Improved Compression of the Okamura-Seymour Metric

Shay Mozes, Nathan Wallheimer, Oren Weimann

The Okamura-Seymour Metric Compression Problem

- An undirected, unweighted planar graph G = (V, E).
- A set $S = \{s_1, s_2, \dots, s_k\}$ of k consecutive vertices on a face f_{∞} .
- A set $T \subseteq V$ of terminal vertices lying anywhere in the graph.

The Okamura-Seymour Metric Compression Problem

- An undirected, unweighted planar graph G = (V, E).
- A set $S = \{s_1, s_2, \dots, s_k\}$ of k consecutive vertices on a face f_{∞} .
- A set $T \subseteq V$ of terminal vertices lying anywhere in the graph.

The Okamura-Seymour Metric Compression Problem Succinctly encode the $T \times S$ distances to answer $d(v, s_i)$ queries.

Results

	Solution	Complexity
T = S	Unit-Monge [AGMW'18]	$ ilde{O}(k)$ space, $ ilde{O}(1)$ query
T = V	MSSP [Klein'05]	$O(n)$ space, $ ilde{O}(1)$ query
$T \subset V$	Naïve	$ ilde{O}({m au} \cdot k)$ space, $O(1)$ query

Results

	Solution	Complexity
T = S	Unit-Monge [AGMW'18]	$ ilde{O}(k)$ space, $ ilde{O}(1)$ query
T = V	MSSP [Klein'05]	$O(n)$ space, $ ilde{O}(1)$ query
$T \subset V$	Naïve	$ ilde{O}({m au} \cdot k)$ space, $O(1)$ query
$T \subset V$	VC-dimension [LiParter'19]	$ ilde{O}({m au} +k^4)$ space, $O(1)$ query

Results

	Solution	Complexity
T = <i>S</i>	Unit-Monge [AGMW'18]	$ ilde{O}(k)$ space, $ ilde{O}(1)$ query
T = V	MSSP [Klein'05]	$O(n)$ space, $ ilde{O}(1)$ query
$T \subset V$	Naïve	$ ilde{O}(extsf{T} \cdot k)$ space, $O(1)$ query
$T \subset V$	VC-dimension [LiParter'19]	$ ilde{O}({m au} +k^4)$ space, $O(1)$ query
$T \subset V$	Today	$ ilde{O}(extsf{T} +k^3)$ space, $ ilde{O}(1)$ query

The Pattern of $v \in V$

 $p_{v} = \langle d(v, s_{2}) - d(v, s_{1}), d(v, s_{3}) - d(v, s_{2}), \cdots, d(v, s_{k}) - d(v, s_{k-1}) \rangle$

The Pattern of $v \in V$

 $p_v = \langle d(v, s_2) - d(v, s_1), d(v, s_3) - d(v, s_2), \cdots, d(v, s_k) - d(v, s_{k-1}) \rangle$

- $p_v \in \{-1, 0, 1\}^{k-1}$ by the triangle inequality.
- v-to- s_i distances are determined by p_v and $d(v, s_1)$:

$$d(v, s_i) = d(v, s_1) + \sum_{j=1}^{i-1} p_v[j]$$

The Pattern of $v \in V$

Theorem (Li & Parter [STOC 2019])

There are only $x = O(k^3)$ distinct patterns among all vertices of the graph.

Huge improvement over the trivial $O(3^k)$ bound.

Li & Parter's Compression

- 1. One table with the $O(k^3)$ distinct patterns and their prefix-sums.
- 2. Every $v \in T$ stores $d(v, s_1)$ and a pointer to p_v in the previous table.

Space: $\tilde{O}(|T| + k^4)$, Query time: O(1).

Assume w.l.o.g. that the patterns are over $\{-1,1\}$ and not $\{-1,0,1\}$. This can be achieved by subdividing every edge:

Li & Parter's $O(k^3)$ Proof

Arrange the *n* binary patterns as the rows of a binary matrix. By planarity, there are no four columns a < b < c < d such that for some $u, v \in V$:

Li & Parter's $O(k^3)$ Proof

Arrange the *n* binary patterns as the rows of a binary matrix. By planarity, there are no four columns a < b < c < d such that for some $u, v \in V$:

Thus, the VC-dimension of the matrix is at most 3. By the Sauer-Shelach Lemma, the number of distinct rows is $O(k^3)$.

An Õ(|T| + x + k) bits compression of the Okamura-Seymour metric, with query time Õ(1).

- An Õ(|T| + x + k) bits compression of the Okamura-Seymour metric, with query time Õ(1).
- An optimal Õ(|T| + k) bits compression with Õ(1) query for two special cases: (1) T induces a *connected* subgraph of G, and (2) T lies on a single face (not necessarily consecutively).

- An Õ(|T| + x + k) bits compression of the Okamura-Seymour metric, with query time Õ(1).
- An optimal Õ(|T| + k) bits compression with Õ(1) query for two special cases: (1) T induces a *connected* subgraph of G, and (2) T lies on a single face (not necessarily consecutively).
- An alternative x = O(k³) proof that exploits planarity beyond VC-dimension. Namely, planar duality and the fact that distances among vertices of S are bounded by k.

- An Õ(|T| + x + k) bits compression of the Okamura-Seymour metric, with query time Õ(1).
- An optimal Õ(|T| + k) bits compression with Õ(1) query for two special cases: (1) T induces a *connected* subgraph of G, and (2) T lies on a single face (not necessarily consecutively).
- An alternative x = O(k³) proof that exploits planarity beyond VC-dimension. Namely, planar duality and the fact that distances among vertices of S are bounded by k.
- In Halin graphs, we show that $x = \Theta(k^2)$ while the VC-dimension argument is limited to showing $O(k^3)$.

Bisectors

For every $1 \le i < k$, define the following cuts:

$$A_i = \{ v \in V \mid p_v[i] = -1 \}$$
$$V \setminus A_i = \{ v \in V \mid p_v[i] = 1 \}$$

Bisectors

For every $1 \le i < k$, define the following cuts:

$$A_i = \{ v \in V \mid p_v[i] = -1 \}$$
$$V \setminus A_i = \{ v \in V \mid p_v[i] = 1 \}$$

A *bisector* is the set of dual arcs $\beta_i := \{(uv)^* \mid u \in A_i, v \in V \setminus A_i\}$.

Bisectors

For every $1 \le i < k$, define the following cuts:

$$A_i = \{ v \in V \mid p_v[i] = -1 \}$$
$$V \setminus A_i = \{ v \in V \mid p_v[i] = 1 \}$$

A bisector is the set of dual arcs $\beta_i := \{(uv)^* \mid u \in A_i, v \in V \setminus A_i\}$. β_i is a directed simple cycle in the dual graph.

Every Two Bisectors are Arc-Disjoint

This is a forbidden configuration!

Every Two Bisectors are Arc-Disjoint

This is a forbidden configuration!

However, it is possible that β_i contains *reversed* arcs of β_j :

For any $\{u, v\} \in E(G)$, u and v are separated by at most two bisectors.

For any $\{u, v\} \in E(G)$, u and v are separated by at most two bisectors.

Hence, p_u and p_v differ in at most two bits.

For any $\{u, v\} \in E(G)$, u and v are separated by at most two bisectors.

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\$$

Hence, p_u and p_v differ in at most two bits.

We can use this fact to get a compression of size $\tilde{O}(|T| + x + k)$

- An $\tilde{O}(|\mathbf{T}| + x + k)$ bits compression of the Okamura-Seymour metric, with query time $\tilde{O}(1)$.
- An optimal Õ(|T| + k) bits compression with Õ(1) query for two special cases: (1) T induces a *connected* subgraph of G, and (2) T lies on a single face.
- An alternative $x = O(k^3)$ proof that exploits planarity beyond VC-dimension. Namely, planar duality and the fact that distances among vertices of S are bounded by k.
- In Halin graphs, we show that $x = \Theta(k^2)$ while the VC-dimension argument is limited to showing $O(k^3)$.

A Spanning Tree of G

• Root the tree at an arbitrary vertex v.

A Spanning Tree of G

- Root the tree at an arbitrary vertex v.
- Identify each node with its pattern.

A Spanning Tree of G

- Root the tree at an arbitrary vertex v.
- Identify each node with its pattern.
- Label every edge by the two bits that change.

1. Let y and w be two vertices such that $p_y = p_w$.

- 1. Let y and w be two vertices such that $p_y = p_w$.
- 2. Assume w.l.o.g. that $depth(y) \leq depth(w)$.

- 1. Let y and w be two vertices such that $p_y = p_w$.
- 2. Assume w.l.o.g. that $depth(y) \leq depth(w)$.
- 3. Move w's children to y (edge labels remain the same).

- 1. Let y and w be two vertices such that $p_y = p_w$.
- 2. Assume w.l.o.g. that $depth(y) \le depth(w)$.
- 3. Move w's children to y (edge labels remain the same).

- 1. Let y and w be two vertices such that $p_y = p_w$.
- 2. Assume w.l.o.g. that $depth(y) \le depth(w)$.
- 3. Move w's children to y (edge labels remain the same).
- 4. Remove *w* from the tree.

- 1. Let y and w be two vertices such that $p_y = p_w$.
- 2. Assume w.l.o.g. that $depth(y) \le depth(w)$.
- 3. Move w's children to y (edge labels remain the same).
- 4. Remove w from the tree.

- 1. Let y and w be two vertices such that $p_y = p_w$.
- 2. Assume w.l.o.g. that $depth(y) \leq depth(w)$.
- 3. Move w's children to y (edge labels remain the same).
- 4. Remove *w* from the tree.
- 5. Repeat until the size of the tree is x.
The Data Structure

1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.

- 1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.
- 2. As we traverse the tree, only O(x) bit-changes occur.

- 1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.
- 2. As we *traverse the tree*, only O(x) bit-changes occur.
- 3. Maintain all of those O(x) versions of the pattern in a *persistent* data structure for prefix-sum that supports updates.

- 1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.
- 2. As we traverse the tree, only O(x) bit-changes occur.
- Maintain all of those O(x) versions of the pattern in a persistent data structure for prefix-sum that supports updates.
 Space: Õ(x + k) and Õ(1) query.

- 1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.
- 2. As we traverse the tree, only O(x) bit-changes occur.
- Maintain all of those O(x) versions of the pattern in a persistent data structure for prefix-sum that supports updates.
 Space: Õ(x + k) and Õ(1) query.
- Every v ∈ T stores d(v, s₁) and a pointer to the version of the prefix-sum data structure at p_v.

- 1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.
- 2. As we traverse the tree, only O(x) bit-changes occur.
- Maintain all of those O(x) versions of the pattern in a persistent data structure for prefix-sum that supports updates.
 Space: Õ(x + k) and Õ(1) query.
- Every v ∈ T stores d(v, s₁) and a pointer to the version of the prefix-sum data structure at p_v.

In total: $\tilde{O}(|T| + x + k)$ space and $\tilde{O}(1)$ time for query.

- 1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.
- 2. As we *traverse the tree*, only O(x) bit-changes occur.
- Maintain all of those O(x) versions of the pattern in a persistent data structure for prefix-sum that supports updates.
 Space: Õ(x + k) and Õ(1) query.
- Every v ∈ T stores d(v, s₁) and a pointer to the version of the prefix-sum data structure at p_v.

In total: $\tilde{O}(|\mathcal{T}| + x + k)$ space and $\tilde{O}(1)$ time for query. Preprocessing: can be done in $\tilde{O}(n)$ time. Let x = the number of distinct patterns among all vertices of G.

- An Õ(|T| + x + k) bits compression of the Okamura-Seymour metric, with query time Õ(1).
- An optimal Õ(|T|+k) bits compression with Õ(1) query for two special cases: (1) T induces a connected subgraph of G, and (2) T lies on a single face.
- An alternative $x = O(k^3)$ proof that exploits planarity beyond VC-dimension. Namely, planar duality and the fact that distances among vertices of S are bounded by k.
- In Halin graphs, we show that $x = \Theta(k^2)$ while the VC-dimension argument is limited to showing $O(k^3)$.

T Induces a Connected Component

We only need to traverse T. Thus, there are only x = O(|T|) versions.

T Induces a Connected Component

We only need to traverse T. Thus, there are only x = O(|T|) versions. Space: $\tilde{O}(|T| + k)$. Time: $\tilde{O}(1)$.

T Lies on a Single Face

T Lies on a Single Face

We only need to traverse the vertices along the face. Every bisector can visit the face at most once. Thus, there are only x = O(k) versions.

T Lies on a Single Face

We only need to traverse the vertices along the face. Every bisector can visit the face at most once. Thus, there are only x = O(k) versions. Space: $\tilde{O}(|\mathcal{T}| + k)$. Time: $\tilde{O}(1)$. Let x = the number of distinct patterns among all vertices of G.

- An Õ(|T| + x + k) bits compression of the Okamura-Seymour metric, with query time Õ(1).
- An optimal Õ(|T| + k) bits compression with Õ(1) query for two special cases: (1) T induces a *connected* subgraph of G, and (2) T lies on a single face.
- An alternative $x = O(k^3)$ proof that exploits planarity beyond VC-dimension. Namely, planar duality and the fact that distances among vertices of *S* are bounded by *k*.
- In Halin graphs, we show that $x = \Theta(k^2)$ while the VC-dimension argument is limited to showing $O(k^3)$.

Definition

The Bisector Graph G_B

Definition

The *bisector graph* $G_{\mathcal{B}}$, is composed of the union of all the bisectors.

• For every $u, v \in V$ embedded in the same face, $p_u = p_v$.

The Bisector Graph G_B

Definition

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
- If the number of faces in $G_{\mathcal{B}}$ was $O(k^3)$, we'd be done.

Definition

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
- If the number of faces in $G_{\mathcal{B}}$ was $O(k^3)$, we'd be done.
- Alas, there could be $\Omega(n)$ faces that correspond to the same pattern.

Definition

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
- If the number of faces in $G_{\mathcal{B}}$ was $O(k^3)$, we'd be done.
- Alas, there could be $\Omega(n)$ faces that correspond to the same pattern.

Definition

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
- If the number of faces in $G_{\mathcal{B}}$ was $O(k^3)$, we'd be done.
- Alas, there could be $\Omega(n)$ faces that correspond to the same pattern.

Definition

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
- If the number of faces in $G_{\mathcal{B}}$ was $O(k^3)$, we'd be done.
- Alas, there could be $\Omega(n)$ faces that correspond to the same pattern.

Definition

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
- If the number of faces in $G_{\mathcal{B}}$ was $O(k^3)$, we'd be done.
- Alas, there could be $\Omega(n)$ faces that correspond to the same pattern.

Remove Touching Points

A *touching* is an intersection of bisectors without *crossing*.

Remove Touching Points

A *touching* is an intersection of bisectors without *crossing*.

Touching points can be removed such that vertices embedded in the same face will still have the same pattern.

Remove Touching Points

A *touching* is an intersection of bisectors without *crossing*.

Touching points can be removed such that vertices embedded in the same face will still have the same pattern.

The Pattern Graph $G_{\mathcal{P}}$

Definition

The Pattern graph $G_{\mathcal{P}}$ is obtained from $G_{\mathcal{B}}$ by removing all touching points.

The Pattern Graph $G_{\mathcal{P}}$

Definition

The Pattern graph $G_{\mathcal{P}}$ is obtained from $G_{\mathcal{B}}$ by removing all touching points.

By Euler's formula, the number of faces in $G_{\mathcal{P}}$ is bounded by the number of *crossings*.

The Pattern Graph $G_{\mathcal{P}}$

Definition

The Pattern graph $G_{\mathcal{P}}$ is obtained from $G_{\mathcal{B}}$ by removing all touching points.

By Euler's formula, the number of faces in $G_{\mathcal{P}}$ is bounded by the number of *crossings*.

Our main technical contribution: every two bisectors can cross at most O(k) times, hence the number of crossings is $O(k^3)$.

Every Two Bisectors Cross in Opposite Orientation

Lemma

Let p_1, p_2, \ldots, p_r be the crossing points of β_i and β_j , in the order they appear along β_i . The crossing points along β_j are reversed $p_r, p_{r-1}, \ldots, p_1$.

• Assume for contradition that p_1 appears before p_2 in β_j .

- Assume for contradition that p_1 appears before p_2 in β_i .
- Let $v \in V$ be the vertex that lies on the right of β_j after p_2 .

- Assume for contradition that p_1 appears before p_2 in β_i .
- Let $v \in V$ be the vertex that lies on the right of β_j after p_2 .
- $P_{v,s_{i+1}}$ must stay on the left of β_i and cross β_j .

- Assume for contradition that p_1 appears before p_2 in β_j .
- Let $v \in V$ be the vertex that lies on the right of β_j after p_2 .
- $P_{v,s_{i+1}}$ must stay on the left of β_i and cross β_j .
- P_{v,s_j} must stay on the right of β_j and cross $P_{v,s_{i+1}}$.

- Assume for contradition that p_1 appears before p_2 in β_j .
- Let v ∈ V be the vertex that lies on the right of β_j after p₂.
- $P_{v,s_{i+1}}$ must stay on the left of β_i and cross β_j .
- P_{v,s_i} must stay on the right of β_j and cross $P_{v,s_{i+1}}$.
- There's a shortest v-to- s_j path that crosses β_j , a contradiction.

Two Bisectors can Cross at Most O(k) Times

Lemma

The number of crossings between β_i and β_j is r = O(k).

• Let v_1, v_2, \ldots, v_r be primal vertices inside the "pockets" created between consecutive crossings.

- Let v_1, v_2, \ldots, v_r be primal vertices inside the "pockets" created between consecutive crossings.
- Consider some v_{ℓ} .

Two Bisectors can Cross at Most $\overline{O(k)}$ Times

• $P_{v_{\ell+1},s_{i+1}}$ must remain on the left of β_i .

- $P_{v_{\ell+1},s_{i+1}}$ must remain on the left of β_i .
- P_{v_{ℓ},s_j} must remain on the right of β_j and cross $P_{v_{\ell+1},s_{j+1}}$.

- $P_{v_{\ell+1},s_{i+1}}$ must remain on the left of β_i .
- P_{v_{ℓ},s_j} must remain on the right of β_j and cross $P_{v_{\ell+1},s_{j+1}}$.
- A symmetric configuration with v_{ℓ} and $v_{\ell-1}$.

- $P_{v_{\ell+1},s_{i+1}}$ must remain on the left of β_i .
- P_{v_{ℓ},s_j} must remain on the right of β_j and cross $P_{v_{\ell+1},s_{j+1}}$.
- A symmetric configuration with v_{ℓ} and $v_{\ell-1}$.
- Denote the lengths of subpaths by A, B, C, D, E, F.

By the triangle inequality and since patterns are over $\{-1, 1\}$:

 $C + B \le D + F - 1$ $D + E \le C + A - 1$

By the triangle inequality and since patterns are over $\{-1,1\}$:

 $C+B \leq D+F-1$ $D+E \leq C+A-1$ The sum of the inequalities is $E-F+2 \leq A-B.$

Symmetrically we get:

 $E - F + 2 \le A - B$ $H - G + 2 \le E - F$

and so on...

Symmetrically we get:

 $E - F + 2 \le A - B$ $H - G + 2 \le E - F$

and so on... Hence, there exists a vertex v such that:

$$\Omega(\mathbf{r}) \leq \mathbf{d}(\mathbf{v}, \mathbf{s}_i) - \mathbf{d}(\mathbf{v}, \mathbf{s}_{j+1}) \leq \mathbf{k}$$

Let x = the number of distinct patterns among all vertices of G.

- An Õ(|T| + x + k) bits compression of the Okamura-Seymour metric, with query time Õ(1).
- An optimal Õ(|T| + k) bits compression with Õ(1) query for two special cases: (1) T induces a *connected* subgraph of G, and (2) T lies on a single face.
- An alternative $x = O(k^3)$ proof that exploits planarity beyond VC-dimension. Namely, planar duality and the fact that distances among vertices of S are bounded by k.
- In Halin graphs, we show that $x = \Theta(k^2)$ while the *VC*-dimension argument is limited to showing $O(k^3)$.

Halin Graphs

Definition

A *Halin graph* is a graph obtained by taking an embedded tree and connecting its leaves by a cycle.

Halin Graphs

Definition

A *Halin graph* is a graph obtained by taking an embedded tree and connecting its leaves by a cycle.

Denote by k the size of the cycle. Consider the patterns of the graph w.r.t. the infinite face.

Consider the values of the patterns of v_0, v_1, \ldots, v_7 at e_1, e_2, e_3 :

Consider the values of the patterns of v_0, v_1, \ldots, v_7 at e_1, e_2, e_3 :

$$\begin{array}{cccc} e_1 & e_2 & e_3 \\ v_0 & 1 & 1 & 1 \\ v_1 & \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ v_3 & 1 & -1 & -1 \\ v_4 & -1 & -1 & -1 \\ v_5 & -1 & 1 & -1 \\ v_7 & -1 & -1 & -1 \end{pmatrix}$$

Consider the values of the patterns of v_0, v_1, \ldots, v_7 at e_1, e_2, e_3 :

	e1	e2	e3
v ₀	/ 1	1	1
v1	(1	1	-1
v2	1	-1	1
v3	1	-1	-1
v4	-1	1	1
v5	-1	1	$^{-1}$
<i>v</i> 6	(-1)	-1	1
V7	<u>\</u> -1	-1	-1^{\prime}

The VC-dimension of the matrix is 3

Consider the values of the patterns of v_0, v_1, \ldots, v_7 at e_1, e_2, e_3 :

Thus, the VC-dimension argument is limited to showing $O(k^3)$.

- Subdivide every edge to make patterns binary.
- There are only O(k) vertices of degree > 2, hence O(k) faces in G.
- Every bisector can visit every face at most once.
- The number of distinct patterns along every single face is only O(k).
- Thus, there are only $O(k^2)$ patterns in G.

- Subdivide every edge to make patterns binary.
- There are only O(k) vertices of degree > 2, hence O(k) faces in G.
- Every bisector can visit every face at most once.
- The number of distinct patterns along every single face is only O(k).
- Thus, there are only $O(k^2)$ patterns in G.

- Subdivide every edge to make patterns binary.
- There are only O(k) vertices of degree > 2, hence O(k) faces in G.
- Every bisector can visit every face at most once.
- The number of distinct patterns along every single face is only O(k).
- Thus, there are only $O(k^2)$ patterns in G.

- Subdivide every edge to make patterns binary.
- There are only O(k) vertices of degree > 2, hence O(k) faces in G.
- Every bisector can visit every face at most once.
- The number of distinct patterns along every single face is only O(k).
- Thus, there are only $O(k^2)$ patterns in G.

- Subdivide every edge to make patterns binary.
- There are only O(k) vertices of degree > 2, hence O(k) faces in G.
- Every bisector can visit every face at most once.
- The number of distinct patterns along every single face is only O(k).
- Thus, there are only $O(k^2)$ patterns in G.

- Subdivide every edge to make patterns binary.
- There are only O(k) vertices of degree > 2, hence O(k) faces in G.
- Every bisector can visit every face at most once.
- The number of distinct patterns along every single face is only O(k).
- Thus, there are only $O(k^2)$ patterns in G.

- Subdivide every edge to make patterns binary.
- There are only O(k) vertices of degree > 2, hence O(k) faces in G.
- Every bisector can visit every face at most once.
- The number of distinct patterns along every single face is only O(k).
- Thus, there are only $O(k^2)$ patterns in G.

A matching $\Omega(k^2)$ Lower Bound for Halin Graphs

- Attach O(k) paths of lengths $1, 2, \ldots, \frac{k}{2}$ to a middle vertex v.
- Pad the portions of the infinite face between the first and last paths with ^k/₂ vertices.

A matching $\Omega(k^2)$ Lower Bound for Halin Graphs

- Attach O(k) paths of lengths $1, 2, \ldots, \frac{k}{2}$ to a middle vertex v.
- Pad the portions of the infinite face between the first and last paths with ^k/₂ vertices.

Claim: The path of length *i* contains i - 1 distinct patterns.

$\langle 1,1,1,1,1 angle$

 $\langle 1,1,1,1,1\rangle, \langle 1,1,-{\color{black}1},1,1\rangle$

 $\langle \mathbf{1},\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{1}\rangle, \langle \mathbf{1},\mathbf{1},-\mathbf{1},\mathbf{1},\mathbf{1}\rangle, \langle \mathbf{1},-\mathbf{1},-\mathbf{1},\mathbf{1},\mathbf{1}\rangle$

 $\langle \mathbf{1},\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{1}\rangle, \langle \mathbf{1},\mathbf{1},-\mathbf{1},\mathbf{1},\mathbf{1}\rangle, \langle \mathbf{1},-\mathbf{1},-\mathbf{1},\mathbf{1},\mathbf{1}\rangle, \langle -\mathbf{1},-\mathbf{1},-\mathbf{1},\mathbf{1},\mathbf{1}\rangle$

A matching $\Omega(k^2)$ Lower Bound for Halin Graphs

The distinct patterns of this graph are thus:

$$\begin{array}{l} \langle -1, 1, 1, 1, 1, \dots \rangle \\ \langle 1, -1, 1, 1, 1, \dots \rangle, \langle -1, -1, 1, 1, 1, \dots \rangle \\ \langle 1, 1, -1, 1, 1, \dots \rangle, \langle 1, -1, -1, 1, 1, \dots \rangle, \langle -1, -1, -1, 1, 1, \dots \rangle \\ \langle 1, 1, 1, -1, 1, \dots \rangle, \langle 1, 1, -1, -1, 1, \dots \rangle, \langle 1, -1, -1, -1, 1, \dots \rangle, \langle -1, -1, -1, -1, 1, \dots \rangle \\ \vdots \end{array}$$

$$\sum_{i=1}^{\frac{k}{2}}(i-1)=\Omega(k^2)$$

• To prove an $O(k^2)$ bound: Show that the *total* number of crossings between the bisectors is $O(k^2)$.

- To prove an $O(k^2)$ bound: Show that the *total* number of crossings between the bisectors is $O(k^2)$.
- To prove an Ω(k³) bound: Realize an example of k bisectors that cross Ω(k³) times.

- To prove an $O(k^2)$ bound: Show that the *total* number of crossings between the bisectors is $O(k^2)$.
- To prove an Ω(k³) bound: Realize an example of k bisectors that cross Ω(k³) times.

The gap remains difficult even in the family of 2-outerplanar graphs.
The number of distinct patterns in planar graphs is $\Omega(k^2)$ and $O(k^3)$.

- To prove an $O(k^2)$ bound: Show that the *total* number of crossings between the bisectors is $O(k^2)$.
- To prove an Ω(k³) bound: Realize an example of k bisectors that cross Ω(k³) times.

The gap remains difficult even in the family of 2-outerplanar graphs.

Conjecture

The number of distinct patterns in a planar graph is $O(k^2)$.

• A simple argument shows that $\Omega(|T| + k)$ bits are necessary.

- A simple argument shows that $\Omega(|T| + k)$ bits are necessary.
- Since x = Ω(k²), there is an additive gap of at least Ω(k²) between our construction and the lower bound.

- A simple argument shows that $\Omega(|T| + k)$ bits are necessary.
- Since x = Ω(k²), there is an additive gap of at least Ω(k²) between our construction and the lower bound.
- For small values of |T|, the naïve compression of $\tilde{O}(|T| \cdot k)$ bits is still better than ours. Can it be improved?

- A simple argument shows that $\Omega(|T| + k)$ bits are necessary.
- Since x = Ω(k²), there is an additive gap of at least Ω(k²) between our construction and the lower bound.
- For small values of |T|, the naïve compression of $\tilde{O}(|T| \cdot k)$ bits is still better than ours. Can it be improved?
- Is the additive *O*(x) bits necessary? It remains open to show a lower bound, or improve the compression to not depend on x.

- A simple argument shows that $\Omega(|T| + k)$ bits are necessary.
- Since x = Ω(k²), there is an additive gap of at least Ω(k²) between our construction and the lower bound.
- For small values of |T|, the naïve compression of $\tilde{O}(|T| \cdot k)$ bits is still better than ours. Can it be improved?
- Is the additive *O*(x) bits necessary? It remains open to show a lower bound, or improve the compression to not depend on x.

The End