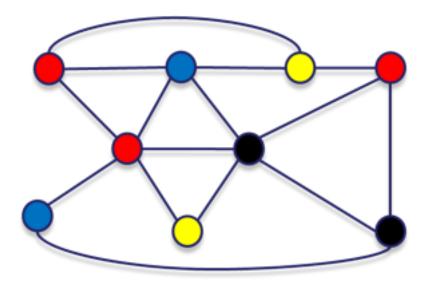
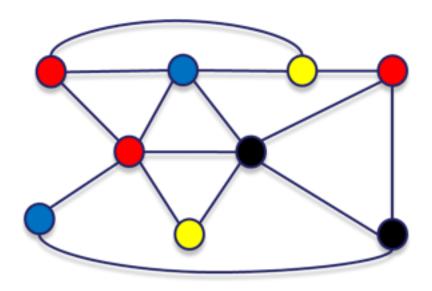
Distance Oracles for Vertex-Colored Graphs

Oren Weimann Weizmann Institute

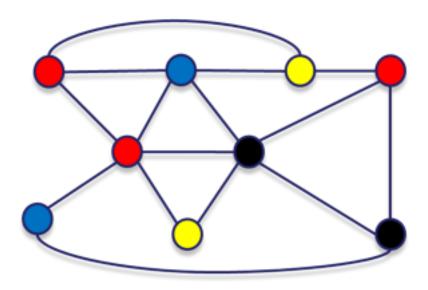


Joint work with: Danny Hermelin, Avivit Levy, and Raphael Yuster

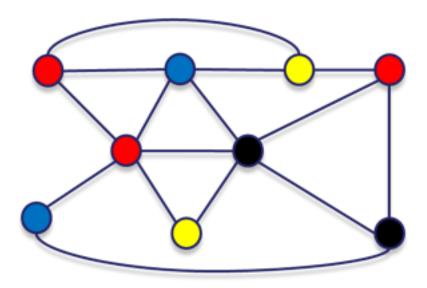
Tuesday, May 3, 2011



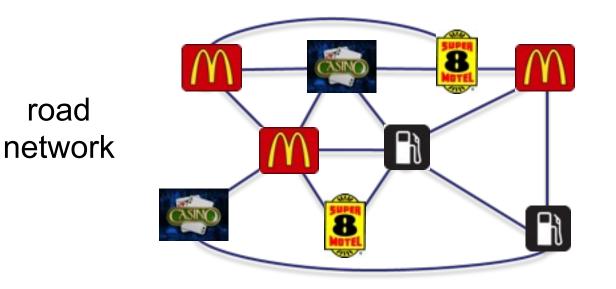
> A graph G where each vertex v has a color c(v).



A graph G where each vertex v has a color c(v).
Colors indicate functionality of a node.

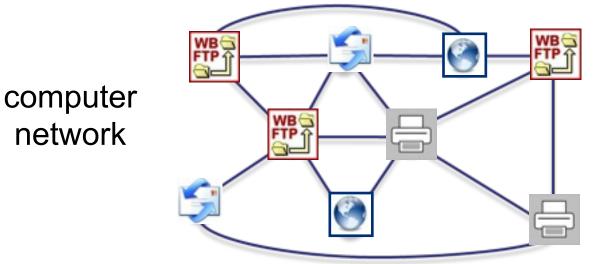


A graph G where each vertex v has a color c(v).
Colors indicate functionality of a node.



Tuesday, May 3, 2011

 \succ A graph G where each vertex v has a color c(v). \succ Colors indicate functionality of a node.



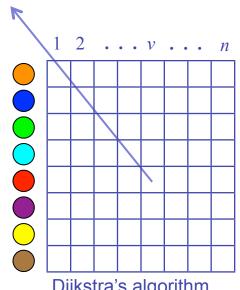
network

> Data Structure for queries $\delta(v, \bullet)$.

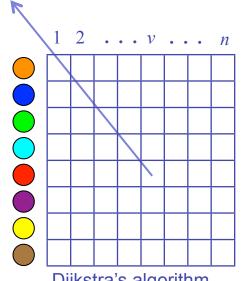
 $-\delta(v, \bullet) = vertex-to-$ *functionality distance.*

> Data Structure for queries $\delta(v, \bullet)$. − $\delta(v, \bullet)$ = vertex-to-*functionality distance.*

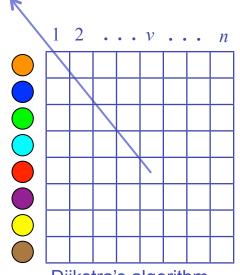
▷ $\Theta(nc)$ space: an $n \times c$ matrix storing all $\delta(v, \bullet)$.



- Data Structure for queries δ(v,●).
 δ(v,●) = vertex-to-*functionality distance.*
- ▷ $\Theta(nc)$ space: an $n \times c$ matrix storing all $\delta(v, \bullet)$.
 - 1. $\Omega(nc)$ space is too much.



- Data Structure for queries δ(v,●).
 − δ(v,●) = vertex-to-*functionality distance.*
- ▷ $\Theta(nc)$ space: an $n \times c$ matrix storing all $\delta(v, \bullet)$.
 - 1. $\Omega(nc)$ space is too much.
 - 2. Changing color requires $\Omega(n)$ time.



- Data Structure for queries δ(v,●).
 δ(v,●) = vertex-to-*functionality distance.*
- ▷ $\Theta(nc)$ space: an $n \times c$ matrix storing all $\delta(v, \bullet)$.
 - 1. $\Omega(nc)$ space is too much.
 - 2. Changing color requires $\Omega(n)$ time.

- Data Structure for queries δ(v,●).
 − δ(v,●) = vertex-to-*functionality distance.*
- \succ Θ(*nc*) space: an *n* × *c* matrix storing all δ(*v*,●).
 - 1. $\Omega(nc)$ space is too much.
 - 2. Changing color requires $\Omega(n)$ time.
- \succ o(nl) space means imprecise answers.

- Data Structure for queries δ(v,●).
 − δ(v,●) = vertex-to-*functionality distance.*
- ▷ $\Theta(nc)$ space: an $n \times c$ matrix storing all $\delta(v, \bullet)$.
 - 1. $\Omega(nc)$ space is too much.
 - 2. Changing color requires $\Omega(n)$ time.
- \succ o(nl) space means imprecise answers.
 - stretch α if outputs $d(v, \bullet)$ s.t.

- Data Structure for queries δ(v,●).
 − δ(v,●) = vertex-to-*functionality distance.*
- ▷ $\Theta(nc)$ space: an $n \times c$ matrix storing all $\delta(v, \bullet)$.
 - 1. $\Omega(nc)$ space is too much.
 - 2. Changing color requires $\Omega(n)$ time.
- \succ o(nl) space means imprecise answers.
 - stretch α if outputs $d(v, \bullet)$ s.t.

$$\delta(v, \bullet) \leq d(v, \bullet) \leq \alpha \cdot \delta(v, \bullet)$$

Dijkstra's algorithm after contracting color

- Benchmark result by Thorup-Zwick [JACM'02]:
 - $O(kn^{1+1/k})$ space.
 - (2k-1) stretch queries in O(k) time.
 - Optimal under a graph-theoretic conjecture of Erdős

- Benchmark result by Thorup-Zwick [JACM'02]:
 - $O(kn^{1+1/k})$ space.
 - (2k-1) stretch queries in O(k) time.
 - Optimal under a graph-theoretic conjecture of Erdős
- Problems adapting the Thorup-Zwick oracles:

- Benchmark result by Thorup-Zwick [JACM'02]:
 - $O(kn^{1+1/k})$ space.
 - (2k-1) stretch queries in O(k) time.
 - Optimal under a graph-theoretic conjecture of Erdős
- Problems adapting the Thorup-Zwick oracles:

- Benchmark result by Thorup-Zwick [JACM'02]:
 - $O(kn^{1+1/k})$ space.
 - (2k-1) stretch queries in O(k) time.
 - Optimal under a graph-theoretic conjecture of Erdős
- Problems adapting the Thorup-Zwick oracles:
 - Query algorithm relies on knowing both source and destination,
 - Space bound independent of c (consider c = polylog(n))

- Benchmark result by Thorup-Zwick [JACM'02]:
 - $O(kn^{1+1/k})$ space.
 - (2k-1) stretch queries in O(k) time.
 - Optimal under a graph-theoretic conjecture of Erdős
- Problems adapting the Thorup-Zwick oracles:
 - Query algorithm relies on knowing both source and destination,
 - Space bound independent of c (consider c = polylog(n))
 - Doesn't support changing colors

Adaption of the Thorup-Zwick oracles

Adaption of the Thorup-Zwick oracles

Theorem: $O(kn^{1+1/k})$ -space (4k-5)-stretch vertex-color oracles.

> Space bound independent of c.

Adaption of the Thorup-Zwick oracles

- > Space bound independent of c.
- Does not support changing colors.

Adaption of the Thorup-Zwick oracles

<u>Theorem:</u> $O(kn^{1+1/k})$ -space (4k-5)-stretch vertex-color oracles.

- > Space bound independent of c.
- Does not support changing colors.

<u>**Theorem:**</u> $O(knc^{1/k})$ -space (2^k-1)-stretch vertex-color oracles.

- Adaption of the Thorup-Zwick oracles
 <u>Theorem:</u> O(kn^{1+1/k})-space (4k-5)-stretch vertex-color oracles.
- > Space bound independent of c.
- Does not support changing colors.

<u>**Theorem:**</u> $O(knc^{1/k})$ -space (2^k-1)-stretch vertex-color oracles.

Still does not support changing colors.

Adaption of the Thorup-Zwick oracles

Theorem: $O(kn^{1+1/k})$ -space (4k-5)-stretch vertex-color oracles.

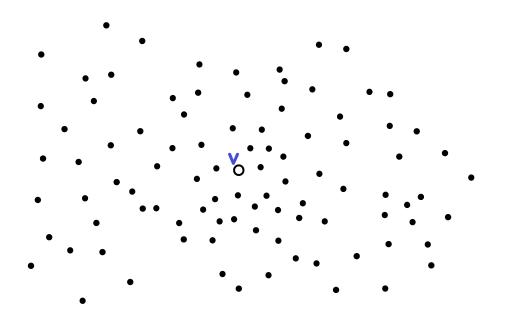
- > Space bound independent of c.
- Does not support changing colors.

<u>**Theorem:**</u> $O(knc^{1/k})$ -space (2^k-1)-stretch vertex-color oracles.

Still does not support changing colors.

Theorem: $O(kn^{1+1/k})$ -space $(3^{k-1}-1)$ -stretch vertex-color oracles allowing changing colors in $O(kn^{1/k}\lg n)$ time.

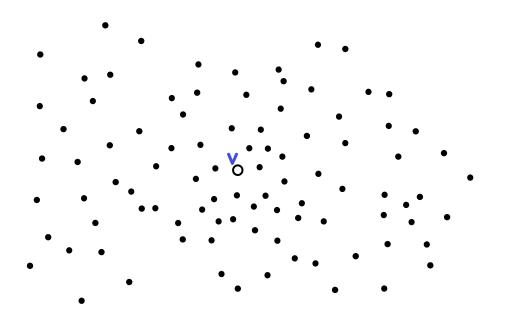
Adaption of the Thorup-Zwick oracles



Adaption of the Thorup-Zwick oracles

Theorem: $O(kn^{1+1/k})$ -space (4k-5)-stretch vertex-color oracles.

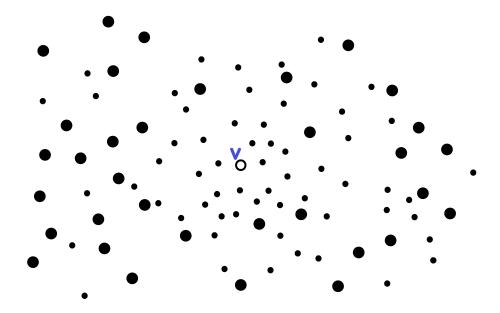
• Select *pivots* uniformly at random with probability $n^{-1/k}$



Adaption of the Thorup-Zwick oracles

Theorem: $O(kn^{1+1/k})$ -space (4k-5)-stretch vertex-color oracles.

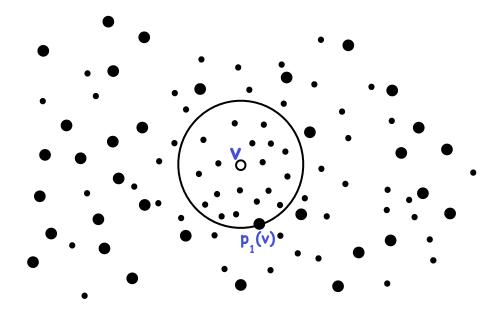
• Select *pivots* uniformly at random with probability $n^{-1/k}$



Adaption of the Thorup-Zwick oracles

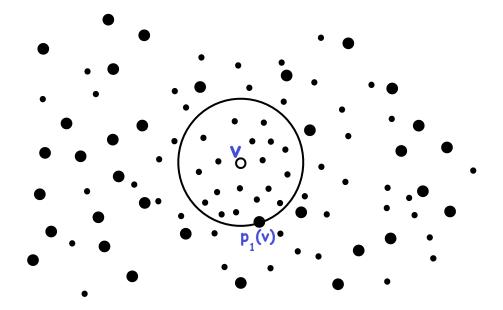
Theorem: $O(kn^{1+1/k})$ -space (4k-5)-stretch vertex-color oracles.

• Select *pivots* uniformly at random with probability $n^{-1/k}$



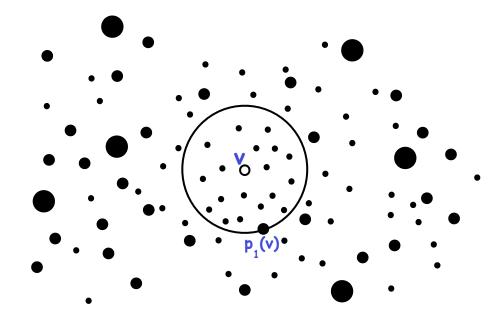
Adaption of the Thorup-Zwick oracles

- Select *pivots* uniformly at random with probability $n^{-1/k}$
- Select *pivots* from pivots... with probability *n*^{-1/k}



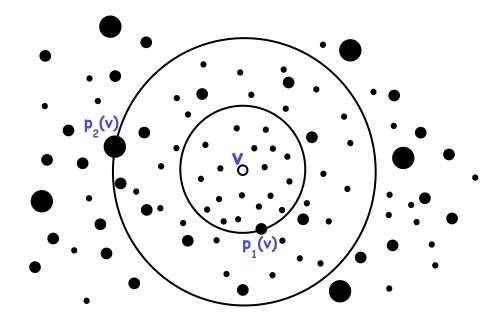
Adaption of the Thorup-Zwick oracles

- Select *pivots* uniformly at random with probability $n^{-1/k}$
- Select *pivots* from pivots... with probability *n*^{-1/k}



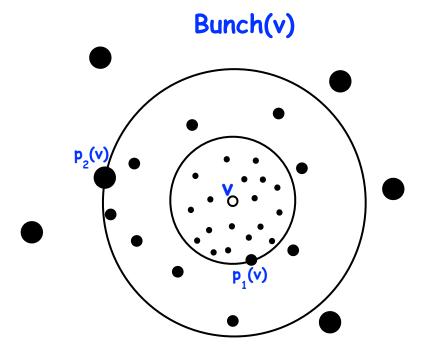
Adaption of the Thorup-Zwick oracles

- Select *pivots* uniformly at random with probability $n^{-1/k}$
- Select *pivots* from pivots... with probability *n*^{-1/k}



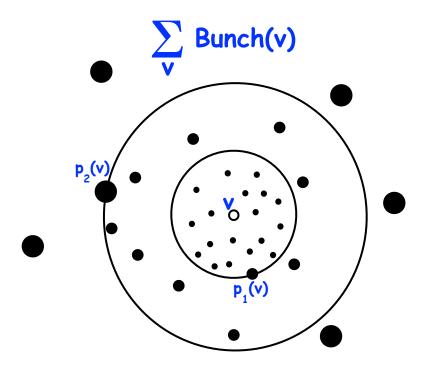
Adaption of the Thorup-Zwick oracles

- Select *pivots* uniformly at random with probability $n^{-1/k}$
- Select *pivots* from pivots... with probability *n*^{-1/k}



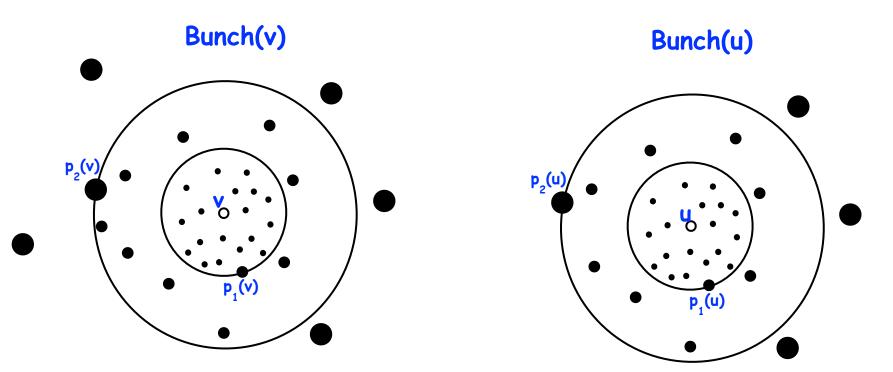
Adaption of the Thorup-Zwick oracles

- Select *pivots* uniformly at random with probability *n*^{-1/k}
- Select *pivots* from pivots... with probability *n*^{-1/k}



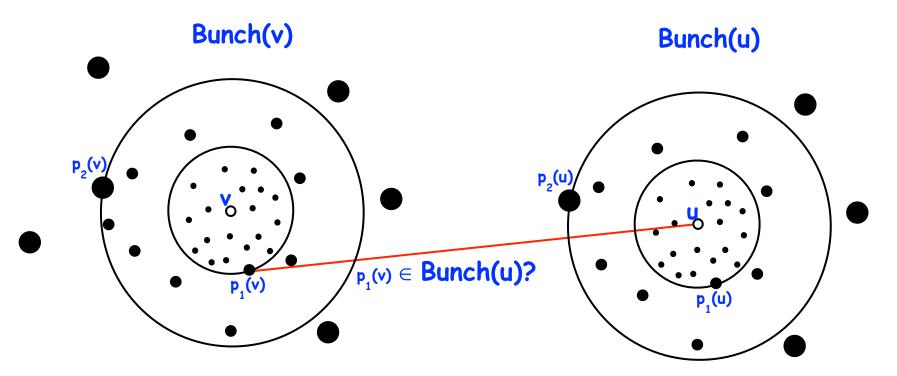
Adaption of the Thorup-Zwick oracles

- Select *pivots* uniformly at random with probability $n^{-1/k}$
- Select *pivots* from pivots... with probability *n*^{-1/k}



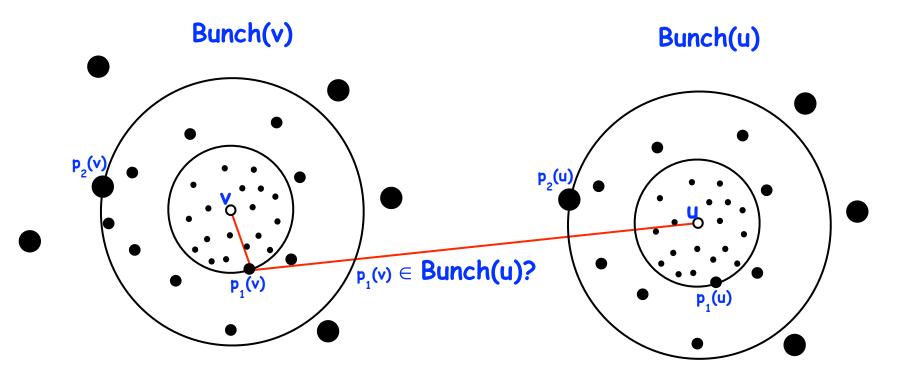
Adaption of the Thorup-Zwick oracles

- Select *pivots* uniformly at random with probability $n^{-1/k}$
- Select *pivots* from pivots... with probability *n*^{-1/k}



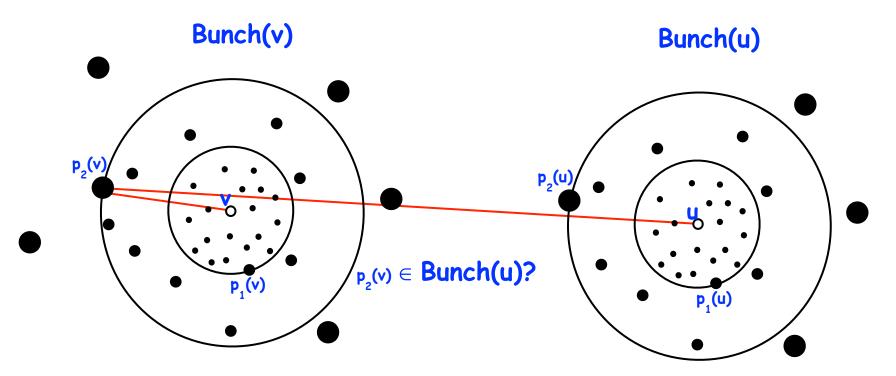
Adaption of the Thorup-Zwick oracles

- Select *pivots* uniformly at random with probability $n^{-1/k}$
- Select *pivots* from pivots... with probability *n*^{-1/k}



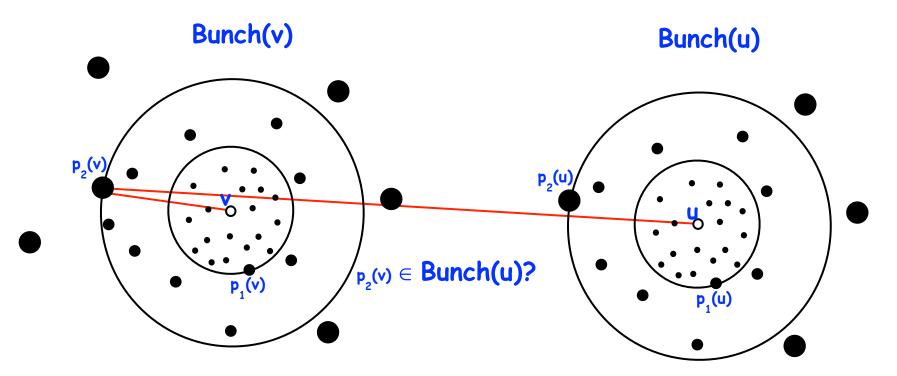
Adaption of the Thorup-Zwick oracles

- Select *pivots* uniformly at random with probability $n^{-1/k}$
- Select *pivots* from pivots... with probability *n*^{-1/k}



Adaption of the Thorup-Zwick oracles

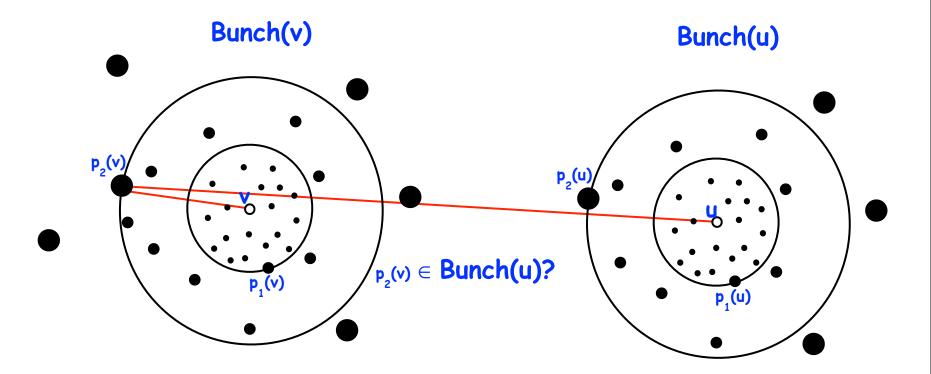
- Select *pivots* uniformly at random with probability $n^{-1/k}$
- Select *pivots* from pivots... with probability *n*^{-1/k}



Adaption of the Thorup-Zwick oracles

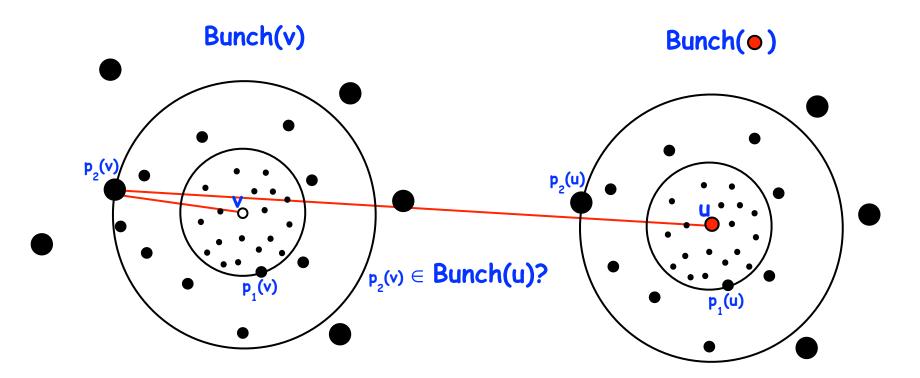
<u>**Theorem:**</u> $O(kn^{1+1/k})$ -space (4k-5)-stretch vertex-color oracles.

1. we don't know identity of **u** so advance in one side only



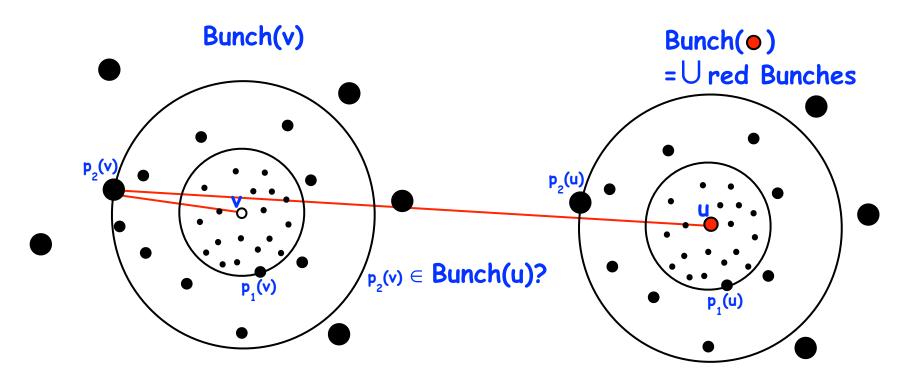
Adaption of the Thorup-Zwick oracles

- 1. we don't know identity of **u** so advance in one side only
- 2. Bunches for colors



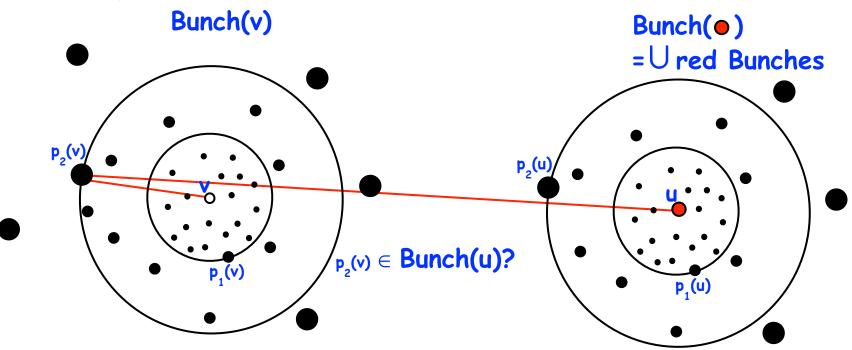
Adaption of the Thorup-Zwick oracles

- 1. we don't know identity of **u** so advance in one side only
- 2. Bunches for colors

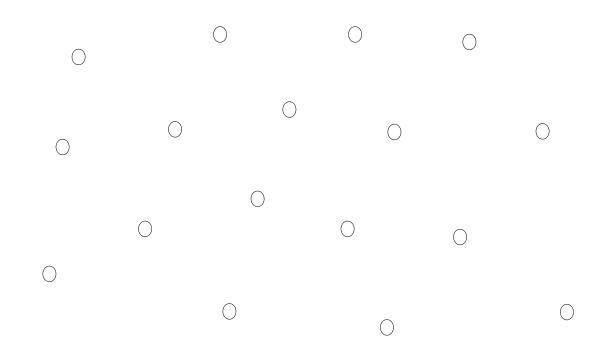


Adaption of the Thorup-Zwick oracles

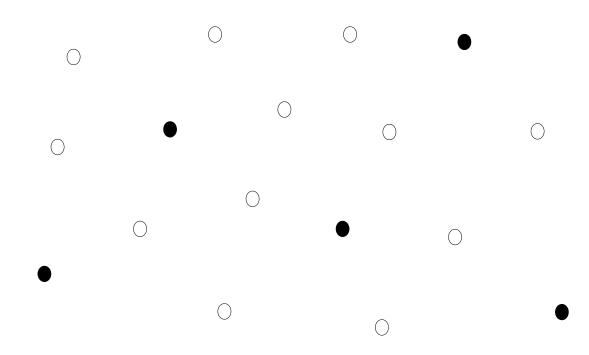
- 1. we don't know identity of **u** so advance in one side only
- 2. Bunches for colors
- 3. check all **p**(v)



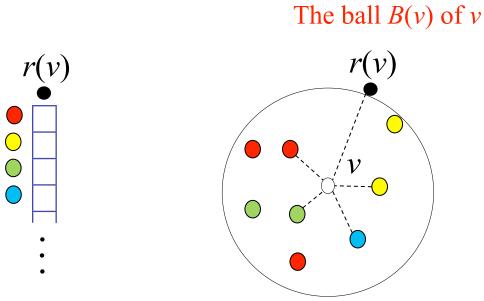
> Select *routers* uniformly at random with prob. $c^{-1/2}$.



> Select *routers* uniformly at random with prob. $c^{-1/2}$.



- > Select *routers* uniformly at random with prob. $c^{-1/2}$.
- Store all distances
- $-\delta(r,\lambda)$ for every router *r* and color λ .
- $\delta(v, r(v))$ from every vertex v to its closest router r(v).
- $\delta(v,\lambda)$ from every vertex v to every color λ with $\delta(v,\lambda) < \delta(v,r(v))$.



Expected space required:

Expected space required:

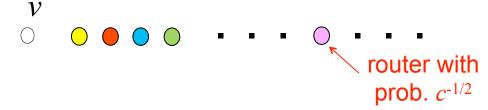
- total size of all routers tables = $nc^{1/2}$

- > Expected space required:
 - total size of all routers tables = $nc^{1/2}$
 - size of any ball $B(v) \leq c^{1/2}$

- > Expected space required:
 - total size of all routers tables = $nc^{1/2}$
 - size of any ball $B(v) \leq c^{1/2}$
 - Sort all colors according to their distances from v:

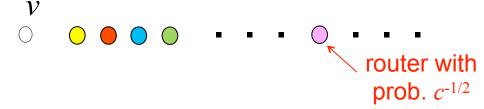
- > Expected space required:
 - total size of all routers tables = $nc^{1/2}$
 - size of any ball $B(v) \leq c^{1/2}$
 - Sort all colors according to their distances from *v*:

- > Expected space required:
 - total size of all routers tables = $nc^{1/2}$
 - size of any ball $B(v) \leq c^{1/2}$
 - Sort all colors according to their distances from v:



• |B(v)| bounded by the location of the first router on this list.

- > Expected space required:
 - total size of all routers tables = $nc^{1/2}$
 - size of any ball $B(v) \leq c^{1/2}$
 - Sort all colors according to their distances from *v*:



- |B(v)| bounded by the location of the first router on this list.
- total size of all ball tables $\leq nc^{1/2}$

> On query (v, λ) :

> On query (v, λ) :

- If $\lambda \in B(v)$ then return $\delta(v, \lambda)$.

(stretch 1)

> On query (v, λ) :

- If $\lambda \in B(v)$ then return $\delta(v, \lambda)$.

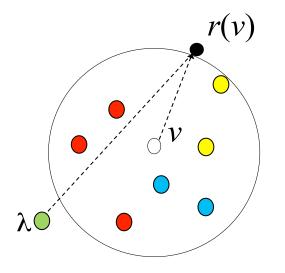
(stretch 1)

> On query (v, λ) :

- If $\lambda \in B(v)$ then return $\delta(v, \lambda)$.

(stretch 1)

- If $\lambda \notin B(v)$ then return $\delta(v, r(v)) + \delta(r(v), \lambda)$. (stretch 3)

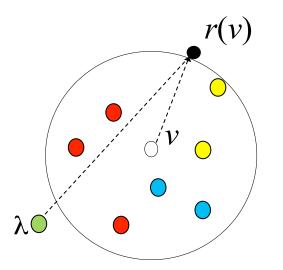


> On query (v, λ) :

- If $\lambda \in B(v)$ then return $\delta(v, \lambda)$.

(stretch 1)

- If $\lambda \notin B(v)$ then return $\delta(v, r(v)) + \delta(r(v), \lambda)$. (stretch 3)



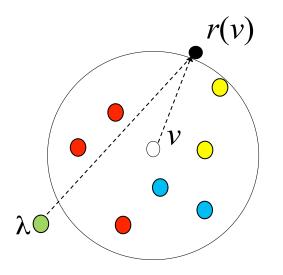
1. $\lambda \notin B(v) \implies \delta(v, r(v)) \le \delta(v, \lambda)$

> On query (v, λ) :

- If $\lambda \in B(v)$ then return $\delta(v, \lambda)$.

(stretch 1)

- If $\lambda \notin B(v)$ then return $\delta(v, r(v)) + \delta(r(v), \lambda)$. (stretch 3)



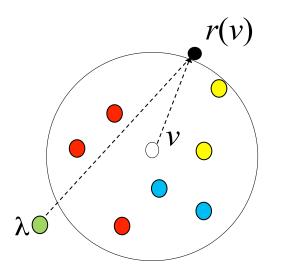
1. $\lambda \notin B(v) \Rightarrow \delta(v, r(v)) \le \delta(v, \lambda)$ 2. $\delta(r(v), \lambda) \le \delta(v, r(v)) + \delta(v, \lambda)$

> On query (v, λ) :

- If $\lambda \in B(v)$ then return $\delta(v, \lambda)$.

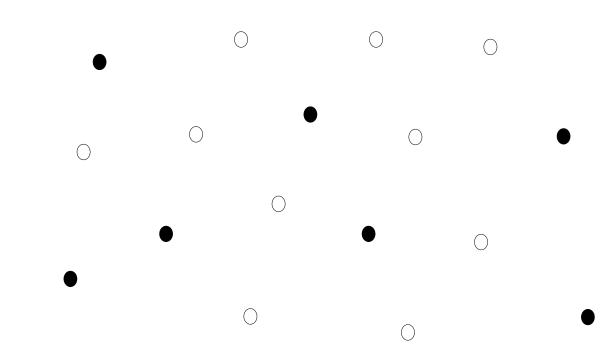
(stretch 1)

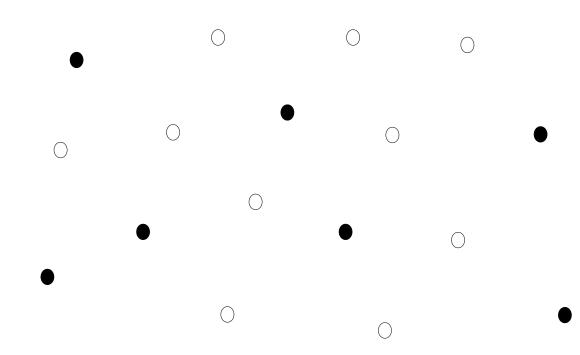
- If $\lambda \notin B(v)$ then return $\delta(v, r(v)) + \delta(r(v), \lambda)$. (stretch 3)



1. $\lambda \notin B(v) \Rightarrow \delta(v, r(v)) \le \delta(v, \lambda)$ 2. $\delta(r(v), \lambda) \le \delta(v, r(v)) + \delta(v, \lambda)$ \Box

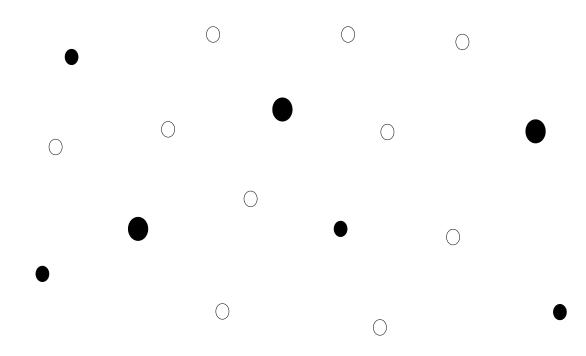
 $\delta(v, r(v)) + \delta(r(v), \lambda) \leq 3\delta(v, \lambda)$





> Select *routers* for the routers with prob. $c^{-1/k}$.

- and select routers for the routers ...



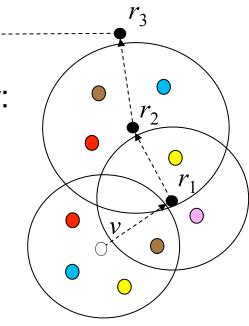
> Select *routers* for the routers with prob. $c^{-1/k}$.

- and select routers for the routers ...

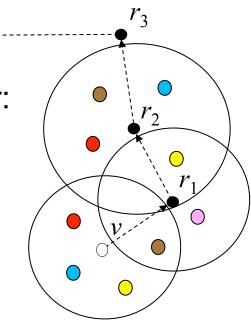
- and select routers for the routers ...
- > k-1 levels of routers.

- and select routers for the routers ...
- > k-1 levels of routers.
- Total size of router tables $O(knc^{-1/k})$.

- and select routers for the routers ...
- > k-1 levels of routers.
- Total size of router tables $O(knc^{-1/k})$.
- > Query algorithm hops from router to router:



- and select routers for the routers ...
- > k-1 levels of routers.
- Total size of router tables $O(knc^{-1/k})$.
- > Query algorithm hops from router to router:
 - Stretch increases to 2^{k-1} .



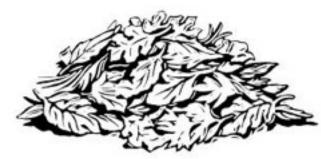
Changing Colors

Maintain balls using heaps.

Maintain balls using heaps.

- Heap per color, sorted by distance from ball center.

Maintain balls using heaps.



- Heap per color, sorted by distance from ball center.
- \succ Requires selecting routers with probability depending on *n*.
 - $O(kn^{1+1/k})$ space instead of $O(knc^{1/k})$.

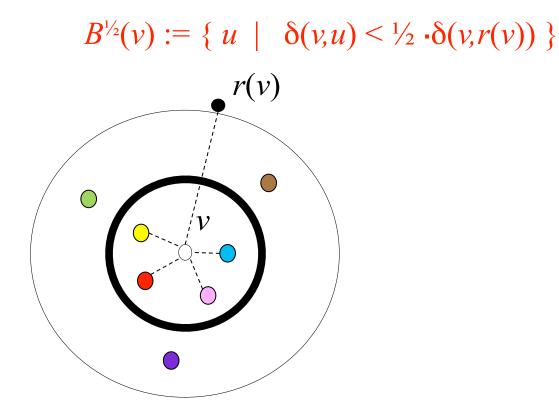
Maintain balls using heaps.

- Heap per color, sorted by distance from ball center.
- > Requires selecting routers with probability depending on n.
 - $O(kn^{1+1/k})$ space instead of $O(knc^{1/k})$.
- > On color change of v:
 - Update two heaps in each ball that contains v.

 \succ <u>Problem</u>: *v* can belong to a lot of balls.

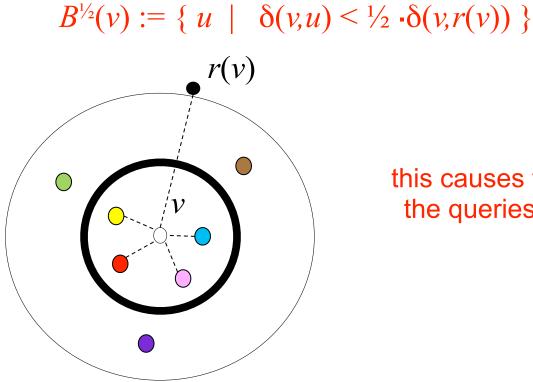
 \succ <u>Problem</u>: v can belong to a lot of balls.

 \succ <u>Solution</u>: use half-balls.



 \succ <u>Problem</u>: v can belong to a lot of balls.

Solution: use half-balls.

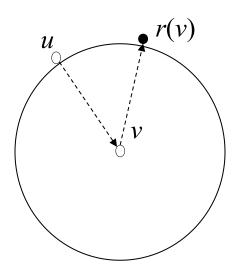


this causes the stretch of the queries to increase

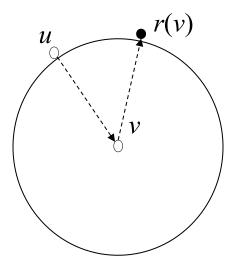
> <u>Observation</u>: $v \in B^{\frac{1}{2}}(u) \Rightarrow u \in B(v)$.

- ➤ <u>Observation</u>: $v \in B^{\frac{1}{2}}(u) \Rightarrow u \in B(v)$.
- ► Equivalently: $u \notin B(v) \Rightarrow v \notin B^{\frac{1}{2}}(u)$.

- > Observation: $v \in B^{\frac{1}{2}}(u) \Rightarrow u \in B(v)$.
- ► Equivalently: $u \notin B(v) \Rightarrow v \notin B^{\frac{1}{2}}(u)$.



- ➤ <u>Observation</u>: $v \in B^{\frac{1}{2}}(u) \Rightarrow u \in B(v)$.
- ► Equivalently: $u \notin B(v) \Rightarrow v \notin B^{\frac{1}{2}}(u)$.
- > v is in at most $kn^{1/k}$ balls.

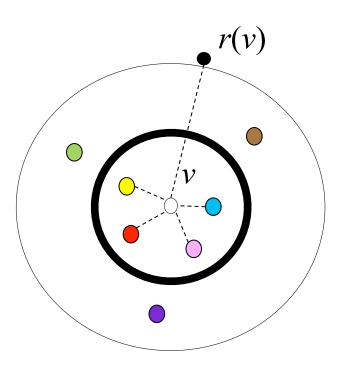


1. $O(kn^{1+1/k})$ -space (2*k*-1)-stretch ?

- 1. $O(kn^{1+1/k})$ -space (2k-1)-stretch ?
- 2. $O(knc^{1/k})$ -space poly(k)-stretch ?

- 1. $O(kn^{1+1/k})$ -space (2k-1)-stretch ?
- 2. $O(knc^{1/k})$ -space poly(k)-stretch ?
- *3.* $O(knc^{1/k})$ -space with changing colors ?

Thank you!



Thank you!

