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Abstract

Preemptive online algorithms for the maximum matching problem maintain a valid

matching M while edges of the underlying graph are presented one after the other. When

presented with an edge e, the algorithm should decide whether to augment the matching

M by adding e (in which case e may be removed later on) or to keep M in its current form

without adding e (in which case e is lost for good). The objective is to eventually hold a

matching M with maximum weight.

The main contribution of this paper is to establish new lower and upper bounds on the

competitive ratio achievable by randomized preemptive online algorithms:

• We provide a lower bound of 1+ln 2 ≈ 1.693 on the competitive ratio of any randomized

algorithm for the maximum cardinality matching problem. This result improves on

the currently best known bound of e/(e − 1) ≈ 1.581, implied by the work of Karp,

Vazirani, and Vazirani [STOC ’90] on a closely-related model with vertex arrivals.

• We devise a randomized algorithm that achieves an expected competitive ratio of 5.356

for maximum weight matching. This finding demonstrates the power of randomiza-

tion in this context, showing how to beat the tight bound of 3 + 2
√

2 ≈ 5.828 for

deterministic algorithms, obtained by combining the 5.828 upper bound of McGre-

gor [APPROX ’05] and the 5.828 lower bound of Varadaraja [ICALP ’11].

1 Introduction

In the maximum matching problem, we are given an undirected graph G = (V,E) whose edges

are associated with non-negative weights. A set of edges M ⊆ E is called a matching when

no two of them share a common vertex. The objective is to compute a matching of maximum

total weight, where the total weight of the output matching is also called the profit of the

algorithm. Due to its wide real-life applicability, as well as to its appealing theoretical nature,

this computational problem has received a great deal of attention from various communities

such as computer science, mathematics, operations research, and economics (see Schrijver’s

book [30] and references therein for a comprehensive overview of classic work).

As can only be expected, the algorithmic research revolving around maximum matching has

expanded from studying the traditional (offline) setting to additional models. In particular, the
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online setting has extensively been studied over the last few decades [4, 13, 14, 23, 24, 25, 26].

In our model, the edges (along with their weights) are presented one by one to the algorithm,

which is required to keep a valid matching M at all times. In other words, once an edge e is

presented, the algorithm must decide whether to add it to M or not. However, e may be added

only if the resulting set of edges M ∪ {e} remains a valid matching. If the algorithm decides to

add the edge e to M , we say that e is accepted, and if the algorithm decides not to add e, we

say that e is rejected. With this regard, to formally specify the online setting being considered,

the remaining question is whether the acceptance of an edge is permanent or not.

In the non-preemptive model, the decision of whether or not to add any given edge to M is

irrevocable, i.e., once an edge is added to the set M of previously accepted edges it can never

be removed. The final matching thus consists of all edges that were ever accepted. Alas, in

this model, simple examples demonstrate that the competitive ratio of any (deterministic or

randomized) algorithm exceeds any function of the number of vertices, meaning that no compet-

itive algorithm exists (see, for example, [13]). That being said, in the unweighted case (where

all edge weights are equal, which is also called the maximum cardinality matching problem),

a greedy approach that accepts an edge whenever possible has a competitive ratio of 2. For

deterministic algorithms, this ratio is actually best possible, as shown by Karp, Vazirani, and

Vazirani [24].

In the preemptive model, the algorithm is given more freedom by allowing it to remove

previously accepted edges from the current matching at any point in time; this event is called

preemption. Nevertheless, an edge that was either rejected or preempted cannot be re-inserted

to the matching later on. As opposed to the non-preemptive model, with this extra freedom

competitive algorithms do exist. Specifically, a deterministic algorithm that was proposed by

Feigenbaum et al. [14] attains a competitive ratio of 6. Later on, McGregor [26] improved on

this finding, by tweaking it into achieving a ratio of 3 + 2
√

2 ≈ 5.828. On the other hand,

Epstein et al. [13] established a lower bound of 4.967 for any deterministic algorithm, which has

subsequently been improved by Varadaraja [3] to (a tight bound of) 3 + 2
√

2 ≈ 5.828.

The upper bound of McGregor and the lower bound of Varadaraja establish a tight bound

of 3 + 2
√

2 ≈ 5.828 on the competitive ratio of any deterministic algorithm in the preemptive

model. For randomized algorithms, the currently best lower bound of e/(e− 1) ≈ 1.581 can be

inferred from the work of Karp et al. [24] on a related model, which is further discussed below.

Interestingly, their lower bound proof actually works for the unweighted case.

Semi-streaming matching and other related work. What seems to have ignited renewed

interest in the preemptive online model is the investigation of maximum matching in the semi-

streaming model, which was introduced by Muthukrishnan [27]. On the other hand, online

algorithms are a long-standing and classic research field (including preemptive variants such as

those of [5, 17, 31, 10, 9]), and the interest in such models is not restricted to its semi-streaming

applications. In semi-streaming models, an algorithm performs one or more passes of reading

the input as a stream. This means that, in a single pass, it cannot go back and re-examine

parts of the input that appear earlier in the stream. The algorithm is allowed, however, to keep

a limited amount of information in memory which is based on the input seen thus far. Next,
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we discuss a more precise definition which is relevant to matching. In the single-pass version

of maximum matching problems in the semi-streaming model, which is more relevant for our

purposes, the edges (along with their weights) are presented one by one to the algorithm, which

is allowed to use only O(n · polylog(n)) space to store information at all times (including a

potential output, if it wishes to spend some of its limited memory on that), but is not required

to hold a valid matching1. For matching problems, the stored information is typically just a

set of edges, and the possibility to keep in memory any small set of edges (rather than only a

matching) is what gives this model its added strength in comparison to the preemptive online

model. When multiple passes are allowed, the entire sequence of edges is presented multiple

times to the algorithm, allowing it to examine the input again, possibly modifying the set of

edges stored in memory, and possibly resulting in an improved output. Below, we discuss the

case of a single pass, and refer the interested reader to [22] for recent results and a discussion

on multiple-pass matching algorithms (see also McGregor [26] and Ahn and Guha [1, 2]).

Epstein et al. [13] observed that the semi-streaming algorithms of Feigenbaum et al. [14]

and McGregor [26] (of approximation ratios 6 and 5.828, respectively) can actually be viewed

as preemptive online algorithms in disguise, and this is what suggested a connection between

the two variants. However, the semi-streaming model is not as strict as the preemptive online

model, and the subsequent algorithms of Zelke [34] and that of Epstein et al. [13] (whose

approximation ratios are 5.585 and 4.91, respectively) are not deterministic preemptive online

algorithms. Specifically, the latter may simultaneously hold Ω(log n) matchings in memory,

arguing that their union contains a good matching, while the former keeps several additional

edges for each edge in the current matching. It is worth pointing out that the lower bound of

Varadaraja [3] on the competitive ratio of deterministic one-pass semi-streaming algorithms also

shows that those algorithms cannot be converted into deterministic preemptive online algorithms

while maintaining the same approximation ratio. The above-mentioned approximation ratios

were improved to 4 + ε by Crouch and Stubbs [7], and later on to 3.5 + ε by Grigorescu and

Monemizadeh, and Zhou [19], using the same algorithm. All those algorithms use a method

called bucketing in different ways (which we describe below as our randomized algorithm uses this

method), leading to relatively high approximation ratios. Finally, Paz and Schwartzman [29],

designed a (2 + ε)-approximation via a clever implementation of the local ratio technique. It

is unclear whether it is possible to convert these algorithms for the semi-streaming model into

randomized preemptive online algorithms.

Two variants for online matching. We proceed by discussing the differences and similar-

ities between our edge-arrival model and the one-sided vertex-arrival model of Karp et al. [24],

which is very relevant for our purposes here. In our model, edges of a general graph are pre-

sented one by one. In the one-sided vertex-arrival model, the underlying graph is bipartite,

where one part is given in advance, and for the other part, every vertex is revealed together

with all its incident edges. Any algorithm for our model can be used in the latter model, simply

by processing the edges arriving one by one, rather than simultaneously. Thus, the lower bound

of 1.581 due to Karp et al. [24] is valid for the randomized variant of our model. However, in

1Here, n stands for the number of vertices in the underlying graph, meaning in particular that, when the
latter is sufficiently dense, most edges cannot be kept in memory.
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our lower bound proof, while we construct a bipartite graph as well, our construction consists

of a layered graph, where layers are revealed one after the other. Thus, our instance is not pre-

sented to the online algorithm in the same way as it would have been presented in the one-sided

vertex-arrival model. In particular, even though certain sets of edges are created such that they

could be presented together, the edges incident to each vertex are not presented at once (or

even consecutively).

1.1 Our results

The main contribution of this paper is to establish new lower and upper bounds on the compet-

itive ratio of randomized algorithms in the preemptive online model. Our findings, along with

some technical comments, can be briefly summarized as follows.

A lower bound for unweighted graphs. In Section 2, we provide a novel construction,

establishing a lower bound of 1 + ln 2 ≈ 1.693 on the competitive ratio of any randomized

online algorithm for the maximum cardinality matching problem. This result improves on the

currently best known bound of e/(e−1) ≈ 1.581, that can be inferred from the work of Karp et

al. [24] on the one-sided vertex-arrival model (as discussed above). It is worth pointing out that

the latter has originally been proven to be best possible for their model2. Due to the differences

in the two models, our lower bound does not contradict the results of Karp et al. [24].

An upper bound for weighted graphs. As previously mentioned, when arriving edges

are associate with non-negative weights, there is a tight bound of 3 + 2
√

2 ≈ 5.828 on the

competitive ratio of any deterministic algorithm [26, 3]. An interesting open question is whether

randomization offers any advantage in this context. In Section 3, we answer this question in the

affirmative, by devising a randomized preemptive online algorithm that beats the aforementioned

bound, and achieves a competitive ratio of θ ≈ 5.356, where θ is the unique solution to 2(ln θ+

1) = θ over (2,∞).

1.2 Techniques

For the lower bound we use Yao’s principle for profit maximization problems [32]. This allows us

to assume that the algorithm is deterministic while inputs are presented based on a probability

distribution. The set of input graphs in the support of our distribution are presented in layers.

The approach of constructing inputs gradually over some axis is a common approach for this

type of lower bound constructions (see, for example, [15, 10]). However, our construction is not

directly based on previous work, and its analysis requires using new probabilistic arguments.

For the upper bound, we employ a widely used bucketing approach, where weights are

classified into types based on intervals to which they belong. The most basic case of this

approach is to round weights up to the closest power of 2. In some cases, improvements can

be achieved by allowing this parameter to be a power of some positive real γ > 1, which is not

2Specifically, the authors also proposed the well-known ranking algorithm, whose competitive ratio exactly
matches the lower bound of e/(e− 1).
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necessarily 2. The next step is randomization, with rounding to values of the form α ·γk, where

α is a random variable taking values in (1, γ] and k is an integer (not necessarily a positive one).

The need for such an approach in our setting is based on the following motivation. Generally,

one would want to preempt an edge of small weight in favor of an edge with a larger weight, as

otherwise the resulting matching will consist of edges of small weight, while an optimal matching

will consist of those with large weights. However, allowing to replace an edge by another edge of

larger weight could result in too many replacements. For example, with respect to a path v0, v1,

. . . , vt, if w(v0, v1) = 1, and w(vi, vi+1) = w(vi−1, vi)+δ for a sufficiently small δ > 0, presenting

the edges ordered by increasing indices of endpoints will result in a matching consisting of the

last edge, with weight 1 + (t− 1)δ, while an optimal matching will contain roughly half of the

edges, with weight at least t/2.

The approach of Feigenbaum et al. [14] and McGregor [26] (previously used, for example,

in [5, 31, 17, 9]) is to allow preemption if the newly revealed edge is significantly heavier than

the (at most two) edges preempted in order to add the new edge to the current matching.

Alternatively, one can use the rounded values when applying comparison between values, in

which case the concept of a larger weight means that the weight is rounded to a larger value

(see, e.g., [6, 28]). Then, it is possible to introduce randomization, and randomly choose α

for the bucketing by α · γk values (see, e.g., [18, 21, 16, 8, 10, 11, 12, 20]). We refer to this

randomized rounding of the weights as randomized geometric rounding.

2 A Lower Bound for Randomized Algorithms

In this section, we establish a lower bound of 1 + ln 2 ≈ 1.693 on the competitive ratio of

any randomized algorithm in the preemptive online setting. For ease of presentation, we use

Yao’s principle for profit maximization problems [32]. That is, to prove a lower bound of C on

the achievable (randomized) competitive ratio, we define a probability distribution on a class

of inputs such that any deterministic algorithm (evaluated on this distribution) must have a

competitive ratio of at least C in expectation.

2.1 The randomized construction

Prior to delving into technical details, we provide a high-level description of how our construction

works, along with some additional intuition. In what follows, the underlying graph in every

realization of our randomized construction will be comprised of L layers (or vertical columns),

each consisting of 2n vertices, as shown in Figure 1. It is instructive to think of L and n as

very large integers. With this structure in place, the (random) input sequence starts with a

random set of edges connecting vertices in layer 1 to vertices in layer 2. As soon as this sequence

terminates, a new one begins, with a random set of edges between layers 2 and 3, then between

layers 3 and 4, so on and so forth. The edges between successive layers ` and `+ 1 are revealed

in rounds: In each round, all the edges connecting a vertex u in layer ` to its neighbors in layer

`+ 1 are revealed one after the other.
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layer ` layer `+ 1 layer Llayer 1 layer 2

blocked

blocked

free

2n
R`

n roots

Figure 1: The layered graph used for the lower bound.

Roots. In each layer 1 ≤ ` ≤ L− 1, we will designate n out of its 2n vertices as being roots,

collectively forming the set R` (that is, R` is the random set of roots in layer `). These roots

are a-priori unknown, and will be determined as soon as the random sequence of edges between

layers `− 1 and ` terminates. This holds true for any layer other than the first, in which R1 is

defined by deterministically picking n arbitrary vertices.

Root permutation. Once the set of roots R` is determined, we linearly order R` by picking

a random permutation of these roots, such that each of the n! possible permutations is equally

likely. Clearly, for any r ∈ R`, the (random) position of r in this permutation is uniformly

distributed over {1, . . . , n}.

Revealing the edges. We now explain how the edges between layers ` and `+1 are revealed.

Based on the permutation picked earlier, we introduce edges connecting the first root to all 2n

vertices in layer ` + 1, which are initially colored white. We now choose a random vertex in

layer `+ 1, which is picked uniformly out of all 2n vertices, and color it black. The second root

in the linear ordering is then connected to all 2n − 1 white vertices in layer ` + 1, and out of

these 2n − 1 vertices one is randomly and uniformly chosen to be colored black. This process

continues for n iterations, until all roots in R` have been considered. We still have to define a

set of roots R`+1 for the next layer, and these will be the n white vertices remaining in layer

` + 1. We note that the vertex coloring in layer ` + 1 is not revealed to the online algorithm

along the way, i.e., throughout the process of introducing edges between layers ` and `+ 1. The

precise realization of this coloring can be inferred by the algorithm only later on.
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2.2 Basic properties

Now let us focus on a fixed deterministic online algorithm ALG and on a fixed realization of

our randomized construction. We proceed by establishing two properties, that will be crucial

in deriving our main result.

Property 1: No preemption from previous layers. Once ALG picks a subset of edges

between layers ` and ` + 1, there is no incentive to preempt any of them when we proceed to

subsequent layers. This property is achieved due to the fact that edges are revealed layer by

layer. To see this, note that if ALG preempts such edge, say (u, v), then either the vertex v is

eventually left unmatched, meaning that we have just lost (u, v) and gained nothing in return.

Or, the vertex v is matched to a vertex in layer `+ 2, meaning that the number of edges in the

current matching remains unchanged, and we have just made things worse further down the

road by (tentatively) matching a vertex in layer `+ 2.

Property 2: Every free root is matched at the end of its round, forever. Consider

the round in which the edges connecting a root r in layer ` to its neighbors in layer ` + 1 are

revealed. The root r must be connected to at least two unmatched neighbors in layer ` + 1,

since for any round 1 ≤ i ≤ n, the current root is connected to 2n − (i − 1) vertices, out of

which at most i − 1 have previously been matched, so the number of unmatched vertices is at

least 2n− 2(i− 1) ≥ 2. The first observation we make use of is that, if r had not been matched

to a vertex in layer ` − 1, ALG always matches r upon termination of the current round. As

previously argued, r can indeed be matched, and ALG has no motivation to leave r unmatched,

as the additional edge can be preempted later on.

Interestingly, we proceed by showing that ALG never preempts this edge. Let (r, v) be the

edge ALG holds once r’s round terminates, where v is some vertex in layer ` + 1. From this

point on, there is no motivation to ever preempt (r, v). To verify this claim, note that if ALG

preempts (r, v), it has two options:

• Leave v unmatched to other roots in layer `, meaning that we have just lost (r, v) and

gained nothing, since the only possible reason to preempt this edge is to match between v

and vertices in layer `+2, but there is no motivation to do so, as argued in our explanation

for Property 1.

• Match v to some other root in layer `, which leaves us at exactly the same situation when

proceeding to the next layer (i.e., v is still matched).

Remark. We mention in passing that, by Properties 1 and 2, it may seem as if preemptions

do not occur at all. However, this is certainly not the case, as preemptions can occur within

a round. That is, while the edges connecting a root r in layer ` to all its neighbors in layer

`+ 1 are revealed, ALG may preempt a previously chosen edge (r, v) in favor of a different one,

(r, v′).
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2.3 Analysis

The preceding discussion will allow us to focus on deterministic online algorithms that pick

edges in a very particular way. In fact, we are able to prove an explicit upper bound of
1

1+ln 2 · Ln + O(L) on the expected cardinality of the matching picked by ALG. On the other

hand, in any realization of the randomized construction, we will show that there exists a feasible

matching of cardinality (L− 1)n. These observations lead to the next theorem.

Theorem 2.1. The competitive ratio of any randomized preemptive online algorithm for max-

imum cardinality matching is at least 1 + ln 2.

We begin by utilizing the specific random process according to which edges are revealed in

order to compare between what can be achieved with and without knowing the realization of

the input sequence in advance. For this purpose, we start off with the easier part, arguing that

the random graph created always contains a matching of cardinality (L− 1)n, as stated in the

next claim.

Lemma 2.2. For any realization of our randomized construction, the maximum cardinality of

a matching is at least (L− 1)n.

Proof. Fix a realization of our construction. In order to obtain a matching consisting of (L−1)n

edges, for every layer 1 ≤ ` ≤ L − 1 one can pick a matching of size n between the roots R`

and the vertices in layer ` + 1 that ended up being colored black. A matching of this nature

necessarily exists since the first root can be matched to the first vertex being colored black, the

second root to the second vertex being colored black, and so on.

The challenging part is that of bounding the expected cardinality of the matching computed

by a fixed deterministic online algorithm ALG that satisfies Properties 1 and 2, where the

expectation is taken over the random choices in our construction. To this end, upon termination

of the phase where edges between layers ` − 1 and ` are introduced, we say that a root in R`

is free when it has not been matched by ALG to some vertex in the preceding layer ` − 1, as

illustrated in Figure 1. Otherwise, this root is said to be blocked. For 1 ≤ ` ≤ L− 1, let F` and

B` be random variables that stand for the number of free and blocked roots in R`, respectively.

The next lemma relates between these random variables and the number of edges picked by

ALG.

Lemma 2.3. ALG computes a (random) matching of cardinality
∑L−1

`=1 F`.

Proof. Fix a realization of R`, and let us focus on some root r ∈ R`. Consider the random

process in which edges between layers ` and `+1 are revealed, formally described in Section 2.1:

• If the root r is blocked, none of the edges introduced between r and its neighbors in level

` + 1 is picked by ALG, or otherwise, the edge that connects r to a vertex in level ` − 1

has to be preempted, contradicting Property 1.

• In the opposite case, where r is free, ALG will expand the matching it holds by adding

a new edge adjacent to this root, and that edge will not be preempted in the future, by

Property 2.
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To summarize, when F` out of n roots in R` are free, ALG will add exactly F` edges to the

matching (out of those connecting layer ` to `+ 1; each adjacent to a root in F`), which will not

be preempted later on. This applies to any realization of R`. Therefore, the random cardinality

of the matching computed is
∑L−1

`=1 F`.

Recursively computing E[F`]. In what follows, we derive a recursive inequality that relates

between the expected number of free roots in successive layers. For this purpose, we look into

the question of how free roots (or equivalently, blocked roots) are created. In particular, we

argue that the random permutation by which roots are processed guarantees that each free

root in the current layer will create a (distinct) blocked root in the next layer with probability

ln 2 + Θ( 1
n).

Lemma 2.4. There exists a layer-independent constant c > 0, such that for every 1 ≤ ` ≤ L−1,

|E [F`+1]− n+ ln 2 · E [F`]| ≤ c .

Proof. Since F`+1 and B`+1 form a partition of the roots R`+1, we have in particular E[F`+1] =

n−E[B`+1]. Therefore, it is sufficient to prove that |E[B`+1]− ln 2 ·E [F`] | ≤ c, for an absolute

constant c > 0, independent of `. To this end, since E[B`+1] = E[E[B`+1|F`]], we will show that

E[B`+1|F` = k] = ln 2 · k + Θ( kn), i.e., given that there are k free roots in layer `, the expected

number of blocked roots in layer `+ 1 is ln 2 · k, up to some additive constant.

To this end, recall that, by Property 2, each free root in F` is necessarily matched by ALG to

a vertex in layer `+ 1, and these edges will not be preempted later on. Based on this property,

for 1 ≤ p ≤ n, let I`,p be an indicator variable for the event where position p in the random

permutation picked for R` is occupied by a free root and, in addition, the vertex in level `+1 to

which this free root is matched survives the random recoloring step in all subsequent iterations

as a white vertex. As these are precisely the events by which blocked roots in layer ` + 1 are

created, it follows that B`+1 =
∑n

p=1 I`,p, and therefore

E [B`+1|F` = k] =
n∑
p=1

E [I`,p|F` = k] =
n∑
p=1

Pr [I`,p = 1|F` = k] .

In order to compute Pr [I`,p = 1|F` = k], note that, conditional on the event [F` = k], position p

in the random permutation of R` is occupied by a free root with probability k
n . The important

observation is that, conditional on the event where position p is occupied by a free root, the

event where the vertex in level `+1 to which this free root is matched survives as a white vertex

is independent of [F` = k]. Specifically, since there are n − p remaining rounds (excluding the

current one), the latter survival probability is n
2n−p+1 , as out of the 2n− p+ 1 currently white

vertices, every subset of n vertices has equal probability to be the set of vertices that remain

white. Consequently, we have Pr [I`,p = 1|F` = k] = k
n ·

n
2n−p+1 = k

2n−p+1 , implying that

E [B`+1|F` = k] = k ·
n∑
p=1

1

2n− p+ 1
= k · (H2n −Hn) = ln 2 · k + Θ

(
k

n

)
,

9



where for a positive integer t, Ht = 1 + 1
2 + · · ·+ 1

t denotes the t-th harmonic number. The last

equation holds since |Ht − ln t| = γ +O(1
t ), where γ is the Euler-Mascheroni constant [33].

Concluding the proof of Theorem 2.1. Recall that by Lemma 2.4, we have in particular

E[F`+1] + ln 2 · E[F`] ≤ n+ c for 1 ≤ ` ≤ L− 1. Summing these inequalities over all values of `

gives

(L− 1) · (n+ c) ≥
L−1∑
`=1

E [F`+1] + ln 2 ·
L−1∑
`=1

E [F`]

= (1 + ln 2) ·
L−1∑
`=1

E [F`] + E [FL]− E [F1]

≥ (1 + ln 2) ·
L−1∑
`=1

E [F`]− n ,

where the last inequality holds since FL ≥ 0 and F1 = n. Consequently, by Lemma 2.3 the

expected cardinality of the matching computed by ALG is

L−1∑
`=1

E [F`] ≤
1

1 + ln 2
· (Ln+ (L− 1)c) .

On the other hand, the maximum cardinality of a matching in every realization of the resulting

graph is (L − 1)n, as shown in Lemma 2.2, implying that the asymptotic competitive ratio of

ALG (when L and n tend to infinity) is at least 1 + ln 2.

3 A Randomized Algorithm

In this section, we show that by employing randomization, the lower bound of 3 + 2
√

2 ≈ 5.828

on the performance of any deterministic algorithm can be beaten. In particular, by making

use of randomized geometric rounding (see Section 1.2), our algorithm achieves an expected

competitive ratio of roughly 5.356.

3.1 The algorithm

Parameters. In what follows, we utilize two real-valued parameters: A base θ > 1, and a

shifting value φ > 0. The base θ will be optimized later on, so that the resulting upper bound

on the competitive ratio of our algorithm is made as small as possible. In contrast, the shifting

value φ will not be fixed; instead, it will be a random variable whose value is chosen to be θτ ,

where τ is uniformly distributed over the interval (0, 1].

Weight classes and rounded weights. We define weight classes of edges in the following

way. Let w(e) denote the (non-negative) weight of an edge e. For every i ∈ Z, we let the

weight class Wi be the collection of edges whose weight is in the interval [φθi, φθi+1). Observe

that the set of weight classes is a partition of the edges of strictly positive weight. Once an

edge e is presented, if its weight is positive, then we round down its original weight w(e) to the
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lower endpoint of the weight class it belongs to, thereby obtaining its rounded weight w̃(e). In

other words, letting i be the unique integer for which w(e) ∈ [φθi, φθi+1), we set w̃(e) = φθi.

In the remainder of this section, the latter notation will be extended to matchings, so that

w(M) and w̃(M) will stand for the (total) original weight and rounded weight, respectively, of

a matching M . In addition, for a maximum weight matching M∗, we denote OPT = w(M∗)

and ÕPT = w̃(M∗). Moreover, let ÕPTτ denote the profit of a maximum weight matching for

the weight function w̃ resulting from a particular realization of τ .

Maintaining a matching online. The algorithm keeps a tentative matching M , which is

initialized prior to reading the input sequence as M = ∅. Upon the arrival of a newly-presented

edge e = (u, v), we proceed as follows. If w(e) = 0, we reject e. Otherwise, let X(M, e) denote

the set of edges in the matching M that have a common endpoint with e, that is, edges that

have u or v as an endpoint. Note that X(M, e) is a random set, consisting of at most two

edges. Now, if every edge e′ ∈ X(M, e) satisfies w̃(e′) < w̃(e) then e is inserted into M while

the edges in X(M, e) are preempted, i.e., we set M ← (M \ X(M, e)) ∪ {e}. Otherwise, M

remains unchanged.

3.2 Analysis

Without loss of generality, we assume that every edge e satisfies w(e) > 0. We can indeed make

this assumption, as zero weight edges can be removed from M∗ and the algorithm discards such

edges.

We begin by accounting for the extent to which the weight of each edge is rounded. Specifi-

cally, the next lemma shows how to evaluate the ratio between the expected rounded weight of

any edge3 to its original weight in terms of the base θ. Subsequently, this allows us to bound

the ratio between OPT and ÕPT.

Lemma 3.1. For every edge e, we have Eτ [w̃(e)/w(e)] = θ−1
θ ln θ .

Proof. We denote by w̃τ (e) the value w̃(e) for a given realization of τ . Let p be the unique

integer and let 0 < α ≤ 1 be the unique real for which w(e) = θp+α. By our definition of the

weight classes {Wi}i∈Z, it follows that the rounded weight w̃τ (e) is determined by:

w̃τ (e) =

{
θp+τ if τ ≤ α
θp+τ−1 if τ > α

Therefore, the ratio between the expected rounded weight of e to its original weight is

Eτ
[
w̃(e)

w(e)

]
=

α∫
0

θp+τ

θp+α
dτ +

1∫
α

θp+τ−1

θp+α
dτ =

1

ln θ
·
(

1

θα
(θα − 1) +

1

θα+1
(θ − θα)

)
=
θ − 1

θ ln θ
.

Lemma 3.2. The expected rounded weight of the optimal matching M∗ satisfies Eτ [ÕPT] =
θ−1
θ ln θOPT. Also, for any realization of the random variable τ , we have OPT < θ · ÕPTτ .

3Note that the expectation Eτ [·] is taken over the random choice of the variable τ ∼ U(0, 1].
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Proof. It is easy to verify that, due to linearity of expectation, the first claim follows from

separately applying Lemma 3.1 on every edge of the optimal matching M∗, and summing over

all edges. On the other hand, the second claim holds since, regardless of the realization of τ ,

for any edge e (in particular, those in M∗) we have w̃(e)/w(e) > 1/θ, as the lower and upper

endpoints of each weight class differ by a multiplicative factor of at most θ.

Up until now we have merely discussed how the expected weight of the optimal matching

M∗ depends on the geometric rounding procedure. We now move on to describe the technical

crux in our analysis, where the online matching computed by the algorithm is compared against

the rounded weight of M∗.

Lemma 3.3. For any realization of τ , the total weight obtained by the algorithm is at least
θ−2
2θ−2ÕPT.

Proof. We consider how the algorithm operates for an arbitrary realization of the variable τ .

For this purpose, consider an optimal solution M̃ for the rounded instance, i.e., a maximum

weight matching with respect to the rounded weights w̃(·). Clearly, w̃(M̃) ≥ w̃(M∗) = ÕPT, as

M∗ is an optimal matching for the original weights, but not necessarily for the rounded weights.

We map every edge of M̃ to an edge in the matching M that is being held by the algorithm

upon termination, possibly using a single edge in M as the image of several edges in M̃ . The

way this mapping will be defined below enables us to argue that the ratio between the total

rounded weight of the edges mapped to any edge e ∈M and between w̃(e) is at most 2θ−2
θ−2 . This

claim immediately leads to a ratio of 2θ−2
θ−2 between ÕPT and the total profit of the algorithm

according to the rounded weights w̃(·). Since w(e) ≥ w̃(e) for every edge e, the actual profit of

the algorithm can only be higher.

For every edge e ∈M , we create a preemption tree. The root of this tree is e, and the children

of an edge e′ are all edges that were preempted from the matching kept by the algorithm when

e′ was inserted. Note that the number of children is either 2, 1, or 0, since any matching cannot

contain more than a single edge for every endpoint of e′ (prior to the arrival of e′). The set of

edges that do not belong to any preemption tree are edges that the algorithm never accepted,

while the union of all edge sets over all trees is exactly the set of edges that belonged to the

matching at some point in time.

By definition of our algorithm, for every edge ẽ that does not belong to a tree, there exists

an edge e′ that belongs to a tree, sharing an endpoint with ẽ, such that w̃(e′) ≥ w̃(ẽ). If, for

an edge ẽ ∈ M̃ such that ẽ does not belong to a tree, there exists a unique such edge e′, then

ẽ is mapped to the root of the tree where e′ appears. Otherwise, one such edge e′ is chosen

arbitrarily, and ẽ is mapped to the root of the tree of e′ in this case as well. For an edge ẽ ∈ M̃
that belongs to some tree, ẽ is mapped to the root of the tree in which it appears.

Next, consider a specific tree with root e ∈M . For an edge ê of distance d[ê] from the root,

measured in number of edges of the preemption tree (and not edges of the input graph), let

w̃d(ê) = w̃(e)/θd[ê]. For such an edge ê of distance d[ê] from the root, we say that the level of

ê is d[ê]. In the next claim, we show that the rounded weight of edges in the tree decreases

exponentially in the level.

Claim 3.4. For every edge ê in the tree, w̃(ê) ≤ w̃d(ê).

12



Proof. Consider the path e0, e1, e2, . . . , ed[ê], where e0 = ê, ed[ê] = e, and for every 1 ≤ i ≤ d[ê],

ei is the edge whose arrival caused ei−1 to be preempted. By definition of the algorithm, w̃(ei) >

w̃(ei−1). Since our geometric rounding method guarantees that, when rounded weights are not

identical, they differ by a multiplicative factor of at least θ, it follows that w̃(ei) ≥ θw̃(ei−1).

Therefore, w̃(e) = w̃(ed[ê]) ≥ θd[ê]w̃(e0) = θd[ê]w̃(ê), or alternatively w̃(ê) ≤ w̃d(ê).

For a vertex v in the graph, and for every possible distance d ≥ 0, we say that v is new for d

if: (1) there is an edge of level d in some preemption tree for which v is an endpoint; and (2) v

is not an endpoint of any edge of smaller level. Also, the two endpoints of an edge e ∈ M are

new for d = 0 and are not new for any other value of d.

Claim 3.5. Fix one preemption tree. For every d > 0, there are at most 2d new vertices for d.

Moreover, every edge in a tree in level d > 0 has at most one new vertex for d.

Proof. Since every edge has at most two children, the number of edges of level d in the preemp-

tion tree is at most 2d. Every such edge has a common endpoint with an edge of level d − 1,

thus there is at most one new vertex for d per edge, which results in a total of at most 2d new

vertices for d.

Claim 3.6. For every edge e ∈M , the total rounded weight of the edges mapped to e is at most
2θ−2
θ−2 w̃(e).

Proof. For an edge ẽ ∈ M̃ , let dmin[ẽ] be the minimum level such that an edge of this level has

a common vertex with ẽ. By definition, this common vertex must be new for level dmin[ẽ]. Let

ē be the edge of level dmin[ẽ] with the common vertex. Since there exists an edge in the tree

having a common endpoint with ẽ of rounded weight at least w̃(ẽ), we have w̃(ē) ≥ w̃(ẽ). In

addition, since M̃ is a matching, for every edge e′′ in the tree and every new vertex v of the

level of e′′ that is incident to e′′, at most one edge of M̃ has v as an endpoint. By Claim 3.5,

every edge of the tree other than e has at most one new vertex, so the total rounded weight is

at most the total rounded weight of all edges in the tree plus w̃(e). Letting T (e) denote the set

of edges in the tree rooted at e, by Claim 3.4 it follows that the total rounded weight of edges

mapped to e is at most ∑
ē∈T (e)

w̃(ē)

+w̃(e) ≤

 ∑
ē∈T (e)

w̃d(ē)

+w̃(e) ≤

( ∞∑
d=0

2d · w̃(e)

θd

)
+w̃(e) =

(
1

1− 2/θ
+ 1

)
w̃(e) .

This completes the proof of Lemma 3.3.

Theorem 3.7. The algorithm achieves an expected competitive ratio of at most 2θ ln θ
θ−2 . This

ratio is minimized for θ∗ ≈ 5.356, where θ∗ is the unique solution to 2(ln θ+ 1) = θ over (2,∞),

in which case the value of the upper bound on the expected competitive ratio is θ∗.

Proof. By Lemmas 3.2 and 3.3, we have

Eτ [w(M)] ≥ θ − 2

2θ − 2
Eτ
[
ÕPT

]
≥ θ − 2

2θ − 2
· θ − 1

θ ln θ
OPT =

θ − 2

2θ ln θ
OPT .
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