Improved Compression of the Okamura-Seymour Metric

Shay Mozes, Nathan Wallheimer, Oren Weimann
The Okamura-Seymour Metric Compression Problem

- An undirected, unweighted planar graph $G = (V, E)$.
- A set $S = \{s_1, s_2, \ldots, s_k\}$ of k consecutive vertices on a face f_∞.
- A set $T \subseteq V$ of terminal vertices lying anywhere in the graph.
The Okamura-Seymour Metric Compression Problem

- An undirected, unweighted planar graph $G = (V, E)$.
- A set $S = \{s_1, s_2, \ldots, s_k\}$ of k consecutive vertices on a face f_∞.
- A set $T \subseteq V$ of terminal vertices lying anywhere in the graph.

The Okamura-Seymour Metric Compression Problem

Succinctly encode the $T \times S$ distances to answer $d(v, s_i)$ queries.
Results

<table>
<thead>
<tr>
<th>Solution</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = S$</td>
<td>Unit-Monge [AGMW’18] $\tilde{O}(k)$ space, $\tilde{O}(1)$ query</td>
</tr>
<tr>
<td>$T = V$</td>
<td>MSSP [Klein’05] $O(n)$ space, $\tilde{O}(1)$ query</td>
</tr>
<tr>
<td>$T \subset V$</td>
<td>Naïve $\tilde{O}(</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Solution</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = S$ Unit-Monge [AGMW’18]</td>
<td>$\tilde{O}(k)$ space, $\tilde{O}(1)$ query</td>
</tr>
<tr>
<td>$T = V$ MSSP [Klein’05]</td>
<td>$O(n)$ space, $\tilde{O}(1)$ query</td>
</tr>
<tr>
<td>$T \subset V$ Naïve</td>
<td>$\tilde{O}(</td>
</tr>
<tr>
<td>$T \subset V$ VC-dimension [LiParter’19]</td>
<td>$\tilde{O}(</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>T</th>
<th>Solution</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = S$</td>
<td>Unit-Monge [AGMW’18]</td>
<td>$\tilde{O}(k)$ space, $\tilde{O}(1)$ query</td>
</tr>
<tr>
<td>$T = V$</td>
<td>MSSP [Klein’05]</td>
<td>$O(n)$ space, $\tilde{O}(1)$ query</td>
</tr>
<tr>
<td>$T \subset V$</td>
<td>Naïve</td>
<td>$\tilde{O}(</td>
</tr>
<tr>
<td>$T \subset V$</td>
<td>VC-dimension [LiParter’19]</td>
<td>$\tilde{O}(</td>
</tr>
<tr>
<td>$T \subset V$</td>
<td>Today</td>
<td>$\tilde{O}(</td>
</tr>
</tbody>
</table>
The Pattern of $v \in V$

\[p_v = \langle d(v, s_2) - d(v, s_1), d(v, s_3) - d(v, s_2), \ldots, d(v, s_k) - d(v, s_{k-1}) \rangle \]
The Pattern of $v \in V$

\[p_v = \langle d(v, s_2) - d(v, s_1), d(v, s_3) - d(v, s_2), \cdots, d(v, s_k) - d(v, s_{k-1}) \rangle \]

- $p_v \in \{-1, 0, 1\}^{k-1}$ by the triangle inequality.
- v-to-s_i distances are determined by p_v and $d(v, s_1)$:

\[d(v, s_i) = d(v, s_1) + \sum_{j=1}^{i-1} p_v[j] \]
The Pattern of $v \in V$

Theorem (Li & Parter [STOC 2019])

There are only $\mathbf{x} = O(k^3)$ distinct patterns among all vertices of the graph.

Huge improvement over the trivial $O(3^k)$ bound.
1. One table with the $O(k^3)$ distinct patterns and their prefix-sums.
2. Every $v \in T$ stores $d(v, s_1)$ and a pointer to p_v in the previous table.

Space: $\tilde{O}(|T| + k^4)$, Query time: $O(1)$.
Assume w.l.o.g. that the patterns are over \{-1, 1\} and not \{-1, 0, 1\}. This can be achieved by subdividing every edge:
Arrange the n binary patterns as the rows of a binary matrix. By planarity, there are no four columns $a < b < c < d$ such that for some $u, v \in V$:

$$
\begin{pmatrix}
 a & b & c & d \\
 \vdots & \vdots & \vdots & \\
 u & -1 & 1 & -1 & 1 \\
 \vdots & \vdots & \vdots & \\
 v & 1 & -1 & 1 & -1 \\
 \vdots & \vdots & \vdots &
\end{pmatrix}
$$
Arrange the n binary patterns as the rows of a binary matrix. By planarity, there are no four columns $a < b < c < d$ such that for some $u, v \in V$:

\[
\begin{pmatrix}
\vdots \\
u & -1 & 1 & -1 & 1 \\
\vdots \\
v & 1 & -1 & 1 & -1 \\
\vdots \\
\vdots
\end{pmatrix}
\]

Thus, the VC-dimension of the matrix is at most 3. By the Sauer-Shelah Lemma, the number of distinct rows is $O(k^3)$.
Let x be the number of distinct patterns among all vertices of G.

- An $\tilde{O}(|T| + x + k)$ bits compression of the Okamura-Seymour metric, with query time $\tilde{O}(1)$.
Our Results

Let $x = \text{the number of distinct patterns among all vertices of G}.$

- An $\tilde{O}(|T| + x + k)$ bits compression of the Okamura-Seymour metric, with query time $\tilde{O}(1)$.

- An optimal $\tilde{O}(|T| + k)$ bits compression with $\tilde{O}(1)$ query for two special cases: (1) T induces a connected subgraph of G, and (2) T lies on a single face (not necessarily consecutively).
Let $x =$ the number of distinct patterns among all vertices of G.

- An $\tilde{O}(|T| + x + k)$ bits compression of the Okamura-Seymour metric, with query time $\tilde{O}(1)$.

- An optimal $\tilde{O}(|T| + k)$ bits compression with $\tilde{O}(1)$ query for two special cases: (1) T induces a connected subgraph of G, and (2) T lies on a single face (not necessarily consecutively).

- An alternative $x = O(k^3)$ proof that exploits planarity beyond VC-dimension. Namely, planar duality and the fact that distances among vertices of S are bounded by k.
Let $x =$ the number of distinct patterns among all vertices of G.

- An $\tilde{O}(|T| + x + k)$ bits compression of the Okamuro-Seymour metric, with query time $\tilde{O}(1)$.
- An optimal $\tilde{O}(|T| + k)$ bits compression with $\tilde{O}(1)$ query for two special cases: (1) T induces a connected subgraph of G, and (2) T lies on a single face (not necessarily consecutively).
- An alternative $x = O(k^3)$ proof that exploits planarity beyond VC-dimension. Namely, planar duality and the fact that distances among vertices of S are bounded by k.
- In Halin graphs, we show that $x = \Theta(k^2)$ while the VC-dimension argument is limited to showing $O(k^3)$.
For every $1 \leq i < k$, define the following cuts:

$$A_i = \{ v \in V \mid p_v[i] = -1 \}$$

$$V \setminus A_i = \{ v \in V \mid p_v[i] = 1 \}$$
For every $1 \leq i < k$, define the following cuts:

$$A_i = \{ v \in V | p_v[i] = -1 \}$$

$$V \setminus A_i = \{ v \in V | p_v[i] = 1 \}$$

A *bisector* is the set of dual arcs $\beta_i := \{(uv)^* | u \in A_i, v \in V \setminus A_i\}$.
For every $1 \leq i < k$, define the following cuts:

$$A_i = \{ v \in V \mid p_v[i] = -1 \}$$
$$V \setminus A_i = \{ v \in V \mid p_v[i] = 1 \}$$

A *bisector* is the set of dual arcs $\beta_i := \{(uv)^* \mid u \in A_i, v \in V \setminus A_i \}$. β_i is a directed simple cycle in the dual graph.
Every Two Bisectors are Arc-Disjoint

This is a forbidden configuration!
Every Two Bisectors are Arc-Disjoint

This is a forbidden configuration!
However, it is possible that β_i contains reversed arcs of β_j:
For any \(\{u, v\} \in E(G) \), \(u \) and \(v \) are separated by at most two bisectors.

\[
\langle 1, -1, \ldots, -1, \ldots, 1, \ldots -1, -1 \rangle
\]

\[
\langle 1, -1, \ldots, 1, \ldots, -1, \ldots -1, -1 \rangle
\]
For any \(\{u, v\} \in E(G) \), \(u \) and \(v \) are separated by at most two bisectors.

Hence, \(p_u \) and \(p_v \) differ in at most two bits.
For any \(\{u, v\} \in E(G) \), \(u \) and \(v \) are separated by at most two bisectors.

Hence, \(p_u \) and \(p_v \) differ in at most two bits.

We can use this fact to get a compression of size \(\tilde{O}(|T| + x + k) \).
Our Results

Let x = the number of distinct patterns among all vertices of G.

- An $\tilde{O}(|T| + x + k)$ bits compression of the Okamura-Seymour metric, with query time $\tilde{O}(1)$.

- An optimal $\tilde{O}(|T| + k)$ bits compression with $\tilde{O}(1)$ query for two special cases: (1) T induces a connected subgraph of G, and (2) T lies on a single face.

- An alternative $x = O(k^3)$ proof that exploits planarity beyond VC-dimension. Namely, planar duality and the fact that distances among vertices of S are bounded by k.

- In Halin graphs, we show that $x = \Theta(k^2)$ while the VC-dimension argument is limited to showing $O(k^3)$.
• Root the tree at an arbitrary vertex v.
A Spanning Tree of G

- Root the tree at an arbitrary vertex v.
- Identify each node with its pattern.
A Spanning Tree of G

- Root the tree at an arbitrary vertex v.
- Identify each node with its pattern.
- Label every edge by the two bits that change.
1. Let y and w be two vertices such that $p_y = p_w$.
1. Let y and w be two vertices such that $p_y = p_w$.
2. Assume w.l.o.g. that $\text{depth}(y) \leq \text{depth}(w)$.
1. Let y and w be two vertices such that $p_y = p_w$.
2. Assume w.l.o.g. that $\text{depth}(y) \leq \text{depth}(w)$.
3. Move w’s children to y (edge labels remain the same).
1. Let y and w be two vertices such that $p_y = p_w$.
2. Assume w.l.o.g. that $\text{depth}(y) \leq \text{depth}(w)$.
3. Move w’s children to y (edge labels remain the same).
1. Let y and w be two vertices such that $p_y = p_w$.
2. Assume w.l.o.g. that $\text{depth}(y) \leq \text{depth}(w)$.
3. Move w’s children to y (edge labels remain the same).
4. Remove w from the tree.
1. Let y and w be two vertices such that $p_y = p_w$.
2. Assume w.l.o.g. that $\text{depth}(y) \leq \text{depth}(w)$.
3. Move w’s children to y (edge labels remain the same).
4. Remove w from the tree.
Some Patterns Appear Multiple Times

1. Let y and w be two vertices such that $p_y = p_w$.
2. Assume w.l.o.g. that $\text{depth}(y) \leq \text{depth}(w)$.
3. Move w's children to y (edge labels remain the same).
4. Remove w from the tree.
5. Repeat until the size of the tree is x.
The Data Structure
1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.
1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.

2. As we traverse the tree, only $O(x)$ bit-changes occur.
The Data Structure

1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.

2. As we traverse the tree, only $O(x)$ bit-changes occur.

3. Maintain all of those $O(x)$ versions of the pattern in a persistent data structure for prefix-sum that supports updates.
1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.

2. As we traverse the tree, only $O(x)$ bit-changes occur.

3. Maintain all of those $O(x)$ versions of the pattern in a persistent data structure for prefix-sum that supports updates. Space: $\tilde{O}(x + k)$ and $\tilde{O}(1)$ query.
The Data Structure

1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.
2. As we traverse the tree, only $O(x)$ bit-changes occur.
3. Maintain all of those $O(x)$ versions of the pattern in a persistent data structure for prefix-sum that supports updates.
 Space: $\tilde{O}(x + k)$ and $\tilde{O}(1)$ query.
4. Every $v \in T$ stores $d(v, s_1)$ and a pointer to the version of the prefix-sum data structure at p_v.
The Data Structure

1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.

2. As we traverse the tree, only $O(x)$ bit-changes occur.

3. Maintain all of those $O(x)$ versions of the pattern in a persistent data structure for prefix-sum that supports updates. Space: $\tilde{O}(x + k)$ and $\tilde{O}(1)$ query.

4. Every $v \in T$ stores $d(v, s_1)$ and a pointer to the version of the prefix-sum data structure at p_v.

In total: $\tilde{O}(|T| + x + k)$ space and $\tilde{O}(1)$ time for query.
1. Construct a tree of size x whose nodes correspond to patterns, and edges are labeled by the bits that change.

2. As we traverse the tree, only $O(x)$ bit-changes occur.

3. Maintain all of those $O(x)$ versions of the pattern in a persistent data structure for prefix-sum that supports updates. Space: $\tilde{O}(x + k)$ and $\tilde{O}(1)$ query.

4. Every $v \in T$ stores $d(v, s_1)$ and a pointer to the version of the prefix-sum data structure at p_v.

In total: $\tilde{O}(|T| + x + k)$ space and $\tilde{O}(1)$ time for query. Preprocessing: can be done in $\tilde{O}(n)$ time.
Our Results

Let $x =$ the number of distinct patterns among all vertices of G.

- An $\tilde{O}(|T| + x + k)$ bits compression of the Okamura-Seymour metric, with query time $\tilde{O}(1)$.

- An optimal $\tilde{O}(|T| + k)$ bits compression with $\tilde{O}(1)$ query for two special cases: (1) T induces a connected subgraph of G, and (2) T lies on a single face.

- An alternative $x = O(k^3)$ proof that exploits planarity beyond VC-dimension. Namely, planar duality and the fact that distances among vertices of S are bounded by k.

- In Halin graphs, we show that $x = \Theta(k^2)$ while the VC-dimension argument is limited to showing $O(k^3)$.
We only need to traverse T. Thus, there are only $x = O(|T|)$ versions.
We only need to traverse T. Thus, there are only $x = O(|T|)$ versions.

Space: $\tilde{O}(|T| + k)$. Time: $\tilde{O}(1)$.
Lies on a Single Face
We only need to traverse the vertices along the face. Every bisector can visit the face at most once. Thus, there are only \(x = O(k) \) versions.
We only need to traverse the vertices along the face. Every bisector can visit the face at most once. Thus, there are only $x = O(k)$ versions.

Space: $\tilde{O}(|T| + k)$. Time: $\tilde{O}(1)$.
Let x = the number of distinct patterns among all vertices of G.

- An $\tilde{O}(|T| + x + k)$ bits compression of the Okamura-Seymour metric, with query time $\tilde{O}(1)$.
- An optimal $\tilde{O}(|T| + k)$ bits compression with $\tilde{O}(1)$ query for two special cases: (1) T induces a connected subgraph of G, and (2) T lies on a single face.
- An alternative $x = O(k^3)$ proof that exploits planarity beyond VC-dimension. Namely, planar duality and the fact that distances among vertices of S are bounded by k.
- In Halin graphs, we show that $x = \Theta(k^2)$ while the VC-dimension argument is limited to showing $O(k^3)$.

Our Results
The Bisector Graph G_B

Definition

The *bisector graph* G_B, is composed of the union of all the bisectors.
The Bisector Graph G_B

Definition

The *bisector graph* G_B, is composed of the union of all the bisectors.

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
The Bisector Graph G_B

Definition

The *bisector graph* G_B, is composed of the union of all the bisectors.

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
- If the number of faces in G_B was $O(k^3)$, we’d be done.
The Bisector Graph G_B

Definition

The *bisector graph* G_B, is composed of the union of all the bisectors.

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
- If the number of faces in G_B was $O(k^3)$, we’d be done.
- Alas, there could be $\Omega(n)$ faces that correspond to the same pattern.
The Bisector Graph G_B

Definition

The *bisector graph* G_B, is composed of the union of all the bisectors.

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
- If the number of faces in G_B was $O(k^3)$, we’d be done.
- Alas, there could be $\Omega(n)$ faces that correspond to the same pattern.
The Bisector Graph G_B

Definition

The *bisector graph* G_B, is composed of the union of all the bisectors.

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
- If the number of faces in G_B was $O(k^3)$, we’d be done.
- Alas, there could be $\Omega(n)$ faces that correspond to the same pattern.
The Bisector Graph G_B

Definition

The *bisector graph* G_B, is composed of the union of all the bisectors.

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
- If the number of faces in G_B was $O(k^3)$, we’d be done.
- Alas, there could be $\Omega(n)$ faces that correspond to the same pattern.
The Bisector Graph G_B

Definition

The *bisector graph* G_B, is composed of the union of all the bisectors.

- For every $u, v \in V$ embedded in the same face, $p_u = p_v$.
- If the number of faces in G_B was $O(k^3)$, we’d be done.
- Alas, there could be $\Omega(n)$ faces that correspond to the same pattern.
A *touching* is an intersection of bisectors without *crossing*.
A *touching* is an intersection of bisectors without *crossing*.

Touching points can be removed such that vertices embedded in the same face will still have the same pattern.
A *touching* is an intersection of bisectors without *crossing*.

Touching points can be removed such that vertices embedded in the same face will still have the same pattern.
The Pattern Graph G_P

Definition

The *Pattern graph* G_P is obtained from G_B by removing all touching points.
The Pattern Graph G_P

Definition

The *Pattern graph* G_P is obtained from G_B by removing all touching points.

By Euler’s formula, the number of faces in G_P is bounded by the number of *crossings*.
The Pattern Graph G_P

Definition

The *Pattern graph* G_P is obtained from G_B by removing all touching points.

By Euler’s formula, the number of faces in G_P is bounded by the number of crossings.

Our main technical contribution: every two bisectors can cross at most $O(k)$ times, hence the number of crossings is $O(k^3)$.
Lemma

Let \(p_1, p_2, \ldots, p_r \) be the crossing points of \(\beta_i \) and \(\beta_j \), in the order they appear along \(\beta_i \).

The crossing points along \(\beta_j \) are reversed \(p_r, p_{r-1}, \ldots, p_1 \).
• Assume for contradiction that p_1 appears before p_2 in β_j.
Proof by Contradiction

- Assume for contradiction that p_1 appears before p_2 in β_j.
- Let $v \in V$ be the vertex that lies on the right of β_j after p_2.
Proof by Contradiction

- Assume for contradiction that p_1 appears before p_2 in β_j.
- Let $v \in V$ be the vertex that lies on the right of β_j after p_2.
- $P_{v,s_{i+1}}$ must stay on the left of β_i and cross β_j.
Proof by Contradiction

- Assume for contradiction that p_1 appears before p_2 in β_j.
- Let $v \in V$ be the vertex that lies on the right of β_j after p_2.
- $P_{v,s_{i+1}}$ must stay on the left of β_i and cross β_j.
- P_{v,s_j} must stay on the right of β_j and cross $P_{v,s_{i+1}}$.
• Assume for contradiction that \(p_1 \) appears before \(p_2 \) in \(\beta_j \).
• Let \(v \in V \) be the vertex that lies on the right of \(\beta_j \) after \(p_2 \).
• \(P_{v,s_{i+1}} \) must stay on the left of \(\beta_i \) and cross \(\beta_j \).
• \(P_{v,s_j} \) must stay on the right of \(\beta_j \) and cross \(P_{v,s_{i+1}} \).
• There's a shortest \(v \)-to-\(s_j \) path that crosses \(\beta_j \), a contradiction.
Two Bisectors can Cross at Most $O(k)$ Times

Lemma

The number of crossings between β_i and β_j is $r = O(k)$.
Two Bisectors can Cross at Most $O(k)$ Times

- Let v_1, v_2, \ldots, v_r be primal vertices inside the “pockets” created between consecutive crossings.
Two Bisectors can Cross at Most $O(k)$ Times

- Let v_1, v_2, \ldots, v_r be primal vertices inside the “pockets” created between consecutive crossings.
- Consider some v_ℓ.
Two Bisectors can Cross at Most $O(k)$ Times
Two Bisectors can Cross at Most $O(k)$ Times

- $P_{v_{\ell+1}, s_i}$ must remain on the left of β_i.
Two Bisectors can Cross at Most $O(k)$ Times

- $P_{v_{\ell+1},s_{i+1}}$ must remain on the left of β_i.
- P_{v_{ℓ},s_j} must remain on the right of β_j and cross $P_{v_{\ell+1},s_{i+1}}$.
Two Bisectors can Cross at Most $O(k)$ Times

- $P_{v_{\ell+1}, s_{i+1}}$ must remain on the left of β_i.
- P_{v_{ℓ}, s_j} must remain on the right of β_j and cross $P_{v_{\ell+1}, s_{i+1}}$.
- A symmetric configuration with v_ℓ and $v_{\ell-1}$.
Two Bisectors can Cross at Most $O(k)$ Times

- $P_{v_{\ell+1},s_{i+1}}$ must remain on the left of β_i.
- P_{v_ℓ,s_j} must remain on the right of β_j and cross $P_{v_{\ell+1},s_{i+1}}$.
- A symmetric configuration with v_ℓ and $v_{\ell-1}$.
- Denote the lengths of subpaths by A, B, C, D, E, F.
Two Bisectors can Cross at Most $O(k)$ Times

By the triangle inequality and since patterns are over $\{-1, 1\}$:

\[
C + B \leq D + F - 1
\]

\[
D + E \leq C + A - 1
\]
Two Bisectors can Cross at Most $O(k)$ Times

By the triangle inequality and since patterns are over $\{-1, 1\}$:

\[
C + B \leq D + F - 1
\]

\[
D + E \leq C + A - 1
\]

The sum of the inequalities is $E - F + 2 \leq A - B$.
Two Bisectors can Cross at Most $O(k)$ Times

Symmetrically we get:

$$E - F + 2 \leq A - B$$

$$H - G + 2 \leq E - F$$

and so on...
Two Bisectors can Cross at Most $O(k)$ Times

Symmetrically we get:

$$E - F + 2 \leq A - B$$
$$H - G + 2 \leq E - F$$

and so on... Hence, there exists a vertex v such that:

$$\Omega(r) \leq d(v, s_i) - d(v, s_{j+1}) \leq k$$
Let $x = \text{the number of distinct patterns among all vertices of } G$.

- An $\tilde{O}(|T| + x + k)$ bits compression of the Okamura-Seymour metric, with query time $\tilde{O}(1)$.
- An optimal $\tilde{O}(|T| + k)$ bits compression with $\tilde{O}(1)$ query for two special cases: (1) T induces a connected subgraph of G, and (2) T lies on a single face.
- An alternative $x = O(k^3)$ proof that exploits planarity beyond VC-dimension. Namely, planar duality and the fact that distances among vertices of S are bounded by k.

- In Halin graphs, we show that $x = \Theta(k^2)$ while the VC-dimension argument is limited to showing $O(k^3)$.
Definition

A Halin graph is a graph obtained by taking an embedded tree and connecting its leaves by a cycle.
A Halin graph is a graph obtained by taking an embedded tree and connecting its leaves by a cycle.

Denote by k the size of the cycle. Consider the patterns of the graph w.r.t. the infinite face.
Consider the values of the patterns of v_0, v_1, \ldots, v_7 at e_1, e_2, e_3:
Consider the values of the patterns of v_0, v_1, \ldots, v_7 at e_1, e_2, e_3:

$$
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 1 \\
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & -1 \\
-1 & -1 & 1 \\
-1 & -1 & -1
\end{pmatrix}
$$
A Limitation of the VC-dimension Argument

Consider the values of the patterns of $v_0, v_1, \ldots v_7$ at e_1, e_2, e_3:

$$
\begin{pmatrix}
 v_0 & e_1 & e_2 & e_3 \\
 v_1 & 1 & 1 & -1 \\
 v_2 & 1 & -1 & 1 \\
 v_3 & 1 & -1 & -1 \\
 v_4 & -1 & 1 & 1 \\
 v_5 & -1 & 1 & -1 \\
 v_6 & -1 & -1 & 1 \\
 v_7 & -1 & -1 & -1 \\
\end{pmatrix}
$$

The VC-dimension of the matrix is 3
A Limitation of the VC-dimension Argument

Consider the values of the patterns of v_0, v_1, \ldots, v_7 at e_1, e_2, e_3:

\[
\begin{bmatrix}
 v_0 & e_1 & e_2 & e_3 \\
 v_1 & 1 & 1 & -1 \\
 v_2 & 1 & -1 & 1 \\
 v_3 & 1 & -1 & -1 \\
 v_4 & -1 & 1 & 1 \\
 v_5 & -1 & 1 & -1 \\
 v_6 & -1 & -1 & 1 \\
 v_7 & -1 & -1 & -1 \\
\end{bmatrix}
\]

The VC-dimension of the matrix is 3

Thus, the VC-dimension argument is limited to showing $O(k^3)$.
• Subdivide every edge to make patterns binary.
• There are only $O(k)$ vertices of degree > 2, hence $O(k)$ faces in G.
• Every bisector can visit every face at most once.
• The number of distinct patterns along every single face is only $O(k)$.
• Thus, there are only $O(k^2)$ patterns in G.
Subdivide every edge to make patterns binary.

There are only $O(k)$ vertices of degree >2, hence $O(k)$ faces in G.

Every bisector can visit every face at most once.

The number of distinct patterns along every single face is only $O(k)$.

Thus, there are only $O(k^2)$ patterns in G.

An $O(k^2)$ Proof in Halin Graphs
An $O(k^2)$ Proof in Halin Graphs

- Subdivide every edge to make patterns binary.
- There are only $O(k)$ vertices of degree > 2, hence $O(k)$ faces in G.
- Every bisector can visit every face at most once.
- The number of distinct patterns along every single face is only $O(k)$.
- Thus, there are only $O(k^2)$ patterns in G.
Subdivide every edge to make patterns binary.
- There are only $O(k)$ vertices of degree > 2, hence $O(k)$ faces in G.
- Every bisector can visit every face at most once.
- The number of distinct patterns along every single face is only $O(k)$.
- Thus, there are only $O(k^2)$ patterns in G.

An $O(k^2)$ Proof in Halin Graphs
• Subdivide every edge to make patterns binary.
• There are only $O(k)$ vertices of degree > 2, hence $O(k)$ faces in G.
• Every bisector can visit every face at most once.
• The number of distinct patterns along every single face is only $O(k)$.
• Thus, there are only $O(k^2)$ patterns in G.
An $O(k^2)$ Proof in Halin Graphs

- Subdivide every edge to make patterns binary.
- There are only $O(k)$ vertices of degree > 2, hence $O(k)$ faces in G.
- Every bisector can visit every face at most once.
- The number of distinct patterns along every single face is only $O(k)$.
- Thus, there are only $O(k^2)$ patterns in G.
Subdivide every edge to make patterns binary.
There are only $O(k)$ vertices of degree >2, hence $O(k)$ faces in G.
Every bisector can visit every face at most once.
The number of distinct patterns along every single face is only $O(k)$.
Thus, there are only $O(k^2)$ patterns in G.

An $O(k^2)$ Proof in Halin Graphs
A matching $\Omega(k^2)$ Lower Bound for Halin Graphs

- Attach $O(k)$ paths of lengths 1, 2, \ldots, $\frac{k}{2}$ to a middle vertex v.
- Pad the portions of the infinite face between the first and last paths with $\frac{k}{2}$ vertices.
A matching $\Omega(k^2)$ Lower Bound for Halin Graphs

- Attach $O(k)$ paths of lengths 1, 2, \ldots, $\frac{k}{2}$ to a middle vertex v.
- Pad the portions of the infinite face between the first and last paths with $\frac{k}{2}$ vertices.

Claim: The path of length i contains $i - 1$ distinct patterns.
The Different Patterns Along a Path

\[\langle 1, 1, 1, 1, 1 \rangle \]
The Different Patterns Along a Path

\[\langle 1, 1, 1, 1, 1 \rangle, \langle 1, 1, -1, 1, 1 \rangle \]
The Different Patterns Along a Path

\[\langle 1, 1, 1, 1, 1 \rangle, \langle 1, 1, -1, 1, 1 \rangle, \langle 1, -1, -1, 1, 1 \rangle \]
The Different Patterns Along a Path

\[\langle 1, 1, 1, 1, 1\rangle, \langle 1, 1, -1, 1, 1\rangle, \langle 1, -1, -1, 1, 1\rangle, \langle -1, -1, -1, 1, 1\rangle\]
The distinct patterns of this graph are thus:

\[\langle -1, 1, 1, 1, 1, \ldots \rangle \]

\[\langle 1, -1, 1, 1, 1, \ldots \rangle, \langle -1, -1, 1, 1, 1, \ldots \rangle \]

\[\langle 1, 1, -1, 1, 1, \ldots \rangle, \langle 1, -1, -1, 1, 1, \ldots \rangle, \langle -1, -1, -1, 1, 1, \ldots \rangle \]

\[\langle 1, 1, 1, -1, 1, \ldots \rangle, \langle 1, 1, -1, -1, 1, \ldots \rangle, \langle 1, -1, -1, -1, 1, \ldots \rangle, \langle -1, -1, -1, -1, 1, \ldots \rangle \]

\[\vdots \]

\[\sum_{i=1}^{\frac{k}{2}} (i - 1) = \Omega(k^2) \]
The number of distinct patterns in planar graphs is $\Omega(k^2)$ and $O(k^3)$.
The number of distinct patterns in planar graphs is $\Omega(k^2)$ and $O(k^3)$.

- To prove an $O(k^2)$ bound: Show that the total number of crossings between the bisectors is $O(k^2)$.
Open Question 1: Closing the Gap

The number of distinct patterns in planar graphs is \(\Omega(k^2) \) and \(O(k^3) \).

- **To prove an \(O(k^2) \) bound**: Show that the total number of crossings between the bisectors is \(O(k^2) \).
- **To prove an \(\Omega(k^3) \) bound**: Realize an example of \(k \) bisectors that cross \(\Omega(k^3) \) times.
Open Question 1: Closing the Gap

The number of distinct patterns in planar graphs is $\Omega(k^2)$ and $O(k^3)$.

- **To prove an $O(k^2)$ bound**: Show that the *total* number of crossings between the bisectors is $O(k^2)$.
- **To prove an $\Omega(k^3)$ bound**: Realize an example of k bisectors that cross $\Omega(k^3)$ times.

The gap remains difficult even in the family of 2-outerplanar graphs.
Open Question 1: Closing the Gap

The number of distinct patterns in planar graphs is $\Omega(k^2)$ and $O(k^3)$.

- **To prove an $O(k^2)$ bound**: Show that the total number of crossings between the bisectors is $O(k^2)$.
- **To prove an $\Omega(k^3)$ bound**: Realize an example of k bisectors that cross $\Omega(k^3)$ times.

The gap remains difficult even in the family of 2-outerplanar graphs.

Conjecture

The number of distinct patterns in a planar graph is $O(k^2)$.
Open Question 2: Information-Theoretic Lower Bounds

We showed how to compress the $T \times S$ distances into $\tilde{O}(|T| + x + k)$ bits.
We showed how to compress the $T \times S$ distances into $\tilde{O}(|T| + x + k)$ bits.

- A simple argument shows that $\Omega(|T| + k)$ bits are necessary.
Open Question 2: Information-Theoretic Lower Bounds

We showed how to compress the $T \times S$ distances into $\tilde{O}(|T| + x + k)$ bits.

- A simple argument shows that $\Omega(|T| + k)$ bits are necessary.
- Since $x = \Omega(k^2)$, there is an additive gap of at least $\Omega(k^2)$ between our construction and the lower bound.
We showed how to compress the $T \times S$ distances into $\tilde{O}(|T| + x + k)$ bits.

- A simple argument shows that $\Omega(|T| + k)$ bits are necessary.
- Since $x = \Omega(k^2)$, there is an additive gap of at least $\Omega(k^2)$ between our construction and the lower bound.
- For small values of $|T|$, the naïve compression of $\tilde{O}(|T| \cdot k)$ bits is still better than ours. Can it be improved?
We showed how to compress the $T \times S$ distances into $\tilde{O}(|T| + x + k)$ bits.

- A simple argument shows that $\Omega(|T| + k)$ bits are necessary.
- Since $x = \Omega(k^2)$, there is an additive gap of at least $\Omega(k^2)$ between our construction and the lower bound.
- For small values of $|T|$, the naïve compression of $\tilde{O}(|T| \cdot k)$ bits is still better than ours. Can it be improved?
- Is the additive $\tilde{O}(x)$ bits necessary? It remains open to show a lower bound, or improve the compression to not depend on x.
Open Question 2: Information-Theoretic Lower Bounds

We showed how to compress the $T \times S$ distances into $\tilde{O}(|T| + x + k)$ bits.

- A simple argument shows that $\Omega(|T| + k)$ bits are necessary.
- Since $x = \Omega(k^2)$, there is an additive gap of at least $\Omega(k^2)$ between our construction and the lower bound.
- For small values of $|T|$, the naïve compression of $\tilde{O}(|T| \cdot k)$ bits is still better than ours. Can it be improved?
- Is the additive $\tilde{O}(x)$ bits necessary? It remains open to show a lower bound, or improve the compression to not depend on x.

The End