement this idea we need a number of additional

auxiliary data structures, which take O (n) space in total. We start with an auxiliary lemma, which

will be used to provide constant-time access to entries ofM ′.

Lemma 5.6. Given an n × n Monge matrixM partitioned into logn × logn cells, a data structure of
size O (n) can be constructed in O (n logn) time to find the maximum in a given cell in O (1) time.

Proof. We partition M into n/ logn horizontal slices, each consisting of logn rows (and all

columns). Consider a single slice, which is a logn × n Monge matrix. We store its breakpoints

c1 < c2 < . . . < ck (where k ≤ logn) in an atomic heap, consequently allowing predecessor queries

in O (1) time (this is exactly how the structure from Corollary 3.2 works). Additionally, similarly to

Lemma 2.3, for every i ≥ 2 we precompute the value of

mi = max

j ∈[ci−1,ci )
M[r (ci−1), j]

and augment these values with a (one dimensional) range maximum data structure. Here, r (c )
denotes the row containing the maximum element in the c-th column of the slice in question. Using

two predecessor queries and one range maximum query, the problem of finding the maximum in a

given cell (which is fully contained in a single horizontal slice) reduces in O (1) time to finding the

maximum in at most two rows. The total space is O (n/ logn · logn) = O (n) and the bottleneck in

the preprocessing is computing the breakpoints for all slices. The breakpoints of a single slice can

be computed in O (log2 n) by adding one row at a time, as done in the proof of Lemma 2.1. In total,

this takes O (n/ logn · log2 n) = O (n logn) total time.

We repeat the above reasoning on the transpose ofM . As a result, we either already know the

maximum element, or we have isolated at most two rows and at most two columns, such that the

maximum lies in one of these rows and one of these columns. This gives us at most four candidates

for the maximum, which can be retrieved and compared naively. □

We are now ready to present our linear-space improvement to Theorem 5.5.
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Theorem 5.7. Given an n × n staircase Monge matrix M , a data structure of size O (n) can be
constructed in O (n logn) time to answer submatrix maximum queries in O (log logn) time.

Proof. As in the proof of Theorem 5.5, we can assume that the defined entries in row i start in
the first column and end in column ti , and that t1 ≥ t2 ≥ . . . ≥ tn .
We partition M into cells of size logn × logn and then define a smaller (n/ logn) × (n/ logn)

staircase matrixM ′. Notice that, unlike Lemma 5.6,M is a staircase Monge matrix (and not a full

Monge matrix). This means that there are three types of cells inM : fully defined, partially defined,

and fully undefined. An entry ofM ′ is defined iff its corresponding cell inM is fully defined. In this

case the entry is equal to the maximum in the corresponding cell. The undefined entries of M ′ are
the ones corresponding to either partially defined or fully undefined cells ofM . We appropriately

(and implicitly) fill these entries using Lemma 5.1 to turnM ’ into a full Monge matrix M̃ ′, on which

we apply Lemma 5.6. This gives us constant-time access to the entries ofM ′, so finally we can apply

Theorem 5.5 to preprocess it in O (n) space and O (n logn) time to answer submatrix maximum

queries in O (log logn) time.

Regarding partially defined cells, we observe that there are at most 2n/ logn of them. Furthermore,

they can be arranged in a linear order, so that if the part ofM corresponding to the i-th partially

defined cell is [ri , r
′
i ]×[ci , c

′
i ], then for all i either [ri , r

′
i ] = [ri+1, r

′
i+1] and c

′
i +1 = ci+1 or ri = r

′
i+1+1

and [ci , c
′
i ] = [ci+1, c

′
i+1] (to be more precise, we might need to declare some fully defined cells

partially defined to guarantee this property). We create a predecessor structure storing all ri s and a

separate predecessor structure storing all cis. We also compute the maximum in every partially

defined cell and store them in an array (arranged in the aforementioned linear order) augmented

with a (one dimensional) range maximum structure. Computing the maximum in all partially

defined cells is done in O (n/ logn · logn · α (logn)) = O (n · α (logn)) time using [20].

By the same reasoning given in the proof of Theorem 5.5, it is enough to implement dominance

maximum queries on M . A dominance maximum query can be decomposed into (i) a dominance

maximum query on M̃ ′, which can be answered in O (log logn) time, (ii) finding the maximum

inside all partially defined cells fully within the query range, and (iii) finding the maximum inside

partially defined cells intersected by the boundaries of the query range. All partially defined cells

fully within the query range create a contiguous interval in the linear order. The range can be

determined in O (log logn) using the predecessor structures storing all ris and cis, and then the

maximum can be found inO (1) time with a (one dimensional) range maximum query. It remains to

calculate the maximum inside partially defined cells intersected by the boundaries of the query

range. We will describe how to process all partially defined cells intersected by the horizontal

boundary. Handling the vertical boundary is symmetric.

Let the dominance maximum query be specified by (i ′, j ′). We want to compute the maximum

inside the query range and belonging to a partially defined cell intersected by the horizontal line

y = i ′. All such cells create a contiguous interval in the linear order, which can be determined

with two predecessor queries inO (log logn) time. In the same complexity, we can find the leftmost

such cell u which is not fully on the left of the vertical line x = j ′. We decompose the original

query into a dominance maximum query inside u, and the remaining part. The remaining part

starts at a left boundary of a partially defined cell and consists of the entries at or below y = i ′

in all partially defined cells to the right of u. Consequently, the answer can be preprocessed for

every point on a left boundary of a partially defined cell using O (n/ logn · logn) = O (n) space and
O (n/ logn · logn · α (logn)) = O (n · α (logn)) time using [20]. The bottleneck in the preprocessing

is computing the maximum in every row of every partially defined cell.

It remains to describe how to handle the dominance query in u. In other words, after construct-

ing in O (n logn) time an O (n) size structure, we have, in O (log logn) time, reduced an arbitrary
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dominance maximum query into a dominance maximum query inside a single partially defined cell.

This cell is a smaller logn × logn staircase matrix, and furthermore there are at most 2n/ logn such

cells. By recursing on each of these smaller staircase matrices separately, we construct in additional

O (n/ logn · logn log logn) = O (n log logn) time anO (n/ logn · logn) = O (n) size structure, which
reduces the original dominance query, in additional O (log log logn) time, into a dominance max-

imum query inside one of O (n/ logn · logn/ log logn) = O (n/ log logn) tiny log logn × log logn
staircase matrices (each of them being a submatrix of the originalM). By recursing again on every

tiny staircase matrix separately, we construct in additionalO (n log log logn) time anO (n) size struc-
ture, which reduces the original arbitrary dominance query in additional O (log log log logn) time

into a dominance maximum query inside an (log log logn) × (log log logn) submatrix ofM . Such

dominance maximum query can be answered naively resulting in O (log logn + (log log logn)2) =
O (log logn) total query time. □

We are now ready to prove the main theorem of this section, which is that using Theorem 5.7

we can actually implement submatrix maximum queries on arbitrary (and not just staircase) partial

Monge matrices. The idea is to partition the partial Monge matrix into staircase matrices, so that

each row and each column belong to O (1) staircase matrices. Such partitioning was used in [1, 17]

. We build the data structure of Theorem 5.7 on each staircase matrix in the decomposition, and

build an additional data structure for queries spanning more than one staircase matrix.

Theorem 5.8. Given an n × n partial Monge matrix M , a data structure of size O (n) can be
constructed in O (n logn) time to answer submatrix maximum queries in O (log logn) time.

Proof. We partition M into staircase matrices as done in the proof of Lemma 5.2 (depicted

in Figure 4). Recall that the partition divides the rows of M into three ranges. The first range

contributes two staircase matrices, the second range creates a double staircase matrix, which

is further broken into multiple staircase matrices, and the third range contributes two staircase

matrices. It is easy to verify that, in the resulting decomposition, each row is covered by at most

two staircase matrices, and each column is covered by at most three staircase matrices. Additionally,

the staircase matrices contributed by the second range can be partitioned into two collections, such
that any two matrices in the same collection are row-disjoint and column-disjoint.

The data structure consists of the following components. We apply Theorem 5.7 on every

staircase matrix in our partition. We also store additional data for both collections. By left-right

symmetry, we can assume that the ranges of rows and columns of the matrices in the collection are

[r1, r2), [r2, r3), . . . and [c1, c2), [c2, c3), . . ., respectively. We create a predecessor structure storing all

ri ’s and a separate predecessor structure storing all ci ’s. We also compute and store the maximum

inside every staircase matrix in the collection (this is done in total O (n · α (n)) time using the

algorithm of Klawe and Kleitman [20]), and augment these maxima with a (one dimensional) range

maximum structure.

Now consider a submatrix maximum query [i0, i1] × [j0, j1]. We first query the O (1) structures
built for the staircase matrices corresponding to the first and the third range. Next, we consider each

of the two collections separately. To find the maximum M[i, j] over all i ∈ [i0, i1] and j ∈ [j0, j1],
we use the predecessor structures to determine in O (log logn) the following values (without loss
of generality, they all exist):

(1) i ′
0
such that i0 ∈ [ri′

0

, ri′
0
+1),

(2) i ′
1
such that i1 ∈ [ri′

1

, ri′
1
+1),

(3) j ′
0
such that j0 ∈ [c j′

0

, c j′
0
+1),

(4) j ′
1
such that j1 ∈ [c j′

1

, c j′
1
+1).
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We then query the structures built for the (i ′
0
)-th, (i ′

1
)-th, (j ′

0
)-th, and (j ′

1
)-th staircase matrix in the

collection. Now either we have already found the maximum, or it belongs to one of the staircase

matrices fully contained in the query range. Consequently, the maximum can be found in O (1)
time with a single (one dimensional) range maximum query. □
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[9] T. M. Chan, K. G. Larsen, and M. Pǎtraşcu. Orthogonal range searching on the RAM, revisited. In 27th SOCG, pages
354–363, 2011.

[10] B. Chazelle. A functional approach to data structures and its use in multidimensional searching. SIAM Journal on
Computing, 17:427–462, 1988.

[11] B. Chazelle and B. Rosenberg. Computing partial sums in multidimensional arrays. In 5th SOCG, pages 131–139, 1989.
[12] E. D. Demaine, G. M. Landau, and O. Weimann. On Cartesian trees and range minimum queries. Algorithmica,

68(3):610–625, 2014.

[13] A. Farzan, J. I. Munro, and R. Raman. Succinct indices for range queries with applications to orthogonal range maxima.

In 39th ICALP, pages 327–338, 2012.
[14] M.L. Fredman and D.E. Willard. Trans-dichotomous algorithms for minimum spanning trees and shortest paths. J.

Comput. Syst. Sci., 48(3):533–551, 1994.
[15] H. Gabow, J. L. Bentley, and R.E Tarjan. Scaling and related techniques for geometry problems. In 16th STOC, pages

135–143, 1984.

[16] P. Gawrychowski, M. Lewenstein, and P. K. Nicholson. Weighted ancestors in suffix trees. In 22th ESA, pages 455–466,
2014.

[17] P. Gawrychowski, S. Mozes, and O. Weimann. Improved submatrix maximum queries in Monge matrices. In 41st
ICALP, pages 525–537, 2014.

[18] P. Gawrychowski, S. Mozes, and O. Weimann. Submatrix maximum queries in monge matrices are equivalent to

predecessor search. In 42nd ICALP, pages 580–592, 2015.
[19] H. Kaplan, S. Mozes, Y. Nussbaum, and M. Sharir. Submatrix maximum queries in Monge matrices and Monge partial

matrices, and their applications. In 23rd SODA, pages 338–355, 2012.
[20] M. M. Klawe and D J. Kleitman. An almost linear time algorithm for generalized matrix searching. SIAM Journal

Discret. Math., 3(1):81–97, 1990.
[21] T. Kopelowitz and M. Lewenstein. Dynamic weighted ancestors. In 18th SODA, pages 565–574, 2007.
[22] M. Lewenstein. Orthogonal range searching for text indexing. In Space-Efficient Data Structures, Streams, and Algorithms

- Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday, volume 8066, pages 267–302. Springer, 2013.

[23] Y. Nekrich. Orthogonal range searching in linear and almost-linear space. Comput. Geom., 42(4):342–351, 2009.
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