
Improved Compression of the

Okamura-Seymour Metric

Shay Mozes, Nathan Wallheimer, Oren Weimann

The Okamura-Seymour Metric Compression Problem

• An undirected, unweighted planar graph G = (V ,E).

• A set S = {s1, s2, . . . , sk} of k consecutive vertices on a face f∞.

• A set T ⊆ V of terminal vertices lying anywhere in the graph.

1

The Okamura-Seymour Metric Compression Problem

• An undirected, unweighted planar graph G = (V ,E).

• A set S = {s1, s2, . . . , sk} of k consecutive vertices on a face f∞.

• A set T ⊆ V of terminal vertices lying anywhere in the graph.

The Okamura-Seymour Metric Compression Problem

Succinctly encode the T × S distances to answer d(v , si) queries.

1

Results

Solution Complexity

T = S Unit-Monge [AGMW’18] Õ(k) space, Õ(1) query

T = V MSSP [Klein’05] O(n) space, Õ(1) query

T ⊂ V Näıve Õ(|T | · k) space, O(1) query

2

Results

Solution Complexity

T = S Unit-Monge [AGMW’18] Õ(k) space, Õ(1) query

T = V MSSP [Klein’05] O(n) space, Õ(1) query

T ⊂ V Näıve Õ(|T | · k) space, O(1) query

T ⊂ V VC-dimension [LiParter’19] Õ(|T |+ k4) space, O(1) query

2

Results

Solution Complexity

T = S Unit-Monge [AGMW’18] Õ(k) space, Õ(1) query

T = V MSSP [Klein’05] O(n) space, Õ(1) query

T ⊂ V Näıve Õ(|T | · k) space, O(1) query

T ⊂ V VC-dimension [LiParter’19] Õ(|T |+ k4) space, O(1) query

T ⊂ V Today Õ(|T |+ k3) space, Õ(1) query

2

The Pattern of v ∈ V

pv = 〈d(v , s2)− d(v , s1), d(v , s3)− d(v , s2), · · · , d(v , sk)− d(v , sk−1)〉

3

The Pattern of v ∈ V

pv = 〈d(v , s2)− d(v , s1), d(v , s3)− d(v , s2), · · · , d(v , sk)− d(v , sk−1)〉

• pv ∈ {−1, 0, 1}k−1 by the triangle inequality.

• v -to-si distances are determined by pv and d(v , s1):

d(v , si) = d(v , s1) +

i−1∑

j=1

pv [j]

︸ ︷︷ ︸

prefix-sum

3

The Pattern of v ∈ V

Theorem (Li & Parter [STOC 2019])

There are only x = O(k3) distinct patterns among all vertices of the

graph.

Huge improvement over the trivial O(3k) bound.

3

Li & Parter’s Compression

1. One table with the O(k3) distinct patterns and their prefix-sums.

2. Every v ∈ T stores d(v , s1) and a pointer to pv in the previous table.

Space: Õ(|T |+ k4), Query time: O(1).

4

Li & Parter’s O(k3) Proof

Assume w.l.o.g. that the patterns are over {−1, 1} and not {−1, 0, 1}.

This can be achieved by subdividing every edge:

5

Li & Parter’s O(k3) Proof

Arrange the n binary patterns as the rows of a binary matrix.

By planarity, there are no four columns a < b < c < d such that for

some u, v ∈ V :

a b c d

...
...

...

u −1 1 −1 1
...

...
...

v 1 −1 1 −1
...

...
...

6

Li & Parter’s O(k3) Proof

Arrange the n binary patterns as the rows of a binary matrix.

By planarity, there are no four columns a < b < c < d such that for

some u, v ∈ V :

a b c d

...
...

...

u −1 1 −1 1
...

...
...

v 1 −1 1 −1
...

...
...

Thus, the VC -dimension of the matrix is at most 3.

By the Sauer-Shelach Lemma, the number of distinct rows is O(k3).

6

Our Results

Let x = the number of distinct patterns among all vertices of G .

• An Õ(|T |+ x + k) bits compression of the Okamura-Seymour

metric, with query time Õ(1).

7

Our Results

Let x = the number of distinct patterns among all vertices of G .

• An Õ(|T |+ x + k) bits compression of the Okamura-Seymour

metric, with query time Õ(1).

• An optimal Õ(|T |+ k) bits compression with Õ(1) query for two

special cases: (1) T induces a connected subgraph of G , and (2) T

lies on a single face (not necessarily consecutively).

7

Our Results

Let x = the number of distinct patterns among all vertices of G .

• An Õ(|T |+ x + k) bits compression of the Okamura-Seymour

metric, with query time Õ(1).

• An optimal Õ(|T |+ k) bits compression with Õ(1) query for two

special cases: (1) T induces a connected subgraph of G , and (2) T

lies on a single face (not necessarily consecutively).

• An alternative x = O(k3) proof that exploits planarity beyond

VC-dimension. Namely, planar duality and the fact that distances

among vertices of S are bounded by k .

7

Our Results

Let x = the number of distinct patterns among all vertices of G .

• An Õ(|T |+ x + k) bits compression of the Okamura-Seymour

metric, with query time Õ(1).

• An optimal Õ(|T |+ k) bits compression with Õ(1) query for two

special cases: (1) T induces a connected subgraph of G , and (2) T

lies on a single face (not necessarily consecutively).

• An alternative x = O(k3) proof that exploits planarity beyond

VC-dimension. Namely, planar duality and the fact that distances

among vertices of S are bounded by k .

• In Halin graphs, we show that x = Θ(k2) while the VC -dimension

argument is limited to showing O(k3).

7

Bisectors

For every 1 ≤ i < k , define the following cuts:

Ai = {v ∈ V | pv [i] = −1}

V \ Ai = {v ∈ V | pv [i] = 1}

8

Bisectors

For every 1 ≤ i < k , define the following cuts:

Ai = {v ∈ V | pv [i] = −1}

V \ Ai = {v ∈ V | pv [i] = 1}

A bisector is the set of dual arcs βi := {(uv)∗ | u ∈ Ai , v ∈ V \ Ai}.

8

Bisectors

For every 1 ≤ i < k , define the following cuts:

Ai = {v ∈ V | pv [i] = −1}

V \ Ai = {v ∈ V | pv [i] = 1}

A bisector is the set of dual arcs βi := {(uv)∗ | u ∈ Ai , v ∈ V \ Ai}.

βi is a directed simple cycle in the dual graph.

8

Every Two Bisectors are Arc-Disjoint

This is a forbidden configuration!

9

Every Two Bisectors are Arc-Disjoint

This is a forbidden configuration!

However, it is possible that βi contains reversed arcs of βj :

9

Patterns of Adjacent Vertices Differ in at Most Two Bits

For any {u, v} ∈ E (G), u and v are separated by at most two bisectors.

10

Patterns of Adjacent Vertices Differ in at Most Two Bits

For any {u, v} ∈ E (G), u and v are separated by at most two bisectors.

Hence, pu and pv differ in at most two bits.

10

Patterns of Adjacent Vertices Differ in at Most Two Bits

For any {u, v} ∈ E (G), u and v are separated by at most two bisectors.

Hence, pu and pv differ in at most two bits.

We can use this fact to get a compression of size Õ(|T |+ x + k)

10

Our Results

Let x = the number of distinct patterns among all vertices of G .

• An Õ(|T | + x + k) bits compression of the Okamura-Seymour

metric, with query time Õ(1).

• An optimal Õ(|T |+ k) bits compression with Õ(1) query for two

special cases: (1) T induces a connected subgraph of G , and (2) T

lies on a single face.

• An alternative x = O(k3) proof that exploits planarity beyond

VC-dimension. Namely, planar duality and the fact that distances

among vertices of S are bounded by k .

• In Halin graphs, we show that x = Θ(k2) while the VC -dimension

argument is limited to showing O(k3).

11

A Spanning Tree of G

• Root the tree at an arbitrary vertex v .

12

A Spanning Tree of G

• Root the tree at an arbitrary vertex v .

• Identify each node with its pattern.

12

A Spanning Tree of G

• Root the tree at an arbitrary vertex v .

• Identify each node with its pattern.

• Label every edge by the two bits that change.

12

Some Patterns Appear Multiple Times

1. Let y and w be two vertices such that py = pw .

13

Some Patterns Appear Multiple Times

1. Let y and w be two vertices such that py = pw .

2. Assume w.l.o.g. that depth(y) ≤ depth(w).

13

Some Patterns Appear Multiple Times

1. Let y and w be two vertices such that py = pw .

2. Assume w.l.o.g. that depth(y) ≤ depth(w).

3. Move w ’s children to y (edge labels remain the same).

13

Some Patterns Appear Multiple Times

1. Let y and w be two vertices such that py = pw .

2. Assume w.l.o.g. that depth(y) ≤ depth(w).

3. Move w ’s children to y (edge labels remain the same).

13

Some Patterns Appear Multiple Times

1. Let y and w be two vertices such that py = pw .

2. Assume w.l.o.g. that depth(y) ≤ depth(w).

3. Move w ’s children to y (edge labels remain the same).

4. Remove w from the tree.

13

Some Patterns Appear Multiple Times

1. Let y and w be two vertices such that py = pw .

2. Assume w.l.o.g. that depth(y) ≤ depth(w).

3. Move w ’s children to y (edge labels remain the same).

4. Remove w from the tree.

13

Some Patterns Appear Multiple Times

1. Let y and w be two vertices such that py = pw .

2. Assume w.l.o.g. that depth(y) ≤ depth(w).

3. Move w ’s children to y (edge labels remain the same).

4. Remove w from the tree.

5. Repeat until the size of the tree is x .

13

The Data Structure

14

The Data Structure

1. Construct a tree of size x whose nodes correspond to patterns, and

edges are labeled by the bits that change.

14

The Data Structure

1. Construct a tree of size x whose nodes correspond to patterns, and

edges are labeled by the bits that change.

2. As we traverse the tree, only O(x) bit-changes occur.

14

The Data Structure

1. Construct a tree of size x whose nodes correspond to patterns, and

edges are labeled by the bits that change.

2. As we traverse the tree, only O(x) bit-changes occur.

3. Maintain all of those O(x) versions of the pattern in a persistent

data structure for prefix-sum that supports updates.

14

The Data Structure

1. Construct a tree of size x whose nodes correspond to patterns, and

edges are labeled by the bits that change.

2. As we traverse the tree, only O(x) bit-changes occur.

3. Maintain all of those O(x) versions of the pattern in a persistent

data structure for prefix-sum that supports updates.

Space: Õ(x + k) and Õ(1) query.

14

The Data Structure

1. Construct a tree of size x whose nodes correspond to patterns, and

edges are labeled by the bits that change.

2. As we traverse the tree, only O(x) bit-changes occur.

3. Maintain all of those O(x) versions of the pattern in a persistent

data structure for prefix-sum that supports updates.

Space: Õ(x + k) and Õ(1) query.

4. Every v ∈ T stores d(v , s1) and a pointer to the version of the

prefix-sum data structure at pv .

14

The Data Structure

1. Construct a tree of size x whose nodes correspond to patterns, and

edges are labeled by the bits that change.

2. As we traverse the tree, only O(x) bit-changes occur.

3. Maintain all of those O(x) versions of the pattern in a persistent

data structure for prefix-sum that supports updates.

Space: Õ(x + k) and Õ(1) query.

4. Every v ∈ T stores d(v , s1) and a pointer to the version of the

prefix-sum data structure at pv .

In total: Õ(|T |+ x + k) space and Õ(1) time for query.

14

The Data Structure

1. Construct a tree of size x whose nodes correspond to patterns, and

edges are labeled by the bits that change.

2. As we traverse the tree, only O(x) bit-changes occur.

3. Maintain all of those O(x) versions of the pattern in a persistent

data structure for prefix-sum that supports updates.

Space: Õ(x + k) and Õ(1) query.

4. Every v ∈ T stores d(v , s1) and a pointer to the version of the

prefix-sum data structure at pv .

In total: Õ(|T |+ x + k) space and Õ(1) time for query.

Preprocessing: can be done in Õ(n) time.

14

Our Results

Let x = the number of distinct patterns among all vertices of G .

• An Õ(|T |+ x + k) bits compression of the Okamura-Seymour

metric, with query time Õ(1).

• An optimal Õ(|T | + k) bits compression with Õ(1) query for

two special cases: (1) T induces a connected subgraph of G ,

and (2) T lies on a single face.

• An alternative x = O(k3) proof that exploits planarity beyond

VC-dimension. Namely, planar duality and the fact that distances

among vertices of S are bounded by k .

• In Halin graphs, we show that x = Θ(k2) while the VC -dimension

argument is limited to showing O(k3).

15

T Induces a Connected Component

We only need to traverse T . Thus, there are only x = O(|T |) versions.

16

T Induces a Connected Component

We only need to traverse T . Thus, there are only x = O(|T |) versions.

Space: Õ(|T |+ k). Time: Õ(1).

padding blah

16

T Lies on a Single Face

17

T Lies on a Single Face

We only need to traverse the vertices along the face. Every bisector can

visit the face at most once. Thus, there are only x = O(k) versions.

17

T Lies on a Single Face

We only need to traverse the vertices along the face. Every bisector can

visit the face at most once. Thus, there are only x = O(k) versions.

Space: Õ(|T |+ k). Time: Õ(1).

17

Our Results

Let x = the number of distinct patterns among all vertices of G .

• An Õ(|T |+ x + k) bits compression of the Okamura-Seymour

metric, with query time Õ(1).

• An optimal Õ(|T |+ k) bits compression with Õ(1) query for two

special cases: (1) T induces a connected subgraph of G , and (2) T

lies on a single face.

• An alternative x = O(k3) proof that exploits planarity beyond

VC-dimension. Namely, planar duality and the fact that

distances among vertices of S are bounded by k.

• In Halin graphs, we show that x = Θ(k2) while the VC -dimension

argument is limited to showing O(k3).

18

The Bisector Graph GB

Definition

The bisector graph GB, is composed of the union of all the bisectors.

19

The Bisector Graph GB

Definition

The bisector graph GB, is composed of the union of all the bisectors.

• For every u, v ∈ V embedded in the same face, pu = pv .

19

The Bisector Graph GB

Definition

The bisector graph GB, is composed of the union of all the bisectors.

• For every u, v ∈ V embedded in the same face, pu = pv .

• If the number of faces in GB was O(k3), we’d be done.

19

The Bisector Graph GB

Definition

The bisector graph GB, is composed of the union of all the bisectors.

• For every u, v ∈ V embedded in the same face, pu = pv .

• If the number of faces in GB was O(k3), we’d be done.

• Alas, there could be Ω(n) faces that correspond to the same pattern.

19

The Bisector Graph GB

Definition

The bisector graph GB, is composed of the union of all the bisectors.

• For every u, v ∈ V embedded in the same face, pu = pv .

• If the number of faces in GB was O(k3), we’d be done.

• Alas, there could be Ω(n) faces that correspond to the same pattern.

19

The Bisector Graph GB

Definition

The bisector graph GB, is composed of the union of all the bisectors.

• For every u, v ∈ V embedded in the same face, pu = pv .

• If the number of faces in GB was O(k3), we’d be done.

• Alas, there could be Ω(n) faces that correspond to the same pattern.

19

The Bisector Graph GB

Definition

The bisector graph GB, is composed of the union of all the bisectors.

• For every u, v ∈ V embedded in the same face, pu = pv .

• If the number of faces in GB was O(k3), we’d be done.

• Alas, there could be Ω(n) faces that correspond to the same pattern.

19

The Bisector Graph GB

Definition

The bisector graph GB, is composed of the union of all the bisectors.

• For every u, v ∈ V embedded in the same face, pu = pv .

• If the number of faces in GB was O(k3), we’d be done.

• Alas, there could be Ω(n) faces that correspond to the same pattern.

19

Remove Touching Points

A touching is an intersection of bisectors without crossing.

20

Remove Touching Points

A touching is an intersection of bisectors without crossing.

Touching points can be removed such that vertices embedded in the

same face will still have the same pattern.

20

Remove Touching Points

A touching is an intersection of bisectors without crossing.

Touching points can be removed such that vertices embedded in the

same face will still have the same pattern.

20

The Pattern Graph GP

Definition

The Pattern graph GP is obtained from GB by removing all touching

points.

21

The Pattern Graph GP

Definition

The Pattern graph GP is obtained from GB by removing all touching

points.

By Euler’s formula, the number of faces in GP is bounded by the number

of crossings.

21

The Pattern Graph GP

Definition

The Pattern graph GP is obtained from GB by removing all touching

points.

By Euler’s formula, the number of faces in GP is bounded by the number

of crossings.

Our main technical contribution: every two bisectors can cross at

most O(k) times, hence the number of crossings is O(k3).
21

Every Two Bisectors Cross in Opposite Orientation

Lemma

Let p1, p2, . . . , pr be the crossing points of βi and βj , in the order they

appear along βi .

The crossing points along βj are reversed pr , pr−1, . . . , p1.

22

Proof by Contradiction

• Assume for contradition that p1 appears before p2 in βj .

23

Proof by Contradiction

• Assume for contradition that p1 appears before p2 in βj .

• Let v ∈ V be the vertex that lies on the right of βj after p2.

23

Proof by Contradiction

• Assume for contradition that p1 appears before p2 in βj .

• Let v ∈ V be the vertex that lies on the right of βj after p2.

• Pv,si+1
must stay on the left of βi and cross βj .

23

Proof by Contradiction

• Assume for contradition that p1 appears before p2 in βj .

• Let v ∈ V be the vertex that lies on the right of βj after p2.

• Pv,si+1
must stay on the left of βi and cross βj .

• Pv,sj must stay on the right of βj and cross Pv,si+1
.

23

Proof by Contradiction

• Assume for contradition that p1 appears before p2 in βj .

• Let v ∈ V be the vertex that lies on the right of βj after p2.

• Pv,si+1
must stay on the left of βi and cross βj .

• Pv,sj must stay on the right of βj and cross Pv,si+1
.

• There’s a shortest v-to-sj path that crosses βj , a contradiction.

23

Two Bisectors can Cross at Most O(k) Times

Lemma

The number of crossings between βi and βj is r = O(k).

24

Two Bisectors can Cross at Most O(k) Times

• Let v1, v2, . . . , vr be primal vertices inside the “pockets” created

between consecutive crossings.

25

Two Bisectors can Cross at Most O(k) Times

• Let v1, v2, . . . , vr be primal vertices inside the “pockets” created

between consecutive crossings.

• Consider some vℓ.

25

Two Bisectors can Cross at Most O(k) Times

26

Two Bisectors can Cross at Most O(k) Times

• Pvℓ+1,si+1
must remain on the left of βi .

26

Two Bisectors can Cross at Most O(k) Times

• Pvℓ+1,si+1
must remain on the left of βi .

• Pvℓ,sj must remain on the right of βj and cross Pvℓ+1,si+1
.

26

Two Bisectors can Cross at Most O(k) Times

• Pvℓ+1,si+1
must remain on the left of βi .

• Pvℓ,sj must remain on the right of βj and cross Pvℓ+1,si+1
.

• A symmetric configuration with vℓ and vℓ−1.

26

Two Bisectors can Cross at Most O(k) Times

• Pvℓ+1,si+1
must remain on the left of βi .

• Pvℓ,sj must remain on the right of βj and cross Pvℓ+1,si+1
.

• A symmetric configuration with vℓ and vℓ−1.

• Denote the lengths of subpaths by A,B,C ,D,E ,F .

26

Two Bisectors can Cross at Most O(k) Times

By the triangle inequality and since patterns are over {−1, 1}:

C + B ≤ D + F − 1

D + E ≤ C + A− 1

27

Two Bisectors can Cross at Most O(k) Times

By the triangle inequality and since patterns are over {−1, 1}:

C + B ≤ D + F − 1

D + E ≤ C + A− 1

The sum of the inequalities is E − F + 2 ≤ A− B.
27

Two Bisectors can Cross at Most O(k) Times

Symmetrically we get:

E − F + 2 ≤ A− B

H − G + 2 ≤ E − F

and so on...

28

Two Bisectors can Cross at Most O(k) Times

Symmetrically we get:

E − F + 2 ≤ A− B

H − G + 2 ≤ E − F

and so on... Hence, there exists a vertex v such that:

Ω(r) ≤ d (v , si) − d (v , sj+1) ≤ k
28

Our Results

Let x = the number of distinct patterns among all vertices of G .

• An Õ(|T |+ x + k) bits compression of the Okamura-Seymour

metric, with query time Õ(1).

• An optimal Õ(|T |+ k) bits compression with Õ(1) query for two

special cases: (1) T induces a connected subgraph of G , and (2) T

lies on a single face.

• An alternative x = O(k3) proof that exploits planarity beyond

VC-dimension. Namely, planar duality and the fact that distances

among vertices of S are bounded by k .

• In Halin graphs, we show that x = Θ(k2) while the

VC -dimension argument is limited to showing O(k3).

29

Halin Graphs

Definition

A Halin graph is a graph obtained by taking an embedded tree and

connecting its leaves by a cycle.

30

Halin Graphs

Definition

A Halin graph is a graph obtained by taking an embedded tree and

connecting its leaves by a cycle.

Denote by k the size of the cycle. Consider the patterns of the graph

w.r.t. the infinite face.

30

A Limitation of the VC-dimension Argument

Consider the values of the patterns of v0, v1, . . . v7 at e1, e2, e3:

31

A Limitation of the VC-dimension Argument

Consider the values of the patterns of v0, v1, . . . v7 at e1, e2, e3:

e1 e2 e3

v0 1 1 1

v1 1 1 −1

v2 1 −1 1

v3 1 −1 −1

v4 −1 1 1

v5 −1 1 −1

v6 −1 −1 1

v7 −1 −1 −1

31

A Limitation of the VC-dimension Argument

Consider the values of the patterns of v0, v1, . . . v7 at e1, e2, e3:

e1 e2 e3

v0 1 1 1

v1 1 1 −1

v2 1 −1 1

v3 1 −1 −1

v4 −1 1 1

v5 −1 1 −1

v6 −1 −1 1

v7 −1 −1 −1

The VC-dimension of the matrix is 3

31

A Limitation of the VC-dimension Argument

Consider the values of the patterns of v0, v1, . . . v7 at e1, e2, e3:

e1 e2 e3

v0 1 1 1

v1 1 1 −1

v2 1 −1 1

v3 1 −1 −1

v4 −1 1 1

v5 −1 1 −1

v6 −1 −1 1

v7 −1 −1 −1

The VC-dimension of the matrix is 3

Thus, the VC-dimension argument is limited to showing O(k3).
31

An O(k2) Proof in Halin Graphs

• Subdivide every edge to make patterns binary.

• There are only O(k) vertices of degree > 2, hence O(k) faces in G .

• Every bisector can visit every face at most once.

• The number of distinct patterns along every single face is only O(k).

• Thus, there are only O(k2) patterns in G .

32

An O(k2) Proof in Halin Graphs

• Subdivide every edge to make patterns binary.

• There are only O(k) vertices of degree > 2, hence O(k) faces in G .

• Every bisector can visit every face at most once.

• The number of distinct patterns along every single face is only O(k).

• Thus, there are only O(k2) patterns in G .

32

An O(k2) Proof in Halin Graphs

• Subdivide every edge to make patterns binary.

• There are only O(k) vertices of degree > 2, hence O(k) faces in G .

• Every bisector can visit every face at most once.

• The number of distinct patterns along every single face is only O(k).

• Thus, there are only O(k2) patterns in G .

32

An O(k2) Proof in Halin Graphs

• Subdivide every edge to make patterns binary.

• There are only O(k) vertices of degree > 2, hence O(k) faces in G .

• Every bisector can visit every face at most once.

• The number of distinct patterns along every single face is only O(k).

• Thus, there are only O(k2) patterns in G .

32

An O(k2) Proof in Halin Graphs

• Subdivide every edge to make patterns binary.

• There are only O(k) vertices of degree > 2, hence O(k) faces in G .

• Every bisector can visit every face at most once.

• The number of distinct patterns along every single face is only O(k).

• Thus, there are only O(k2) patterns in G .

32

An O(k2) Proof in Halin Graphs

• Subdivide every edge to make patterns binary.

• There are only O(k) vertices of degree > 2, hence O(k) faces in G .

• Every bisector can visit every face at most once.

• The number of distinct patterns along every single face is only O(k).

• Thus, there are only O(k2) patterns in G .

32

An O(k2) Proof in Halin Graphs

• Subdivide every edge to make patterns binary.

• There are only O(k) vertices of degree > 2, hence O(k) faces in G .

• Every bisector can visit every face at most once.

• The number of distinct patterns along every single face is only O(k).

• Thus, there are only O(k2) patterns in G .

32

A matching Ω(k2) Lower Bound for Halin Graphs

• Attach O(k) paths of lengths 1, 2, . . . , k
2
to a middle vertex v .

• Pad the portions of the infinite face between the first and last paths

with k
2
vertices.

33

A matching Ω(k2) Lower Bound for Halin Graphs

• Attach O(k) paths of lengths 1, 2, . . . , k
2
to a middle vertex v .

• Pad the portions of the infinite face between the first and last paths

with k
2
vertices.

Claim: The path of length i contains i − 1 distinct patterns.

33

The Different Patterns Along a Path

〈1, 1, 1, 1, 1〉

34

The Different Patterns Along a Path

〈1, 1, 1, 1, 1〉, 〈1, 1,−1, 1, 1〉

34

The Different Patterns Along a Path

〈1, 1, 1, 1, 1〉, 〈1, 1,−1, 1, 1〉, 〈1,−1,−1, 1, 1〉

34

The Different Patterns Along a Path

〈1, 1, 1, 1, 1〉, 〈1, 1,−1, 1, 1〉, 〈1,−1,−1, 1, 1〉, 〈−1,−1,−1, 1, 1〉

34

A matching Ω(k2) Lower Bound for Halin Graphs

The distinct patterns of this graph are thus:

〈−1, 1, 1, 1, 1, . . .〉

〈1,−1, 1, 1, 1, . . .〉, 〈−1,−1, 1, 1, 1, . . .〉

〈1, 1,−1, 1, 1, . . .〉, 〈1,−1,−1, 1, 1, . . .〉, 〈−1,−1,−1, 1, 1, . . .〉

〈1, 1, 1,−1, 1, . . .〉, 〈1, 1,−1,−1, 1, . . .〉, 〈1,−1,−1,−1, 1, . . .〉, 〈−1,−1,−1,−1, 1, . . .〉

.

.

.

k
2∑

i=1

(i − 1) = Ω(k2)

35

Open Question 1: Closing the Gap

The number of distinct patterns in planar graphs is Ω(k2) and O(k3).

36

Open Question 1: Closing the Gap

The number of distinct patterns in planar graphs is Ω(k2) and O(k3).

• To prove an O(k2) bound: Show that the total number of crossings

between the bisectors is O(k2).

36

Open Question 1: Closing the Gap

The number of distinct patterns in planar graphs is Ω(k2) and O(k3).

• To prove an O(k2) bound: Show that the total number of crossings

between the bisectors is O(k2).

• To prove an Ω(k3) bound: Realize an example of k bisectors that

cross Ω(k3) times.

36

Open Question 1: Closing the Gap

The number of distinct patterns in planar graphs is Ω(k2) and O(k3).

• To prove an O(k2) bound: Show that the total number of crossings

between the bisectors is O(k2).

• To prove an Ω(k3) bound: Realize an example of k bisectors that

cross Ω(k3) times.

The gap remains difficult even in the family of 2-outerplanar graphs.

36

Open Question 1: Closing the Gap

The number of distinct patterns in planar graphs is Ω(k2) and O(k3).

• To prove an O(k2) bound: Show that the total number of crossings

between the bisectors is O(k2).

• To prove an Ω(k3) bound: Realize an example of k bisectors that

cross Ω(k3) times.

The gap remains difficult even in the family of 2-outerplanar graphs.

Conjecture

The number of distinct patterns in a planar graph is O(k2).

36

Open Question 2: Information-Theoretic Lower Bounds

We showed how to compress the T × S distances into Õ(|T |+ x + k)

bits.

37

Open Question 2: Information-Theoretic Lower Bounds

We showed how to compress the T × S distances into Õ(|T |+ x + k)

bits.

• A simple argument shows that Ω(|T |+ k) bits are necessary.

37

Open Question 2: Information-Theoretic Lower Bounds

We showed how to compress the T × S distances into Õ(|T |+ x + k)

bits.

• A simple argument shows that Ω(|T |+ k) bits are necessary.

• Since x = Ω(k2), there is an additive gap of at least Ω(k2) between

our construction and the lower bound.

37

Open Question 2: Information-Theoretic Lower Bounds

We showed how to compress the T × S distances into Õ(|T |+ x + k)

bits.

• A simple argument shows that Ω(|T |+ k) bits are necessary.

• Since x = Ω(k2), there is an additive gap of at least Ω(k2) between

our construction and the lower bound.

• For small values of |T |, the näıve compression of Õ(|T | · k) bits is

still better than ours. Can it be improved?

37

Open Question 2: Information-Theoretic Lower Bounds

We showed how to compress the T × S distances into Õ(|T |+ x + k)

bits.

• A simple argument shows that Ω(|T |+ k) bits are necessary.

• Since x = Ω(k2), there is an additive gap of at least Ω(k2) between

our construction and the lower bound.

• For small values of |T |, the näıve compression of Õ(|T | · k) bits is

still better than ours. Can it be improved?

• Is the additive Õ(x) bits necessary? It remains open to show a lower

bound, or improve the compression to not depend on x .

37

Open Question 2: Information-Theoretic Lower Bounds

We showed how to compress the T × S distances into Õ(|T |+ x + k)

bits.

• A simple argument shows that Ω(|T |+ k) bits are necessary.

• Since x = Ω(k2), there is an additive gap of at least Ω(k2) between

our construction and the lower bound.

• For small values of |T |, the näıve compression of Õ(|T | · k) bits is

still better than ours. Can it be improved?

• Is the additive Õ(x) bits necessary? It remains open to show a lower

bound, or improve the compression to not depend on x .

The End

37

