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Once upon a time . . .

MIT scientists have invented a revolutionary device to
communicate faster than the speed of light.

Gyro Gearloose with Randall L. Stephenson



Scrooge’s Goal: Infinite profit!



Donald’s Goal: Build a network for his nephews



Scrooge’s Goal: Infinite profit!



But suddenly. . . a competitor appears!

Gladstone Gander
(to follow John E. Pepper, Jr. as chairman of Verizon)
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Pricing MST
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Assumption: blues have priority over reds of same weight



Problem Statement

Given a graph G with red and blue edges

I Each red edge has a fixed cost c(e) [Gladstone Gander]

I The leader [Uncle Scrooge] has to set a price p(e) for each
blue edge

I The follower [Donald Duck] then computes a MST with the
resulting weights

Goal: maximize total weight of the blue edges in a MST



Context for Stackelberg MST (StackMST)

Stackelberg game:

I Leader makes one move

I Follower makes one move dependent on leader’s move

Related work:

I “Highway” problems – pricing shortest paths: Labbé,
Marcotte, and Savard (Management Science, 1998),
Grigoriev, van Hoesel, Kraaij, Uetz, and Bouhtou (WAOA 05),
survey by Stan van Hoesel

I Bundle pricing: Guruswami, Hartline, Karlin, Kempe, Kenyon,
and McSherry (SODA 05), Hartline and Koltun (WADS 05),
Grigoriev, van Loon, Sitters, and Uetz (WG 06)

I Many other games and mechanisms on spanning trees



Hardness I

Proposition

StackMST is NP-hard, even if c(e) ∈ {1, 2} ∀e

Proof idea:

Reduction from SetCover

→ sets S1,S2, . . . ,Sm

→ elements u1, u2, . . . , un

∃ cover of size ≤ t ⇐⇒ ∃ pricing giving ≥ (n + t − 1) + 2(m− t)
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Hardness II
Inapproximability result

Proposition

StackMST is APX-hard, even if c(e) ∈ {1, 2} ∀e

Proof idea:

I reduce from VertexCover in graphs with ∆ ≤ 3

I then everything is linear in n

I ∃ (1− ε)-approx for StackMST ⇒
∃ (1 + 8ε)-approx for VertexCover in graphs with ∆ ≤ 3



Bad News for Uncle Scrooge



Approximation I

Assume that the red costs are c1 < c2 < · · · < ck

Let ρ := 1 +
c2 − c1

c2
+ · · ·+ ck − ck−1

ck

We have: ρ ≤ k and ρ ≤ 1 +

∫ ck

c1

1

t
dt = 1 + ln

ck

c1

 5
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 2
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Theorem
StackMST is ρ-approximable ⇒ min{k, 1 + ln ck

c1
}-approximable



Approximation II
The Best-out-of-k algorithm

Algorithm Best-out-of-k (uniform pricing):

I For i = 1, . . . , k: assign price ci to all blue edges

I Pick i maximizing revenue of the corresponding MST

Analysis: For any price function,

revenue = MST −MST ∩ R ≤ MST∞ −MST 0

⇒ OPT ≤ MST∞ −MST 0 =
k∑

i=1

cim
∞
i −

k∑
i=1

cim
0
i

Where

I m∞i := #red edges of cost ci in MST∞

I m0
i := #red edges of cost ci in MST 0
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Approximation II
Analysis: wavefront argument

bi := #blue edges (of cost ci ) in i-th tree

Claim
m∞i −m0

i = bi − bi+1 for all i
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Approximation III
Analysis: rewriting OPT

Denote the revenue of the i-th tree by qi := cibi

From claim, we get

m∞i −m0
i =

qi

ci
− qi+1

ci+1
for 1 ≤ i ≤ k − 1 and m∞k −m0

k =
qk

ck

⇒ Can rewrite upper bound on OPT:

k∑
i=1

ci (m
∞
i −m0

i ) = c1

(
q1

c1
− q2

c2

)
+ c2

(
q2

c2
− q3

c3

)
+ · · ·+ ck

qk

ck

= q1 +
c2 − c1

c2
q2 + · · ·+ ck − ck−1

ck
qk



Approximation IV
Analysis: final bit

Taking j such that qj is maximum, we have

OPT
qj

≤
∑k

i=1 ci (m
∞
i −m0

i )

qj

≤ q1

qj
+

c2 − c1

c2
· q2

qj
+ · · ·+ ck − ck−1

ck
· qk

qj

≤ 1 +
c2 − c1

c2
+ · · ·+ ck − ck−1

ck
= ρ

So Best-out-of-k is a ρ-approximation algorithm

Can tweak the analysis to get:

Proposition

Best-out-of-k is also a (3 + 2 ln b)-approximation
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And they lived happily ever after. . .



IP formulation

(IP)
relax−→ (LP)

Proposition (good news)

We have (IP) ≤ (LP) ≤ MST∞ −MST 0

Proposition (bad news)

The integrality gap of (LP) is k on instances with k distinct costs
(and with ρ ∼ k)



Open questions / outlook

Main open question:

I Does StackMST admit a constant-factor approximation?

Generalizations of StackMST:

I Pricing matroids: always ρ-approximable

I Stackelberg Steiner trees: also generalizes highway pricing



The End


