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Abstract

Let G = (V,E) be an undirected unweighted planar graph. Consider a vector storing the
distances from an arbitrary vertex v to all vertices S = {s1, s2, . . . , sk} of a single face in
their cyclic order. The pattern of v is obtained by taking the difference between every pair of
consecutive values of this vector. In STOC’19, Li and Parter used a VC-dimension argument to
show that in planar graphs, the number of distinct patterns, denoted p#, is only O(k3). This
resulted in a simple compression scheme requiring Õ(min{k4 + |T |, k · |T |}) space to encode the
distances between S and a subset of terminal vertices T ⊆ V . This is known as the Okamura-
Seymour metric compression problem.

We give an alternative proof of the p# = O(k3) bound that exploits planarity beyond the
VC-dimension argument. Namely, our proof relies on cut-cycle duality, as well as on the fact
that distances among vertices of S are bounded by k. Our method implies the following:
(1) An Õ(p# + k+ |T |) space compression of the Okamura-Seymour metric, thus improving the
compression of Li and Parter to Õ(min{k3 + |T |, k · |T |}).
(2) An optimal Õ(k+ |T |) space compression of the Okamura-Seymour metric, in the case where
the vertices of T induce a connected component in G.
(3) A tight bound of p# = Θ(k2) for the family of Halin graphs, whereas the VC-dimension
argument is limited to showing p# = O(k3).

1 Introduction
Planar metric compression. The shortest path metric of planar graphs is one of the most popular
and well-studied metrics in computer science. The planar graph metric compression problem is to
compactly encode the distances between a subset of k terminal vertices so that we can retrieve
the distance between any pair of terminals from the encoding. On an n-vertex planar graph
G = (V,E), a naïve encoding uses Õ(min{k2, n}) bits (by either storing the k × k distance matrix
or alternatively by storing the entire graph1). It turns out that this naïve bound is actually
optimal (up to logarithmic factors) for weighted planar graphs, as shown by Gavoille et al. [16]. It
is important to note that their lower bound applies even when all terminals lie on a single face. The
complexity of unweighted undirected planar graphs is also well-understood. Gavoille et al. [16] (see
also [1]) gave a lower bound of Ω(min{k2,

√
k · n}), and Abboud et al. [1] gave a matching upper

bound.
1Naïvely, this takes O(n logn) bits, but can be done with O(n) bits [4,10,26,30].
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If we are willing to settle for approximate distances, then there are ingenious compressions
requiring only Õ(k) bits [21, 22, 29]. The problem has also been extensively studied (both in the
exact [6, 7, 9, 17, 23, 24] and the approximate [2, 5, 8, 13, 14, 18, 19] settings) for the case where we
require that the compression is itself a graph (that contains the terminals and preserves their
distances).

The Okamura-Seymour metric compression. An important special case for which tight
bounds are not yet known, is when the planar graph is unweighted and undirected and we want
to encode the S × T distances between a set of k source terminals S = {s1, s2, . . . , sk} lying
consecutively on a single face and a subset of target terminal vertices T ⊆ V . A query (v, si) to
the encoding (with v ∈ T and si ∈ S) returns the v-to-si distance.

• When T = S, it is possible to exploit the Unit-Monge property to obtain an O(k log k)
space encoding with O(log k) query time [1]. In fact, even if T ̸= S the Unit-Monge property
implies an (optimal) Õ(|T |+k) space encoding, as long as the vertices of T lie (not necessarily
consecutively) on single face.

• When T = V , the MSSP data structure of Eisenstat and Klein [12] gives an O(n) space
encoding with O(log n) query time.

• For arbitrary S, T , Li and Parter [25] recently presented a compression of size Õ(min{k4 +
|T |, k · |T |}) and query time O(1).2 This compression is useful algorithmically. In the
distributed setting, Li and Parter used it to compute the diameter of a planar graph in
Õ(poly(D)) rounds where D is the graph’s diameter. It was also used to develop an exact
distance oracle with subquadratic space and constant query time [15].

The Li-Parter compression. At the heart of the Li-Parter compression [25], is the notion of
a pattern. Let d(·, ·) denote the shortest path metric of G. The pattern of a vertex v ∈ V is the
vector

pv = ⟨d(v, s2)− d(v, s1), d(v, s3)− d(v, s2), . . . , d(v, sk)− d(v, sk−1)⟩ .

Since the graph is unweighted, every entry of pv is in {−1, 0, 1} by the triangle inequality. This
already gives an efficient way to encode v’s distances to S: Instead of explicitly storing these
distances (using O(k log n) bits), store pv and d(v, s1) (using O(k + log n) bits). This way, any
distance d(v, si) can be retrieved by

d(v, si) = d(v, s1) +

i−1∑
j=1

pv[j].

The main contribution of Li and Parter in this context is in showing that, while there are overall
n patterns in the graph, there are only O(k3) distinct patterns:

Theorem 1 ([25]). The number of distinct patterns over all vertices of the graph is O(k3).
2The actual bound stated in [25] is Õ(k3 · D + |T |) where D is the diameter of the graph. The reason for the

additional D factor is that they store all possible distance tuples dv = {d(v, si)}ki=1 instead of all possible patterns
pv. The reason for the missing k factor is simply a mistake in their paper.
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The compression follows easily from the above theorem: Store one table that contains all the
distinct patterns of vertices in T , and another table that contains for every v ∈ T the value d(v, s1)
and a pointer to pv in the first table. Since there cannot be more than |T | distinct patterns, the size
of the first table is O(min{k4, k · |T |}). The size of the second table is Õ(|T |). The query time is
O(k) but can be improved to O(1) by storing precomputed prefix-sums of every pattern (increasing
the size of the first table by a logarithmic factor).

The original proof of Theorem 1 [25]. Let us assume that the distinguished face is the infinite
face. For convenience, we transform3 the problem so that patterns are binary rather than ternary
(i.e. over {−1, 1} instead of {−1, 0, 1}). To this end, we subdivide every edge of the graph to get a
new (unweighted) graph G′. In particular, we replace each edge {si, si+1} of the infinite face with
a dummy vertex wi and edges {si, wi}, {wi, si+1}. For every vertex u of G′, let p̂u be the pattern
of u w.r.t. the set of vertices S′ = {s1, w1, s2, w2, . . . , sk, wk}. Observe that the parity of u-to-si
distances is different from the parity of u-to-wj distances, for all i, j’s. Hence, p̂u is a binary vector
(i.e. over {−1, 1}). Additionally, for every vertex v of G we can retrieve its pattern pv from p̂v since
pv[i] = (p̂v[2i− 1]+ p̂v[2i])/2. See Figure 1. Hence, we henceforth assume that patterns pv are over
{−1, 1} (i.e. we replace pv with p̂v). For brevity, we also assume that patterns are of length k − 1
(rather than 2k − 1).

Figure 1: Before (left) and after (right) the transformation that makes all patterns binary. Ev-
ery edge is subdivided and a new vertex (in color) is put in the middle. In this example,
pv = ⟨0, 1,−1, 0, 1, 1,−1⟩ and p̂v = ⟨1,−1, 1, 1,−1,−1, 1,−1, 1, 1, 1, 1,−1,−1,−1⟩.

Li and Parter’s VC-dimension argument is based on the simple observation that, by planarity,
there cannot be two vertices v and u and 4 indices a < b < c < d such that pu[a] = −1, pu[b] =
1, pu[c] = −1, pu[d] = 1 but pv[a] = 1, pv[b] = −1, pv[c] = 1, pv[d] = −1. The reason is that
such (−1, 1,−1, 1), (1,−1, 1,−1) patterns correspond to an illegal configuration of shortest paths
in planar graphs.

Consider arranging all the patterns as the rows of a binary matrix P . The VC-dimension d
of P , is the maximum number of columns in a submatrix of P that contains all possible 2d rows.
The above forbidden configuration implies that there is no submatrix with 4 columns or more that
contains all possible rows, hence the VC-dimension of P is at most 3. By the well known Sauer’s

3This transformation was suggested by Li and Parter in their STOC’19 talk.
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Lemma [27], this means that there are O((k − 1)3) = O(k3) distinct rows. This is the entire proof.

Limitations of the original proof. It remains an open problem whether the number of distinct
patterns in planar graphs is Θ(k3) or less (there is a simple Ω(k2) lower bound). We do know
however that there is no hope of improving Θ(k3) using the VC-dimension argument: Consider the
following set of sequences over {−1, 1}k−1:{

(−1)x1 ◦ 1x2 ◦ (−1)x3 ◦ 1k−1−x1−x2−x3 | x1 + x2 + x3 < k
}

There is no pair of sequences in this set that contains the forbidden (1,−1, 1,−1), (−1, 1,−1, 1)
configuration, and yet its cardinality is Θ(k3). This means that any improvement to the O(k3)
bound on the number of distinct patterns in planar graphs would have to further exploit structural
properties of planar graphs. In fact, even in the restricted family of Halin graphs, where we know
that there are only Θ(k2) distinct patterns (see Section 4), the VC-dimension argument is limited
to proving O(k3).

Our results and technique. We develop a new technique for analyzing and encoding the struc-
ture of patterns in a planar graph using bisectors. The bisector βi associated with vertex si is
a simple cycle in the dual graph such that all (primal) vertices on the same side of βi have the
same i’th bit in their patterns. We show that any two bisectors are arc-disjoint. This implies the
following lemma:

Lemma 2. The patterns of every two adjacent vertices in G differ by at most two bits.

We then show how to use this property to obtain the following compression (recall that p#
denotes the number of distinct patterns in G):

Theorem 3. There is an Õ(p#+ k+ |T |) space compression of the Okamura-Seymour metric with
Õ(n) construction time and Õ(1) query time. Moreover, for the special case where the vertices of
T induce a connected component in G, the space is Õ(k + |T |).

By plugging p# = O(k3) from Theorem 1 (and the trivial compression that stores all T × S
distances) we get an Õ(min{k3+ |T |, k · |T |}) compression (i.e. a factor k improvement over Li and
Parter [25]). Moreover, for the special case where the vertices of T induce a connected component
in G, we obtain an optimal Õ(|T |+ k) space encoding. Recall that, prior to our work, this bound
was only known (using the Unit-Monge property) when the vertices of T all lie (not necessarily
consecutively) on a single face [1]. In fact, even in such setting, our method gives Õ(|T |+k). Thus,
our method strictly dominates the one based on Unit-Monge.

An additional benefit of working with bisectors is that they can be used to bound the number
p# of distinct patterns. We show that every two bisectors can cross only O(k) times. Our proof
relies not only on the planar structure, but also on the fact that the distance between any two
vertices of S is bounded by k (this property is not used in the VC-dimension argument). The set
of all bisectors partitions the plane into regions. All (primal) vertices in the same region have the
same pattern because they all lie on the same side of every bisector. Since there are O(k2) pairs
of bisectors, and each pair crosses O(k) times, there are only O(k3) regions (and hence only O(k3)
distinct patterns). This provides an alternative proof of Theorem 1. We believe that our new
technique may prove useful in settling the question of the number of distinct patterns in a planar
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graph. In particular, it may be that a similar argument that uses stronger structural properties
will be able to show that the partition induces only O(k2) regions. We demonstrate this potential
of our technique in Section 4, where we show such a bound for a family of graphs that includes
Halin graphs:

Theorem 4. The number of distinct patterns over all vertices of a Halin graph is O(k2). This
bound is tight.

In contrast, the VC-dimension argument is limited to proving O(k3), even on Halin graphs.

2 Preliminaries
Let G = (V,E) be an unweighted, undirected planar embedded graph. We prefer to think of G as a
directed planar graph with a set of arcs A, such that there is a pair of arcs uv, vu (embedded on the
same curve) for every edge {u, v} ∈ E. We refer to u and v as the tail and head of uv, respectively.
We refer to uv as the reverse of vu, or simply rev(vu). However, we use the term edge whenever
the orientation is not important or when we refer to any of the arcs (possibly both). We denote by
Pu,v an arbitrary directed shortest path from u to v. For i < j we denote by S[i, j] a path (along
the infinite face) si − si+1 − · · · − sj . We extend the definition of rev(·) to paths. We denote by
P [w, y] the subpath of P between vertices w and y. We similarly use P (w, y], P [w, y), and P (w, y)
to denote whether the subpath includes the corresponding endpoint(s) or not. We use ◦ to denote
a concatenation of two paths. Let C be a directed non-crossing cycle in G. We denote by left(C)
and right(C) the subgraphs of G that consist of all edges, vertices and faces that are lying to the
left and right of C, respectively. The arcs of C and their reverses are in both left(C) and right(C).

Figure 2: An example of two directed paths P and Q that cross at the crossing part R.

Let P and Q be directed paths or cycles. We say that they cross at subpath R if, when ignoring
their orientation: (1) R is a proper (not a prefix or suffix) subpath of both P and Q, and (2) The
edges of Q that follow and precede R are in different sides of P . See Figure 2. We refer to R as a
crossing part of P and Q.

The dual graph of G is denoted by G∗ = (V ∗, E∗). Again, we think of G∗ as a directed graph with
a set of arcs A∗, defined as follows. For every arc uv ∈ A, there is a corresponding arc (uv)∗ ∈ A∗

such that the tail and head of (uv)∗ are the faces that lie to the right and the left of uv, respectively.
We note that we slightly abuse the notation here, since the dual of (uv)∗ is rev(uv) (and not uv).
For B ⊆ A, let B∗ = {(uv)∗ | uv ∈ B}. For a cut X ⊆ V , let δ(X) = {uv ∈ A | u ∈ X, v ∈ V \X}.
For a cycle C∗ in the dual graph we say that v ∈ V is in left(C∗) (resp. right(C∗)) if the face of G∗

that corresponds to v is in left(C∗) (resp. right(C∗)).
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3 A Bisector-Based Approach to the Okamura-Seymour Compres-
sion

In this section we present our new proof of Theorem 1 and the proofs of Lemma 2 and Theorem 3.
Our main tool is the use of simple dual cycles that we call bisectors. In Section 3.1 we define
bisectors, and prove that they are arc-disjoint and that this implies Lemma 2. In Section 3.2 we
use it to prove Theorem 3. Then, in Section 3.3 we show that the union of all bisectors partitions
the graph into regions such that all vertices belonging to the same region have the same pattern.
Finally, in Section 3.4 we show that every two bisectors can cross at most O(k) times, implying
that the partition induces only O(k3) regions (and hence only O(k3) distinct patterns) thus proving
Theorem 1.

3.1 Bisectors
For 1 ≤ i ≤ k− 1, define the cut Ai = {v ∈ V | pv[i] = −1}. Since we assume the patterns are over
{−1, 1}, V \ Ai = {v ∈ V | pv[i] = 1}. We define the bisector βi = δ(Ai)

∗. Namely, βi consists of
all arcs (uv)∗ ∈ A∗ such that pu[i] = −1 and pv[i] = 1. Moreover, every edge {u, v} ∈ E such that
pu ̸= pv belongs to some bisector (possibly more than one). By cut-cycle duality, if the induced
subgraphs of Ai and V \Ai are both connected, then βi is a directed simple cycle in the dual graph.
The next lemma implies that both induced subgraphs of Ai and V \Ai are connected.

Figure 3: The bisector βi and its corresponding cut Ai.

Lemma 5. For any u ∈ Ai (resp. V \ Ai), the vertices of Pu,si+1 (resp. Pu,si) are in Ai (resp.
V \Ai).
Proof. Assume that u ∈ Ai (the proof of the other case is symmetric). Let v be any vertex of
Pu,si+1 and assume for the sake of contradiction that v ∈ V \Ai. Thus, d(v, si+1) = d(v, si)+1. By
the triangle inequality, we get the following contradiction:

d(u, si) = d(u, si+1) + 1 = d(u, v) + d(v, si+1) + 1 = d(u, v) + d(v, si) + 2 ≥ d(u, si) + 2

By the above lemma, any two vertices u, v ∈ Ai (resp. V \ Ai) are connected in the induced
subgraph of Ai (resp. V \Ai) by the path Pu,si+1 ◦ rev(Pv,si+1) (resp. Pu,si ◦ rev(Pv,si)). This yields
the following corollary.
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Corollary 6. βi is a directed simple cycle in the dual graph.

We note that the above corollary implies that for any face f , every bisector contains at most
two arcs incident to f . This shows that there are only O(k) total bit changes between patterns as
we go along the vertices of a face f .

Another useful corollary comes from the fact that any edge whose dual is in βi contains endpoints
that are both in Ai and V \Ai. Therefore:

Corollary 7. For any u ∈ Ai (resp. u ∈ V \Ai), the dual edges of Pu,si+1 (resp. Pu,si) are not in
βi.

Note that βi has two arcs incident to f∞, one of them being (si+1si)
∗. We think of (si+1si)

∗ as the
first arc of βi. See Figure 3. The following lemma shows that bisectors are arc-disjoint.

Lemma 8. Every pair of bisectors βi, βj are arc-disjoint.

Proof. Assume for contradiction that arc (uv)∗ appears both in βi and in βj . By definition, u
belongs to Ai and Aj , and v belongs to V \Ai and V \Aj . We first prove that under our assumption,
either Pu,si+1 intersects with Pv,sj or Pu,sj+1 intersects with Pv,si . To see why, first note that since
Pv,si and Pv,sj are shortest paths, we can choose them to follow a common maximal-length prefix
Pv,si [v, w] = Pv,sj [v, w] for some w, and they do not intersect again after w. Consider the directed
cycle C = rev(Pv,sj ) ◦ Pv,si ◦ S[i, j] (see Figure 4). Notice that by our choice of Pv,si and Pv,sj and
by the fact that S[i, j] lies on the infinite face, C is not necessarily simple but it does not self-cross.
We have two cases to consider:

Case 1: u ∈ left(C) \ C. Since si+1 ∈ right(C) then (by the Jordan curve theorem and the fact
that all vertices of S lie on the infinite face) Pu,si+1 must intersect with rev(Pv,sj ) ◦Pv,si . However,
by Lemma 5, Pu,si+1 cannot intersect with Pv,si , therefore it intersects with rev(Pv,sj ) (and hence
with Pv,sj ).

Case 2: u ∈ right(C). Notice that sj+1 ∈ left(C). If sj+1 is in Pv,si then Pu,sj+1 intersects with
Pv,si and we are done. Otherwise, since sj+1 is not in Pv,sj by Lemma 5, then sj+1 ∈ left(C) \ C.
But then again (by the Jordan curve theorem) rev(Pu,sj+1) (and hence Pu,sj+1) must intersect
with rev(Pv,sj ) ◦ Pv,si . However, by Lemma 5, Pu,sj+1 cannot intersect with rev(Pv,sj ), therefore it
intersects with Pv,si .

We can therefore continue under the assumption that Pu,si+1 and Pv,sj intersect at a vertex x
(the other case is symmetric). By the triangle inequality:

d(u, sj+1) ≤ d(u, x) + d(x, sj)− 1

d(u, x) + d(x, si+1) ≤ d(u, v) + d(v, si)− 1

d(v, si) ≤ d(v, x) + d(x, si+1)− 1

d(v, x) + d(x, sj) ≤ d(v, u) + d(u, sj+1)− 1

Since d(u, v) = d(v, u) = 1, summing the above inequalities we get the contradiction 0 ≤ −2.

The above lemma shows that two bisectors cannot share an arc. Note however that it is still
possible that a bisector contains reversed arcs of another bisector. This proves Lemma 2. Next, we
prove Theorem 3.
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Figure 4: The two cases in the proof of Lemma 8. Case 1 on the left. Case 2 on the right. right(C)
is shaded. For clarity, C is a simple cycle in this example.

3.2 A proof of Theorem 3
We begin by describing how to compute all the bisectors of the graph and report their arcs in Õ(n)
time. We split every edge {si, si+1} by adding a dummy vertex yi and edges {si, yi}, {yi, si+1} of
weight 1

2 . Consider a shortest path tree Ti rooted at yi. Notice that the arcs of βi which are not
incident to f∞, are the duals of arcs whose tail is in the subtree rooted at si+1 and head is in the
subtree rooted at si. In the interdigitating tree of Ti (i.e., the tree in the dual graph whose edges
are the duals of the edges not in Ti), they are precisely the fi-to-f∞ path without the last arc,
where fi ̸= f∞ is the face incident to {si, si+1} in G. We can therefore run the MSSP algorithm
of Klein [22] in Õ(n) time, and report for every 1 ≤ i ≤ k − 1 all the those arcs of βi in Õ(|βi|)
time. To report the two arcs of βi which are incident to f∞, one of them is trivially (si+1si)

∗ and
the other one is determined by last arc of the above fi-to-f∞ path. Since by Lemma 8 the arcs of
bisectors are disjoint, this takes time Õ(n +

∑k−1
i=1 |βi|) = Õ(n) time. In particular, we can label

every edge {u, v} ∈ E by the (at most two) bisectors that use (uv)∗ and (vu)∗. I.e., the bits that
change between pu and pv.

We next describe the compression scheme. Recall that, by storing d(v, s1) for every v ∈ T , a
query d(v, si) (with v ∈ T and si ∈ S) boils down to extracting pv and computing its (i − 1)’th
prefix-sum. Let T be a spanning tree of G. Label each edge {u, v} of T by the (at most two) bits
that change between the patterns of u and v. Note that there could be many (potentially Ω(n))
nodes of T that correspond to the same pattern. In order to decrease the size of T to be p# (the
number of distinct patterns in G), we root T at some arbitrary node u. Then, for every two nodes
v, w of T s.t pv = pw (and w.l.o.g. v is not a descendent of w) we remove the node w and turn all
it’s children to be children of v (their edge labels remain the same). We repeat this process until
the size of the tree is p#. We denote the resulting tree by T ′. Let Q be an Euler-tour of T ′ starting
from the root u. Consider the patterns of the nodes as we go along Q, starting from pu. In each
step, the pattern only changes in at most two bits (according to the edge labels). Therefore, we can
maintain all these O(|Q|) = O(p#) versions of the pattern using a persistent [11] data structure for
prefix-sum (e.g., using persistent segment trees [3]). Such a data structure supports both updates
and prefix-sum queries to any version in Õ(1) time and uses Õ(|Q|+k) = Õ(p#+k) space. Finally,
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for every vertex v ∈ T let qv be a node in Q whose corresponding pattern is pv. We store a pointer
from v to the version of the persistent data structure at qv, using additional Õ(|T |) bits overall.

We now give a randomized Õ(n) time algorithm for constructing T ′ (and hence the compression).
An arbitrary spanning tree T can be computed in O(n) time. Assume that every edge {w, v} of T
is labeled by the (at most two) bits that change between pw and pv. Let us compute the pattern of
the root u of T with a single-source shortest-paths computation in G. We also compute the Karp-
Rabin fingerprint [20] ϕ(pu) of pu. Such fingerprints are appealing because: (1) for any pw ̸= pv,
we have that ϕ(pw) ̸= ϕ(pv) with high probability, and (2) given ϕ(S1) and ϕ(S2) of two strings
S1, S2 we can compute in O(1) time the fingerprint of the concatenation ϕ(S1 ◦ S2). Thus, if we
maintain a complete binary tree on top of the pattern where each node contains the fingerprint of
its subtree (and in particular, the root contains the fingerprint of the entire pattern), then we can
update this tree in O(log k) time after changing one or two bits in the pattern.

We maintain the fingerprints in a dictionary initially containing only ϕ(pu). We process the
nodes of T starting from u, maintaining a queue of next-to-visit nodes. When we process a node
v, we compute ϕ(pv) from the fingerprint of v’s parent, by flipping the bits according to the edge
label (in O(log k) time). We then try to add ϕ(pv) to the dictionary. If we find a collision with
some vertex w (namely, ϕ(pv) = ϕ(pw)) then we delete v from T , and set the children of v to be
children of w in T . In any case, we add the children of v to the queue so they will be processed
later. Notice that a node is visited only after all its ancestors have been visited. Therefore, we can
always compute its fingerprint and we never move children from a vertex to its descendent, so T
remains a tree. In addition, the parent of every node changes or gets deleted at most once, hence
the running time is Õ(n). Overall, in Õ(n) time we construct T ′ and the dictionary (both of size
p#).

• In the special case where the vertices of T induce a connected component in G, we can skip
the first part of the algorithm and simply take a path Q that traverses only the vertices of
T . The rest of the construction remains the same and since |Q| = O(|T |), the size of the
compression is Õ(|T |+ k).

• In the special case where the vertices of T all lie on a single face (but not necessarily con-
secutively), let Q be a path that visits all the vertices of the face in clockwise order. By
Corollary 6, the total number of bit changes between patterns of consecutive vertices along
Q is O(k). Therefore, the number of patterns encountered is O(k) and hence we get an
Õ(|T |+ k) compression for this case as well.

This completes the proof of Theorem 3.

3.3 The bisector graph and the pattern graph
The bisector graph GB is the subgraph of G∗ composed of the union of all the bisectors. The faces
of GB represent the patterns of G in the following way.

Lemma 9. For every u, v ∈ V , if u and v are embedded inside the same face f of GB, then pu = pv.

Proof. Notice that GB is a connected graph because all the bisectors are incident to f∞. Hence,
f is a simple cycle in G∗. Let Gf be the subgraph of G embedded inside the face f . Since there
are no bisector edges embedded inside f , then in Gf there is no pair of adjacent vertices that have
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different patterns. Since f is a simple cycle, then by cut-cycle duality Gf is a connected subgraph.
Therefore, there exists a u-to-v path in Gf , and every pair of adjacent vertices in this path have
the same pattern. Hence pu = pv.

By the above lemma, every pattern p of G corresponds to a unique nonempty subset of faces
of GB. More precisely, a pattern p corresponds to all the faces of GB such that the vertices of G
embedded in these faces have pattern p. In particular, the number of faces of GB is an upper bound
on the number of distinct patterns in G. Therefore, if we could prove that GB has O(k3) faces we
would be done. Unfortunately, this is not the case. There can be as many as Ω(n) faces of GB
that correspond to the same pattern (see Figure 5). To tackle this, we transform GB into a new
graph GP (called the pattern graph) that has only O(k3) faces and whose faces still represent all
the distinct patterns of G.

Figure 5: The shaded faces all correspond to the same pattern (assuming no other bisector crosses
or separates them). They are formed when the two bisectors either cross each other or just touch
(intersect without crossing). We will later see that two bisectors can cross each other at most O(k)
times, but, they can touch Ω(n) times, creating Ω(n) faces that correspond to the same pattern.

The pattern graph GP is obtained by applying on GB the following two-phase procedure:
(1) A Peel phase: Recall that while Lemma 8 says that every two bisectors are arc-disjoint, it is
still possible that one bisector contains reversed arcs of another. In the peel phase, we re-embed
the bisectors so that no bisector contains reversed arcs of another bisector. After the peel phase,
crossings and touchings occur only at vertices (rather than subpaths).
(2) A Merge phase: In the merge phase, we merge faces that correspond to the same pattern and
share a common vertex.

Peel Phase. For every two bisectors β and β′, consider the set of maximal-length subpaths R,
such that R is a subpath of β and rev(R) is a subpath of β′. If the arc of β that follows R is
in right(β′) (resp. left(β′)), then we re-embed every arc of R on a new curve lying to the right
(resp. left) of its reverse. See Figure 6. Note that the peel phase does not create any new crossings
between β and β′.
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Figure 6: Before (left) and after (right) a peel phase. In this example, R is a single arc, and the
arc of β that follows R is in left(β′).

Merge Phase. For every vertex g ̸= f∞ of a bisector β, if any other bisector crosses β at g then
we do nothing. Otherwise, we split g into two copies. All the arcs in left(β) that are incident to g
are connected to one copy, and all the arcs in right(β) that are incident to g are connected to the
other copy. Finally, we replace the arcs of β that are incident to g (say fg and gh) by a single arc
fh. See Figure 7. Note that if g is not incident to any bisector other than β, then the merge phase
simply contracts the arc gh. We repeat this process until there are no such bisector pairs in the
graph.

Figure 7: Before (left) and after (right) a merge phase. The (shaded) face g′ is obtained by merging
faces h′ and f ′.

We now show that the above two-phase procedure maintains the relation between patterns in
G and faces in GP . Namely, that every pattern in G corresponds to a unique nonempty subset of
faces of GP . To this end, we extend the definition of patterns to faces of GB. This step is necessary
since the peel phase creates faces that do not correspond to primal vertices.

We define the pattern of a face f of GB, denoted pf , to be the length k − 1 vector where
pf [i] = −1 (resp. pf [i] = 1) if f is a face in left(βi+1) (resp. right(βi+1)) in GB. The definition
remains the same for any graph we obtain from GB during the two-phase procedure. The following
two propositions show that this definition is consistent with the original definition of patterns (of
vertices).

Proposition 10. Let v ∈ V be a vertex embedded inside a face f of GB. Then pv = pf .

Proof. Let 0 ≤ i ≤ k− 2. If pf [i] = 1 then f is in right(βi+1) by definition. Since GB is a subgraph
of G∗, then in G∗ v is also embedded in right(βi+1). Hence, v ∈ V \ Ai and therefore pv[i] = 1. A
symmetric argument shows that if pf [i] = −1 then pv[i] = −1.

By Proposition 10, all the faces of GB that correspond to a pattern pv have the same face
pattern. Notice that the peel phase does not change the patterns of existing faces. It can only
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add new faces to the graph, but no vertex of G is embedded in any of these new faces. Hence, the
relation is preserved after the peel phase. Next we show that after a merge step, every pattern still
corresponds to a unique subset of faces (i.e., we show that we do not merge faces that corresponded
to different patterns). Consider a single merge step happening at g (as illustrated in Figure 7).
Denote by f ′ (resp. h′) the face lying to the left of fg (resp. gh). Namely, f ′ and h′ are the faces
that get merged (a symmetric argument holds when they lie to the right of fg and gh). Let g′

denote the face obtained by merging f ′ and h′.

Proposition 11. pf ′ = ph′ = pg′.

Proof. Since no bisector crosses β at g, then fg and gh belong to the same side of every bisector.
This, together with the fact that fg, gh, and their reverses do not belong to any other bisector,
implies that f ′ and h′ also belong to the same side of every bisector. Hence pf ′ = ph′ . Now consider
the arc fh after the merge. Since f and h belong to the same side of every bisector as fg (and gh),
then g′ also belongs to the same side of every bisector, hence pf ′ = ph′ = pg′ .

By proposition 10, if f ′ or h′ are faces that correspond to pv then they do not correspond to any
pu ̸= pv. By Proposition 11, we can set g′ to correspond to pv, and the set of faces corresponding
to every pattern remains unique. This yields the following corollary.

Corollary 12. Every pattern of G corresponds to a unique subset of faces of GP .

Finally, we show that the number of faces in GP depends linearly on the number of bisector
crossings. Let t be the total number of bisector crossings in GP . That is, t is the sum of the number
of crossings between all pairs of bisectors.

Lemma 13. The number of faces in GP is O(t+ k).

Proof. By Euler’s formula, it suffices to show that the number of arcs in GP is O(t+ k). For every
arc fg in GP , where neither f nor g is f∞, the arc fg belongs to some bisector β. Moreover, there
must exist some other bisector that crosses β at f . Otherwise, the arc would have been removed in
the merge phase. Consider all the bisectors that cross β at f in a clockwise order around f starting
at fg. Let β′ be the one following fg. Then we charge fg to the crossing of β and β′ at f . Notice
that at most two arcs will be charged to this crossing of β and β′ (the arc fg and the arc of β′

whose tail is f). Overall, we have charged O(t) arcs. The only arcs that did not get charged are
the 2(k − 1) arcs incident to f∞. Therefore, the number of arcs in GP is O(t+ k).

In the next subsection, we prove that every pair of bisectors can cross at most O(k) times.
Since there are O(k2) pairs of bisectors, the total number of crossings is then t = O(k3), which by
Corollary 12 and Lemma 13 implies Theorem 1.

3.4 Two bisectors can cross only O(k) times
Let βi and βj be two bisectors in G∗ that cross each other at least once. Let R1, R2, . . . Rr be their
crossing parts that do not contain f∞, sorted by their order of appearance along βi. We note that
since βi and βj are simple cycles, the crossing parts must be disjoint. In Lemma 16 we show that
the crossing parts appear in reverse order along βj , and in Lemma 17 we use this fact to prove
that the number of crossings r is at most O(k). We begin by defining an important configuration
of bisectors and shortest paths.
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Figure 8: A configuration of bisectors βi, βj and shortest paths Pu,si+1 , Pv,sj that must intersect.
right(C∗) is shaded.

Lemma 14. Let C∗ = βj [f∞, f ] ◦ rev(βi[f∞, f ]) be a simple cycle, and let u ∈ Ai, v ∈ V \Aj (resp.
u ∈ V \Ai, v ∈ Aj) be two vertices in left(C∗) (resp. right(C∗)). Then Pu,si+1 and Pv,sj (resp. Pu,si

and Pv,sj+1) must intersect at some vertex x.

Proof. We focus on the case where u ∈ Ai and v ∈ V \ Aj are vertices in left(C∗) (the proof of
the other case is symmetric). See Figure 8. We assume that G and G∗ are embedded on the same
surface, such that for every wy ∈ A, the curves of wy and (wy)∗ intersect in their middles at a
single point p on the surface. See Figure 9. We refer to the two parts of the curve of wy as (w− p)

Figure 9: An arc wy ∈ A that intersects with its dual (wy)∗ ∈ A∗ at a middle point p.

and (p − y). For a path Q that contains arc wy, we slightly abuse notation and use Q[·, p] and
Q[p, ·] to denote a prefix and suffix of the curve of Q. In addition, we say that a path P of the
primal graph crosses a path Q of the dual graph, if P contains an arc wy whose dual or reversed
dual is in Q. In particular, it means that there exist a common point p (in the middle of wy), such
that (w − p) and (p − y) are on different sides of Q. Let pj be the point in the middle of sjsj+1,
and let pi be the point in the middle of sisi+1.

Notice that si+1, sj ∈ right(C∗) \ C∗ by definition, and that v ∈ left(C∗) \ C∗ by assumption
(and the fact that v is not part of C∗ because v is a primal vertex). Hence, Pv,sj must cross C∗.
However, by Corollary 7 it cannot cross βj [f∞, f ], hence it must cross βi[f∞, f ]. This means that
there is a point q that is common to both Pv,sj and βi[f∞, f ]. In particular, let q be the last point
along the curve of Pv,sj that is also along the curve of C∗. Notice that Pv,sj [q, sj ] ◦ (sj − pj) is a
chord inside the cycle C∗. Similarly, there exists a point q′ along the curve of Pu,si+1 such that
Pu,si+1 [q

′, si+1] ◦ (si+1− pi) is a chord in C∗. The endpoints of the chords appear in clockwise order
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along C∗ as (q, pi, pj , q
′). It is well known that two chords in such a configuration must intersect.

Therefore, there exist a primal vertex x that is common to both Pv,sj [q, sj ] and Pu,si+1 [q
′, si+1].

It is important to remark that Lemma 14 holds even when the cycle C∗ is a non-self-crossing
non-simple cycle. Namely, if C∗ intersects with itself, we let g be the first intersection vertex
in βi[f∞, f ], and define a cycle Ĉ∗ = βj [f∞, g] ◦ rev(βi[f∞, g]). Note that since βi and βj are
simple cycles, and by our choice of g, there are no intersections in Ĉ∗. Clearly, we also have that
v, u ∈ left(Ĉ∗). Thus, we apply the Lemma to Ĉ∗ instead of C∗.

Corollary 15. Pv,sj [v, x] (resp. Pu,si+1 [u, x]) contains an edge whose dual is in βi (resp. βj).

We are now in the position to prove the two main lemmas of this section.

Lemma 16. Let βi and βj be two crossing bisectors. Let R1, R2, . . . Rr be their crossing parts along
βi. Then, the crossing parts along βj are reversed Rr, Rr−1, . . . R1.

Proof. We assume that i < j. For ℓ ≤ r, we say that βj enters Rℓ from left(βi) (resp. right(βi))
if the arc of βj that precedes Rℓ is in left(βi) (resp. right(βi)). For brevity, we assume that every
Rℓ is a single vertex in V ∗. Finally, we assume without loss of generality that sj is in left(βi) (the
proof of the other case is symmetric).

Assume for the sake of contradiction that the order of appearance is not the reverse order. Then
there exists a pair of crossing parts Ra and Rb such that: (1) a < b, (2) Rb is the crossing part
following Ra in βj , and (3) a is minimal among such pairs. Consider the cycle C∗ = βj [f∞, Ra] ◦
rev(βi[f∞, Ra]). Note that C∗ is non-crossing since if there exists Rc for c < a that βj [f∞, Ra]
crosses, then a wouldn’t be minimal. We have two cases to consider:

Figure 10: Case 1 in the proof of Lemma 16. The dotted parts represent parts in which there may
be crossings. right(C∗) is shaded. In this example, P is crossed by βj [f∞, Ra] exactly twice.

Case 1: βj enters Ra from left(βi) (hence it enters Rb from right(βi)). Let (uv)∗ be the arc of βj
that follows Rb. We next show that v and C∗ form the configuration of Lemma 14, in the special
case of v = u.

First we show that v ∈ V \ Aj and v ∈ Ai. Note that v ∈ V \ Aj by definition, since v is the
primal vertex lying to the right of an arc of βj . Since (uv)∗ follows the crossing part Rb, and since
βj enters Rb from right(βi), then (uv)∗ ∈ left(βi) \ βi. Hence, v ∈ left(βi) and therefore v ∈ Ai.
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Next we show that v ∈ left(C∗). For this, we show that Rb ∈ left(C∗)\C∗, hence the arcs incident
to Rb and their corresponding primal vertices are in left(C∗). Consider the path P = βi[Ra, Rb].
The first arc of P is in left(C∗) by the case assumption. To show that Rb ∈ left(C∗) \ C∗ we will
show that P crosses the cycle C∗ an even number of times. Notice that P does not cross βi[f∞, Ra]
since βi is a simple cycle. It therefore remains to show that P crosses βj [f∞, Ra] an even number
of times (equivalently, we show that βj [f∞, Ra] crosses P an even number of times). To this end,
let us define a cycle Ĉ∗ = P ◦ rev(βj [Rb, Ra]). Notice that Ĉ∗ is non-crossing since Rb follows Ra in
βj . Notice that the first and last arcs of βj [f∞, Ra] are both in left(βi). Also notice that right(Ĉ∗)
is included in right(βi) (by the case assumption), therefore the first and last arcs of βj [f∞, Ra] are
in left(Ĉ∗). Hence, βj [f∞, Ra] crosses Ĉ∗ an even number of times. Since βj [f∞, Ra] can only cross
Ĉ∗ at P (as βj is a simple cycle), it must cross P an even number of times.

We can thus apply Lemma 14, and conclude that Pv,sj and Pv,si+1 intersect at vertex x, and that
Pv,si+1 [v, x] contains an edge whose dual is in βj (by Corollary 15). Since the lengths of Pv,sj [v, x]
and Pv,si+1 [v, x] are the same, Pv,si+1 [v, x] ◦ Pv,sj [x, sj ] is a shortest v-to-sj path. However, since
Pv,si+1 [v, x] contains an edge of βj , we get a contradiction to Corollary 7.

Figure 11: Case 2 in the proof of Lemma 16. The dotted parts represent parts in which there may
be crossings. left(C∗) is shaded. In this example, P is crossed by βj [f∞, Ra] exactly twice.

Case 2: βj enters Ra from right(βi) (hence it enters Rb from left(βi). Let (uv)∗ be the arc of βj that
follows Rb. We next show that u and C∗ form the configuration of Lemma 14 (again, in the special
case of u = v). By symmetric arguments to Case 1, we can show that u ∈ Aj and u ∈ V \ Ai. We
therefore only need to show that u ∈ right(C∗).

To show that u ∈ right(C∗), it suffices to show that Rb ∈ right(C∗) \C∗ (hence the arcs incident
to Rb and their corresponding primal vertices are in right(C∗)). Consider the path P = βi[Ra, Rb].
The first arc of P is in right(C∗) by the case assumption. To show that Rb ∈ right(C∗) \C∗, we will
show that P crosses the cycle C∗ an even number of times. Since P does not cross βi[f∞, Ra], we
need to show that βj [f∞, Ra] crosses P an even number of times (here is where the argument will
differ from Case 1).

Let Ĉ∗ = P ◦ rev(βj [Rb, Ra]) be a non-crossing cycle. Let R be the first crossing between
βj [f∞, Ra] and βi. R exists and is not Ra by the assumption that sj ∈ left(βi), and by the case
assumption. Note that βj [f∞, R] does not cross βi (and hence does not cross P ) by definition of R,
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so it remains to show that the number of crossings between βj [R,Ra] and P is even. Notice that,
since sj ∈ left(βi), the first and last arcs of βj [R,Ra] are both in right(βi). Also note that left(Ĉ∗)
is contained in left(βi). Therefore, the first and last arcs of βj [R,Ra] are in right(Ĉ∗). Hence,
βj [R,Ra] crosses Ĉ∗ an even number of times. Since it can only cross Ĉ∗ at P , then βj [R,Ra]
crosses P an even number of times.

We can thus apply Lemma 14, and conclude that Pu,sj+1 and Pu,si intersect at vertex x, and that
Pu,sj+1 [u, x] contains an edge of βi (by Corollary 15). Since the lengths of Pu,si [u, x] and Pu,sj+1 [u, x]
are the same, Pu,sj+1 [u, x]◦Pu,si [x, si] is a shortest u-to-si path. However, since Pu,sj+1 [u, x] contains
an edge of βi, we get a contradiction to Corollary 7.

Lemma 17. Two bisectors can cross at most k
2 +O(1) times.

Proof. We will prove that if two bisectors βi, βj cross r times then there exists a vertex v ∈ V such
that d(v, sj) − d(v, si+1) ≥ 2r − k

2 − O(1). Since the distance between any pair of vertices along
the infinite face is at most k

2 , then by the triangle inequality we have also d(v, sj)− d(v, si+1) ≤ k
2 .

Hence, we get 2r − k
2 −O(1) ≤ k

2 and the lemma follows.

Figure 12: Two bisectors that cross r times and the vertices and shortest paths they induce. Observe
that vℓ is in right(βi) when r − ℓ is even, and otherwise in left(βi). right(C∗

ℓ ) is shaded.

Again, let us assume without loss of generality that sj is in left(βi) (the proof of the other case is
symmetric). For every ℓ < r, consider the cycle C∗

ℓ = βj [f∞, Rℓ] ◦ rev(βi[f∞, Rℓ]). By the previous
lemma, C∗

ℓ does not self-cross. For even (resp. odd) r − ℓ, let (uℓvℓ)
∗ (resp. (vℓuℓ)

∗) be the arc of
βj that follows Rℓ. See Figure 12. We assume that r − ℓ is even (the odd case is symmetric).

We claim that C∗
ℓ , vℓ, vℓ+1 forms the configuration of Lemma 14. By definition of βj we have

that vℓ ∈ V \Aj . Thus, it remains to prove that vℓ+1 ∈ Ai and that vℓ, vℓ+1 ∈ left(C∗
ℓ ). By Lemma

16 and the assumption that sj ∈ left(βi), βj reaches Rℓ+1 from right(βi). Therefore, (vℓ+1uℓ+1)
∗ ∈

left(βi) \ βi. Hence, vℓ+1 is in left(βi) and therefore vℓ+1 ∈ Ai. To see that vℓ, vℓ+1 ∈ left(C∗
ℓ ), note

that by Lemma 16, (vℓ+1uℓ+1)
∗ is in βj [f∞, Rℓ], hence vℓ+1 ∈ left(C∗

ℓ ) by definition (as βj [f∞, Rℓ]
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is part of C∗
ℓ ). Clearly, since βj enters Rℓ from right(βi) we also have that (uℓvℓ)

∗ ∈ left(C∗
ℓ ) and

in particular vℓ ∈ left(C∗
ℓ ).

We can thus apply Lemma 14 and conclude that Pvℓ,sj and Pvℓ+1,si+1 must intersect at some
vertex xℓ. In addition, we can conclude that Pvℓ−1,sj+1 and Pvℓ,si intersect at some vertex xℓ−1, and
that Pvℓ−2,sj and Pvℓ−1,si+1 intersect at some vertex xℓ−2. Therefore, by the triangle inequality and
the assumption that patterns are binary, we have:

d(vℓ, xℓ) + d(xℓ, sj) ≤ d(vℓ, xℓ−1) + d(xℓ−1, sj+1)− 1

d(vℓ, xℓ−1) + d(xℓ−1, si) ≤ d(vℓ, xℓ) + d(xℓ, si+1)− 1

d(vℓ−1, xℓ−2) + d(xℓ−2, si+1) ≤ d(vℓ−1, xℓ−1) + d(xℓ−1, si)− 1

d(vℓ−1, xℓ−1) + d(xℓ−1, sj+1) ≤ d(vℓ−1, xℓ−2) + d(xℓ−2, sj)− 1

Summing the above inequalities we get:

d(xℓ, sj)− d(xℓ, si+1) + 4 ≤ d(xℓ−2, sj)− d(xℓ−2, si+1) (1)

Let m ∈ {1, 2} be so that r −m is even. Let v = xm. By repeating Equation 1 we get:
d(xr−2, sj)− d(xr−2, si+1) + 4 ·

(
r
2 −O(1)

)
≤ d(v, sj)− d(v, si+1).

Since the distance between any two vertices along the infinite face is at most k
2 , it follows that:

−k
2 + 4 ·

(
r
2 −O(1)

)
≤ d(v, sj)− d(v, si+1) ≤ k

2 . Therefore r ≤ k
2 +O(1).

4 A Θ(k2) Proof for Halin Graphs
In this section we prove Theorem 4. Namely, we show a tight Θ(k2) bound on the number of
patterns in a family of graphs that includes Halin graphs. The Halin graph family (see [28] for
history and properties) is a restricted family of planar graphs. A Halin graph is obtained from an
embedded tree T with no degree-2 vertices by attaching a cycle C to its leaves in their order of
appearance according to the embedding. The cycle is then the boundary of the infinite face, and
we denote its size by k. We will consider a more general family than Halin graphs. Namely, we
allow the tree T to have degree 2 vertices, and we allow the cycle C to contain vertices that are
not in T . We will refer to such graphs as S-Halin graphs. See Figure 13.

In this section, we show that the number of distinct patterns in S-halin graphs is only O(k2),
and that this bound is tight. In contrast, we show that the VC-dimension argument is limited to
proving O(k3) even on such graphs.

Lemma 18. Let G = T ∪ C be an S-Halin graph, obtained by identifying the leaves of T with a
subset of vertices of a cycle C. If the size of C is k then the number of distinct patterns in G is
O(k2).

Proof. Notice that the total number of vertices of G with degree larger than 2 is O(k) (and hence,
the number of faces in G is also O(k)). This is because C is of size k and T contains only k leaves
(and hence O(k) vertices with degree larger than 2). Now consider the dual graph G∗ = (V ∗, E∗).
Since every bisector is a simple cycle in G∗, and since |V ∗| = O(k), then the number of arcs in the
graphs GB and GP is O(k2). Therefore, by Corollary 12 the number of distinct patterns in G is
O(k2).
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Figure 13: An S-Halin graph whose matrix of patterns has VC-dimension 3.

We next show that it is not possible to prove Lemma 18 using the VC-dimension argument.
Namely, consider the S-Halin graph of Figure 13 and let P be the matrix whose rows are the
patterns of the graph (recall that each pattern is in {−1, 1}k−1).

Proposition 19. The VC-dimension of P is 3.

Proof. Consider the following submatrix of P whose rows correspond to the vertices v0, . . . , v7 and
columns correspond to the edges e1, e2, e3:

e1 e2 e3



v0 1 1 1
v1 1 1 −1
v2 1 −1 1
v3 1 −1 −1
v4 −1 1 1
v5 −1 1 −1
v6 −1 −1 1
v7 −1 −1 −1

Since it contains all possible rows, the VC-dimension of P is at least 3.

It is important to remark that we can generalize the example of Figure 13 to any large enough
k, by adding vertices along the infinite face in the part between v7 and v0 (clockwise).

So far we have seen that S-Halin graphs have at most O(k2) distinct patterns (Lemma 18), and
that the VC-dimension argument is limited to showing O(k3) distinct patterns (Proposition 19).
To conclude this section, we prove that the O(k2) bound is tight:

Lemma 20. There exists an S-Halin graphs with Ω(k2) distinct patterns.

Proof. We assume that k is even and denote k′ = k/2. We construct the tree T by taking the
union of k′ +1 simple paths P0, P1, . . . , Pk′ where every Pi is of length i and all Pi’s originate from
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a common vertex v0,0. Namely, Pi = (vi,0 − vi,1 − · · · − vi,i), and vi,0 = vj,0 for every i ̸= j. We
choose the embedding of T so that in a clockwise tour around v0,0, the order of appearance of the
paths is (P1, P2, · · · , Pk′).

We define an additional vk′,k′-to-v1,1 path of length k′ + 1 denoted Q = (vk′,k′ − q1 − q2 − · · · −
qk′ − v1,1). Let C be the cycle Q ◦ (v1,1 − v2,2 − · · · − vk′,k′). Let G = T ∪ C. See Figure 14. Note
that |C| is 2k′ = k.

Figure 14: The S-Halin of Lemma 20 for k = 8.

Consider the patterns of G, when we choose the first vertex to be v1,1, the second v2,2, etc. Let
i ∈ [k′], j ∈ [i− 1]. We claim that the pattern of vi,j is:

pvi,j = 1i−j−1 ◦ (−1)j ◦ 1k′+j+1−i ◦ (−1)k
′−j−1 (2)

To see why, consider the vi,j-to-vt,t distances for t ≤ i. Notice that for every 1 ≤ t ≤ i − j we
have d(vi,j , vt,t) = j+t and for every i−j ≤ t ≤ i we have d(vi,j , vt,t) = 2i−j−t. In particular, they
are equal at t = i− j. Therefore, the pattern of all the edges between v1,1 and vi,i is 1i−j−1 ◦ (−1)j .

Now consider the vi,j-to-vt,t distances for i ≤ t ≤ k′. Notice that a shortest vi,j-to-vt,t path
will never use Q and instead will go through (vi,i − vi+1,i+1 − · · · − vt,t). Namely, the distance is
d(vi,j , vt,t) = t− j. Therefore, the pattern of all the edges between vi,i and vk′,k′ is 1k

′−i.
Finally, consider the vi,j-to-qt distances for 1 ≤ t ≤ k′. For every 1 ≤ t ≤ j + 1 we have

d(vi,j , qt) = k′ + t − j and for every j + 1 ≤ t ≤ k′ we have d(vi,j , qt) = k′ + j + 2 − t. In
particular they are equal at t = j + 1. Therefore the pattern of all the edges between vk′,k′ and q′k
is 1j+1 ◦ (−1)k

′−j−1. Overall, we get that pvi,j is as in Equation (2).
Notice that pvi,j is unique for every different i ∈ [k′], j ∈ [i − 1]. Since the number of such

vertices is Ω(k′2) = Ω(k2), there are Ω(k2) distinct patterns in G.

5 Conclusions
In this work we developed a technique for analyzing the structure and number of distinct patterns in
undirected planar graphs. This technique leads to an improved Õ(p# + k+ |T |) space compression
of the Okamura-Seymour metric, and to an optimal Õ(k + |T |) compression in the special case
where the vertices of T induce a connected component in G. Moreover, the technique leads to an
alternative proof of the p# = O(k3) upper bound on the number of different patterns.

We have shown that for the family of Halin graphs, the original proof technique using VC-
dimension is not tight, and that our approach easily proves the tight bound in this case. Going
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back to planar graphs, we were unable to come up with constructions of families of planar graphs
that have p# = ω(k2) patterns. We therefore make the following conjecture.

Conjecture. The number of distinct patterns over all vertices of a planar graph is O(k2).

We hope that tools we have developed in this work will be useful in proving this conjecture.
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