Computing the Girth of a Planar Graph in $O(n \log n)$ time

Oren Weimann (Weizmann Institute of Science)
Raphy Yuster (University of Haifa)

Computing the Girth of a Planar Graph in $O(n \log n)$ time

Oren Weimann (Weizmann Institute of Science)
Raphy Yuster (University of Haifa)

Shortest Cycle (Girth)

General graphs:

- $O(\mathrm{~nm})$ - [Itai and Rodeh I978]
- $O\left(n^{2} \alpha(\mathrm{n})\right)$ - [Monien 1983] only even length
- $O\left(n^{2}\right)$ - [Yuster and Zwick 1997] only even length

Planar graphs:

- $O(n)$ - [Papadimitriou and Yannakakis 198I] girth bounded by 3
- $O(n)$ - [Eppstein 1999] girth bounded by any constant
- $O\left(n^{5 / 4} \log n\right)$ - [Djidjev 2000]
- $O\left(n \log ^{2} n\right)$ - [Chalermsook, Fakcharoenphol, Nanongkai 2004]

Girth $=$ Min-Cut in dual

Girth $=$ Min-Cut in dual

Weighted

Shortest Cycle (Girth)

General graphs:

- $O(\mathrm{~nm})$ - [Itai and Rodeh 1978]
- $O\left(n^{2} \alpha(\mathrm{n})\right)$ - [Monien 1983] only even length
- $O\left(n^{2}\right)$ - [Yuster and Zwick 1997] only even length

Planar graphs:

- $O(n)$ - [Papadimitriou and Yannakakis I98I] girth bounded by 3
- $O(n)$ - [Eppstein 1999] girth bounded by any constant
- $O\left(n^{5 / 4} \log n\right)$ - [Djidjev 2000]
- $O\left(n \log ^{2} n\right)$ - [Chalermsook, Fakcharoenphol, Nanongkai 2004]

Shortest Cycle (Girth)

General graphs:

- $O(\mathrm{~nm})$ - [Itai and Rodeh 1978]
- $O\left(n^{2} \alpha(\mathrm{n})\right)$ - [Monien 1983] only even length
- $O\left(n^{2}\right)$ - [Yuster and Zwick 1997] only even length

Planar graphs:

- $O(n)$ - [Papadimitriou and Yannakakis 198I] girth bounded by 3
- $O(n)$ - [Eppstein 1999] girth bounded by any constant
- $O\left(n^{5 / 4} \log n\right)$ - [Djidjev 2000]
- $O\left(n \log ^{2} n\right)$ - [Chalermsook, Fakcharoenphol, Nanongkai 2004]

Our Contribution:

- $O(n \log n)$ - bounded genus, don't need embedding, simple

Shortest Cycle in Planar Graphs

- Undirected
- Unweighted

Shortest Cycle in Planar Graphs

- Undirected
- Unweighted
k-outerplanar graphs: $O(k n \log n)$

Shortest Cycle in Planar Graphs

- Undirected
- Unweighted
k-outerplanar graphs: $O(k n \log n)$

Shortest Cycle in Planar Graphs

- Undirected
- Unweighted
k-outerplanar graphs: $O(k n \log n)$

Shortest Cycle in Planar Graphs

- Undirected
- Unweighted
k-outerplanar graphs: $O(k n \log n)$

Shortest Cycle in Planar Graphs

k-outerplanar graphs: $O(k n \log n)$

- Divide \& Conquer by k-sized separator

Shortest Cycle in Planar Graphs

k-outerplanar graphs: $O(k n \log n)$

- Divide \& Conquer by k-sized separator
- From every O build shortest paths tree T in $O(n)$ time [Henzinger et. al 1997]

Shortest Cycle in Planar Graphs

k-outerplanar graphs: $O(k n \log n)$

- Divide \& Conquer by k-sized separator
- From every O build shortest paths tree T in $O(n)$ time [Henzinger et. al 1997]

Shortest Cycle in Planar Graphs

k-outerplanar graphs: $O(k n \log n)$

- Divide \& Conquer by k-sized separator
- From every ○ build shortest paths tree T in $O(n)$ time [Henzinger et. al 1997]
- Lemma: If girth goes through v then it has just one edge $(u, w) \notin T$

Shortest Cycle in Planar Graphs

k-outerplanar graphs: $O(k n \log n)$

- Divide \& Conquer by k-sized separator
- From every ○ build shortest paths tree T in $O(n)$ time [Henzinger et.al 1997]
- Lemma: If girth goes through v then it has just one edge $(u, w) \notin T$
- For every edge $(u, w) \notin T$ check $d(u)+d(w)+w e i g h t(u, w)$

Shortest Cycle in Planar Graphs

k-outerplanar graphs: $O(k n \log n)$

- Divide \& Conquer by k-sized separator
- From every ○ build shortest paths tree T in $O(n)$ time [Henzinger et. al 1997]
- Lemma: If girth goes through v then it has just one edge $(u, w) \notin T$
- For every edge $(u, w) \notin T$ check $d(u)+d(w)+w e i g h t(u, w)$

Shortest Cycle in Planar Graphs

- Divide \& Conquer by k-sized separator
- From every ○ build shortest paths tree T in $O(n)$ time [Henzinger et. al 1997]
- Lemma: If girth goes through v then it has just one edge $(u, w) \notin T$
- For every edge $(u, w) \notin T$ check $d(u)+d(w)+w e i g h t(u, w)$

Shortest Cycle in Planar Graphs

k-outerplanar graphs: $O(k n \log n)$

- Divide \& Conquer by k-sized separator
- From every ○ build shortest paths tree T in $O(n)$ time [Henzinger et.al 1997]
- Lemma: If girth goes through v then it has just one edge $(u, w) \notin T$
- For every edge $(u, w) \notin T$ check $d(u)+d(w)+w e i g h t(u, w)$
- good: I.Works even for weighted graphs

2. $\mathrm{O}\left(n^{3 / 2}\right)$ for any planar graph, even directed

- bad: Does not necessarily find shortest simple cycle through v

Some Simple Observations

Some Simple Observations

- Girth g

Some Simple Observations

- Girth $g \leq$ smallest face h

Some Simple Observations

- Girth $g \leq$ smallest face h
- Contract every vertex of degree 2 unless its neighbors are adjacent

Some Simple Observations

- Girth $g \leq$ smallest face h
- Contract every vertex of degree 2 unless its neighbors are adjacent

Some Simple Observations

- Girth $g \leq$ smallest face h
- Contract every vertex of degree 2 unless its neighbors are adjacent

Some Simple Observations

- Girth $g \leq$ smallest face h
- Contract every vertex of degree 2 unless its neighbors are adjacent

Some Simple Observations

- Girth $g \leq$ smallest face h
- Contract every vertex of degree 2 unless its neighbors are adjacent
- Shortest cycle remains unchanged. Results in
 weighted graph G^{\prime} with $n^{\prime}=\Theta(n / h)$ vertices.

Some Simple Observations

- Girth $g \leq$ smallest face h
- Contract every vertex of degree 2 unless its neighbors are adjacent
- Shortest cycle remains unchanged. Results in
 weighted graph G^{\prime} with $n^{\prime}=\Theta(n / h)$ vertices.
- proof sketch:
- Every edge belongs to two faces, and every face has at least h vertices
- We can remove vertices of degree 0 or I
- We can assume G^{\prime} is not a simple cycle
\Rightarrow degree 2 vertices form an independent-set
- \sum degree $(v)=2 m^{\prime}=\Theta\left(n^{\prime}\right)$
- Euler's formula: $m^{\prime}=n^{\prime}+f^{\prime}-2$

The Algorithm

$\left|G^{\prime}\right|=n / h$

The Algorithm

The Algorithm

The Algorithm

The Algorithm

- Divide G^{\prime} into overlapping layers by BFS from r :

The Algorithm

- Divide G^{\prime} into overlapping layers by BFS from r :

The Algorithm

- Divide G^{\prime} into overlapping layers by BFS from r :

The Algorithm

- Divide G^{\prime} into overlapping layers by BFS from r :

The Algorithm

- Divide G ' into overlapping layers by BFS from r :

The Algorithm

- Divide G ' into overlapping layers by BFS from r :
- weighted girth is entirely contained in some layer r. $\left|G^{\prime}\right|=n / h$

The Algorithm

- Divide G ' into overlapping layers by BFS from r :
- weighted girth is entirely contained in some layer r. $\left|G^{\prime}\right|=n / h$
- BFS depth $2 h$ means $2 h$-outerplanar

The Algorithm

- Divide G ' into overlapping layers by BFS from r :
- weighted girth is entirely contained in some layer r. $\left|G^{\prime}\right|=n / h$
- BFS depth $2 h$ means $2 h$-outerplanar
- use $\mathrm{O}(k n \log n)$ on every layer

The Algorithm

- Divide G ' into overlapping layers by BFS from r :
- weighted girth is entirely contained in some layer r. $\left|G^{\prime}\right|=n / h$
- BFS depth $2 h$ means $2 h$-outerplanar
- use $\mathrm{O}(k n \log n)$ on every layer
- Time Complexity:
$\sum 2 h\left|G^{\prime}{ }_{i}\right| \log \left|G^{\prime}{ }_{i}\right| \leq 2 h \log n \sum\left|G^{\prime}{ }_{i}\right|$

$$
\begin{aligned}
& =2 h \log n \Theta\left(\left|G^{\prime}\right|\right) \\
& =2 h \log n \Theta(n / h)=O(n \log n)
\end{aligned}
$$

Open Problems:

- Weighted girth in $o\left(n \log ^{2} n\right)$
- Shortest cycle through every vertex in $o\left(n \log ^{2} n\right)$
- Girth of directed planar graph in $o\left(n^{3 / 2}\right)$

Thank You!

