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We show how to assign labels of size 𝑂̃ (1) to the vertices of a directed planar graph 𝐺 , such that from the

labels of any three vertices 𝑠, 𝑡, 𝑓 we can deduce in 𝑂̃ (1) time whether 𝑡 is reachable from 𝑠 in the graph𝐺 \ {𝑓 }.
Previously it was only known how to achieve 𝑂̃ (1) queries using a centralized 𝑂̃ (𝑛) size oracle [SODA’21].

1 INTRODUCTION
Reachability is undeniably one of the most fundamental properties of graphs. Determining the

reachability between all pairs of vertices in a directed graph can be done in 𝑂̃ (min{𝑛𝜔 ,𝑚𝑛}) time
1
.

Reachability oracles. A reachability oracle is a compact data structure that allows to efficiently

answer reachability queries between any pair of vertices in the graph. Henzinger et al. [20] provided

conditional lower bounds for combinatorial constructions of reachability oracles, showing that

no non-trivial combinatorial reachability oracle constructions exist for general directed graphs.
2

Specifically, they proved that it is impossible to design a reachability oracle that simultaneously

achieves 𝑂 (𝑛3−𝜖 ) preprocessing time and 𝑂 (𝑛2−𝜖 ) query time, for any 𝜖 > 0.

Since non-trivial reachability oracles are not attainable for general graphs, efforts have been

directed towards developing improved reachability oracles for specific graph families. Notably,

graphs possessing separators of size 𝑠 (𝑛) admit a straightforward reachability oracle of size 𝑂̃ (𝑛 ·
𝑠 (𝑛)) and query time 𝑂̃ (𝑠 (𝑛)). Consequently, planar graphs (and more extensive graph classes such

as H-minor free graphs) admit oracles of size 𝑂̃ (𝑛1.5) and query time 𝑂̃ (
√
𝑛). In a groundbreaking

result, Thorup [33] introduced a near-optimal reachability oracle for directed planar graphs with

𝑂̃ (𝑛) space and 𝑂̃ (1) query time. Subsequently, Holm et al. [21] further improved this construction

to a truly optimal oracle with 𝑂 (𝑛) space and 𝑂 (1) query time.

Fault-tolerant reachability oracles. In real-world networks, the vulnerability to changes and

failures is a significant concern, and effectively handling failures has become crucial in modern

computing. This motivation has sparked extensive research on data structures that can operate

robustly in the presence of failures. Specifically, a fault-tolerant reachability oracle is designed to

handle queries of the form 𝑠, 𝑡, 𝑓 and determines whether vertex 𝑡 is reachable from vertex 𝑠 in the

graph 𝐺 \ {𝑓 } (the graph 𝐺 with vertex 𝑓 and all its incident edges removed).

Fault-tolerant reachability oracles have been studied extensively in general graphs, see e.g.

[7, 12, 18, 19, 26, 35]. In planar graphs, one can leverage the more powerful fault-tolerant distance
oracles. Baswana et al. [8] introduced a single-source fault-tolerant distance oracle with near-

optimal 𝑂̃ (𝑛) space and 𝑂̃ (1) query time. They further extended their construction to handle the

all-pairs variant of the problem at the cost of an increased 𝑂̃ (𝑛1.5) space and 𝑂̃ (
√
𝑛) query time.

Subsequently, Charalampopoulos et al. [11] presented an improved fault-tolerant distance oracle for

the all-pairs version in planar graphs. Their fault-tolerant oracle accommodates multiple failures;

however, it comes with a polynomial trade-off between the size of the oracle and the query time

1
The 𝑂̃ notation suppresses polylogarithmic factors, and 𝜔 < 2.373 is the exponent of matrix multiplication.

2
The term combinatorial is often referred to algorithms that do not utilize fast matrix multiplications.
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that may be less favorable compared to previous constructions. It is important to highlight that, in

the context of the all-pairs version, the fault-tolerant oracles mentioned above have considerably

worse bounds when compared to the best known distance oracles without faults for planar graphs.

Finally, in a groundbreaking development, Italiano et al. [23] in SODA 2021 introduced a nearly

optimal fault-tolerant reachability oracle for directed planar graphs. Their innovative approach

finally achieved near-optimal 𝑂̃ (𝑛) size, 𝑂̃ (𝑛) construction time, and 𝑂̃ (1) query time.

Fault-tolerant reachability labeling. A more powerful concept than oracles is that of labeling
schemes, where each vertex is assigned a compact label, and the objective is to answer queries

based solely on the labels of the involved vertices. Labeling schemes have proven to be valuable in

distributed settings where inferring properties like distances or reachability is advantageous using

only local information such as the labels of the source and destination vertices. Such scenarios arise

in communication networks or disaster-stricken areas, where communication with a centralized

entitymay be infeasible or impossible. Labeling schemes provide a natural and structured framework

for studying the distribution of graph information. Various problems have been explored within

this model, including adjacency [3–5, 9, 24, 31], distances [1, 6, 16, 17, 33], flows and connectivity

[22, 25, 28], and Steiner tree [30]. See [32] for a survey.

In this paper, we focus on fault-tolerant reachability labeling in directed planar graphs. The

objective is to assign a compact label to each vertex, such that given the labels of any three vertices

𝑠, 𝑡, 𝑓 , one can efficiently determine whether 𝑡 is reachable from 𝑠 in the graph𝐺 \{𝑓 }. Fault-tolerant
labeling schemes (also called forbidden-set labeling schemes) were heavily studied for various

problems (such as connectivity, distances, and routing) and on various graph families (see e.g.

[1, 2, 6, 13–15, 32, 34]).

For reachability in planar graphs, the best previously known fault-tolerant labeling scheme was

the one for fault-tolerant distances by [6] in which the label size is 𝑂̃ (𝑛2/3). Is this the best possible?
Ideally, the goal would be to devise a labeling scheme in which the sum of the label sizes is roughly

equal to the size of the state-of-the-art oracle. However, achieving this goal is not always possible.

For example, in [10], an almost optimal exact distance oracle is given for directed planar graphs

(without faults) of size 𝑂 (𝑛1+𝑜 (1) ) and query time 𝑂̃ (1). On the other hand, it was shown in [17]

that exact distance labels (even without faults) for planar graphs necessitate polynomial-sized

labels regardless of the query time. Given this discrepancy between oracles and labeling schemes

for distances in planar graphs, a natural question arises: does the same discrepancy exist for fault-

tolerant reachability? In other words, is it possible to design a labeling scheme for directed planar

graphs with label size 𝑂̃ (1) and query time 𝑂̃ (1)? Or does a similar gap exist between fault-tolerant

reachability oracles and labeling schemes, as in the case of distances?

Our results. We answer this question in the affirmative by providing a near optimal labeling

scheme for fault-tolerant reachability in directed planar graphs with 𝑂̃ (1) label size and 𝑂̃ (1) query
time.

To obtain a fault-tolerant reachability labeling scheme, one might hope to generalize existing

labeling schemes for undirected graphs. Specifically, for undirected planar graphs, Abraham et

al. [1] presented labels of size 𝑂̃ (1) that for any fixed 𝜖 > 0, from the labels of vertices 𝑠, 𝑡, and

the labels of a set 𝐹 of failed vertices, can report in 𝑂̃ ( |𝐹 |2) time a (1 + 𝜖)-approximation of the

shortest 𝑠-to-𝑡 path in the graph 𝐺 \ 𝐹 . One would hope to generalize this result to the directed

case, even just settling for the seemingly easier task of reachability, and even for a single fault.

This is particularly tempting because previous results for the failure-free case have successfully

generalized from undirected to directed planar graphs. For example, Thorup [33] was able to

convert his (1 + 𝜖)-distance oracle for undirected planar graphs to also work in the directed case

by employing clever ideas. However, in the presence of failures, the task becomes significantly
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more challenging. In a nutshell, one of the challenges in adapting undirected results to the directed

case in the context of fault-tolerant reachability labeling in planar graphs is the following. In many

planar graph papers, including [33] and [1], the algorithms store distances from a vertex to other

vertices in relevant separators. In Thorup’s reachability oracle [33], the algorithm stores, for each

vertex 𝑠 and each relevant path separator, the first vertex on the path that is reachable from 𝑠 and

the last vertex on the path that can reach 𝑠 . To determine if vertex 𝑠 can reach vertex 𝑡 by a path

that intersects the path separator, one can examine the information stored in the labels of 𝑠 and 𝑡 .

By utilizing this stored information, it becomes possible to check the reachability between 𝑠 and 𝑡 .

One of the main challenges we face with this approach is the occurrence of failures anywhere along

the relevant path separator. A faulty vertex 𝑓 on the path separator requires us to store additional

information, including the closest vertex to 𝑓 that appears after 𝑓 on the path separator and is

reachable from the starting vertex 𝑠 . Considering that failures can happen at any vertex on the path

separator, this means we would need to store all vertices that are reachable from 𝑠 and to 𝑠 on the

path separator. This requirement renders the approach impractical.

To address this issue, we need to adopt a different approach and develop new techniques specifi-

cally tailored for accommodating failures in the directed case.

It is worth mentioning that in both our labeling scheme and the oracle proposed in [23], the

most challenging scenario arises when all three vertices 𝑠, 𝑡, and 𝑓 are situated on the same path

separator 𝑃 . In [23], this situation was addressed by employing a complex data structure that

extends dominator trees and previous data structures designed for handling strong-connectivity

in general (non-planar) graphs under failures [19]. However, these data structures do not seem

to be distributable into a labeling scheme (for example, they rely on an orthogonal range data

structure and on a binary search step which do not seem suitable for a labeling scheme). We tackle

this case without relying on dominator trees or similar sophisticated techniques. Therefore, our

algorithm not only achieves the milestone of introducing a near optimal efficient fault-tolerant

labeling scheme for planar reachability, but it also boasts a simpler approach compared to the one

employed in [23]. We firmly believe that the simplicity of our algorithm makes it an important

milestone in generalization to labels for approximate distances and for multiple failures in directed

planar graphs and related graph families.

2 PRELIMINARIES

The decomposition tree. In [33, Lemma 2.2], Thorup proved that we can assume the graph 𝐺

has an undirected spanning tree 𝑇 (i.e., 𝑇 is an unrooted spanning tree in the undirected graph

obtained from 𝐺 by ignoring the directions of edge) such that each path in 𝑇 is the concatenation

of 𝑂 (1) directed paths in 𝐺 .

This way, we can describe the process of decomposing 𝐺 into pieces in the undirected version

of 𝐺 . After describing the decomposition, we will replace each undirected path of 𝑇 defined in

the process by its 𝑂 (1) corresponding directed paths in 𝐺 . We therefore proceed to describe the

decomopostion treating 𝐺 as an undirected graph with a rooted spanning tree 𝑇 .

A balanced fundamental cycle separator [27, Lemma 5.3.2] (cf. [29] and [33, Lemma 2.3]) is a

simple cycle𝐶 in𝐺 whose vertices are those of a single path of the (unrooted) spanning tree𝑇 , such

that the removal of the vertices of 𝐶 and their incident edges separates𝐺 into two roughly equal

sized subgraphs. The balance of the separator can be defined with respect to a weight function on

the vertices of 𝐺 rather than just the number of vertices.

The recursive decomposition tree T of 𝐺 is defined as follows. Each node of T corresponds

to a subgraph of 𝐺 (called a piece). The root piece of T is the entire graph 𝐺 . The boundary 𝜕𝐺

of 𝐺 is defined to be the empty set. We define the children of a piece 𝐻 in T recursively. Let 𝜕𝐻
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be the boundary of 𝐻 , and let 𝐶 be a fundamental cycle separator which balances the number of

non-boundary vertices of 𝐻 . Let 𝑄 be the set of maximal subpaths of 𝐶 that are internally disjoint

from 𝜕𝐻 . To reduce clutter we sometimes refer to a vertex 𝑣 ∈ 𝑄 , by which we mean that 𝑣 belongs

to some path in 𝑄 . The vertices of 𝐻 that are enclosed by 𝐶 (including the vertices of 𝐶) belong to

one child 𝐻1 of 𝐻 . The vertices of subpaths in 𝑄 and the vertices of 𝐻 not enclosed by 𝐶 belong

to the other child 𝐻2. Note that the vertices of 𝑄 are the only vertices of 𝐻 that belong to both

children. The endpoints of 𝑄 that belong to 𝜕𝐻 are called the apices of 𝐻 . The importance of apices

arises from the fact that apices are the only vertices that belong to more than two pieces at the

same depth of T .
3
We call the paths in 𝑄 without the apices of 𝐻 the separator of 𝐻 . We do not

include the apices in the separator paths to guarantee that the separator is vertex disjoint from

𝜕𝐻 . The boundary 𝜕𝐻𝑖 of a child 𝐻𝑖 of 𝐻 consists of the separator of 𝐻 and of the subpaths of 𝜕𝐻

induced by the vertices of 𝐻𝑖 .

Since 𝐻2 might not contain all the vertices of 𝐶 , the subgraph induced on the spanning tree

𝑇 by 𝐻2 may become disconnected. To overcome this slight technical issue we embed in 𝐻2, if

necessary, an artificial root connected by artificial edges to the rootmost apex in each of the

resulting components of the tree. The embedding remains planar since all these apices were on the

fundamental cycle separator of the parent piece 𝐻 . We treat the artificial root and edges as part of

the spanning tree of 𝐻2. To guarantee that the addition of the artificial root and edges does not

affect the reachability of non-artificial vertices of 𝐻2, we direct the artificial edges into the artificial

root.

The leaves of T (called atomic pieces) correspond to pieces with 𝑂 (1) non-boundary vertices.

The depth of T is𝑂 (log𝑛). For convenience, we consider all𝑂 (1) vertices of an atomic (leaf) piece

that are not already boundary vertices as the separator of the piece. It follows that the boundary

𝜕𝐻 of any piece 𝐻 consists of 𝑂̃ (1) vertex disjoint paths (the subpaths induced by the vertices of 𝐻

on the separators of the ancestor pieces of 𝐻 ), and each of the paths in 𝜕𝐻 lies on a single face of

𝐻 . Also, since in each node of the decomposition tree only 𝑂̃ (1) apices are created, there are 𝑂̃ (1)
apices along any root-to-leaf path in T .

Having defined the decomposition tree T we can go back to treating 𝐺 as a directed graph. As

we explained above, each path we had discussed in the undirected version of𝐺 is the union of𝑂 (1)
directed paths in𝐺 . From now on when we refer to the separator paths of a piece 𝐻 (resp., paths of

𝜕𝐻 ), we mean the set of directed paths comprising the undirected separator paths of 𝐻 (resp., the

set of directed paths comprising the paths of 𝜕𝐻 ).

To be able to control the size of the labels in our construction we need to be aware of the number

of pieces of T to which a vertex belongs. The only vertices of a piece 𝐻 that belong to both its

children are the vertices of the separator path of𝐻 and the 𝑂̃ (1) apices of𝐻 . The fact that separator

paths are disjoint from the boundary imply that every vertex belongs to the separator of at most

one piece in T . Hence, if a vertex is not an apex, it appears in 𝑂 (log𝑛) pieces of T . Apices, on

the other hand require special attention because they may belong to many (e.g., polynomially

many) pieces of T ; High degree vertices may be apices in many pieces, and we will need a special

mechanism for dealing with such vertices. Dealing with apices (like dealing with holes in other

works on planar graphs) introduces technical complications that are not pertinent to understanding

the main ideas of our work.
4

3
The term apex was previously used in exactly the same context in [1].

4
A reader who is not interested in those details can safely skip the parts dealing with apices and just act under the assumption

that each vertex appears in 2 atomic pieces (leaves) of T , and that the following definition of ancestor pieces of a vertex 𝑣

just degenerates to the set of𝑂 (log𝑛) ancestors of the 2 atomic pieces containing 𝑣.
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(a) (b) (c) (d)

Fig. 1. Illustration of the recursive decomposition process. (a) a portion of the spanning tree 𝑇 of 𝐺 is shown
in black. A balanced fundamental cycle separator of 𝐺 is highlighted in yellow. (b) The piece 𝐻 containing
the vertices of 𝐺 enclosed by the fundamental cycle of 𝐺 is indicated in shaded grey. The boundary 𝜕𝐻

(dashed) consists of the separator of 𝐺 . Portions of the spanning tree 𝑇 induced by the vertices of 𝐻 are
shown, along with a fundamental cycle separator of 𝐻 , highlighted in yellow. (c) The piece 𝐻2 containing the
vertices of 𝐻 not strictly enclosed by the fundamental cycle separator of 𝐻 is indicated in shaded grey. The
boundary 𝜕𝐻2 (dashed) consists of 𝜕𝐻 and of the separator of 𝐻 . Portions of the spanning tree 𝑇 induced by
the vertices of 𝐻2 are shown, along with a fundamental cycle separator of 𝐻2, highlighted in yellow. There
are two maximal subpaths 𝑄 of the fundamental cycle separator of 𝐻2 that do not belong to 𝜕𝐻2 (the two
parts of the highlighted yellow cycle that are not dashed). The endpoints of 𝑄 that belong to 𝜕𝐻2 are the
apices of 𝐻2 (the four red stars). (d) The piece 𝐻22 containing the vertices of 𝐻2 not strictly enclosed by the
fundamental cycle in of 𝐻2 is indicated in shaded grey. The boundary 𝜕𝐻22 (dashed) consists of the paths
induced by 𝐻22 on 𝜕𝐻2, and of the separator of 𝐻2. Since the subgraph induced on 𝑇 by the vertices of 𝐻22 is
disconnected, artificial root and edges (in blue) are added to 𝐻22.

We associate with every vertex 𝑣 ∈ 𝐺 the (at most 2) rootmost pieces 𝐻 in T in which 𝑣 is an

apex (or the atomic pieces containing 𝑣 if 𝑣 is never an apex). We denote these pieces by 𝐻𝑣 . Note

that every piece that contains a vertex 𝑣 is either an ancestor of a piece in 𝐻𝑣 or a descendant of a

piece in 𝐻𝑣 . For a vertex 𝑣 ∈ 𝐺 we define the ancestor pieces of 𝑣 to be the set of (weak) ancestors in
T of the pieces 𝐻𝑣 . By definition of 𝐻𝑣 , every vertex, apex or not, has𝑂 (log𝑛) ancestors pieces. We

similarly define the ancestor separators/paths/apices of a vertex 𝑣 ∈ 𝐺 as the separators/separator-

paths/apices of any ancestor piece of 𝑣 . See Figure 2.

We say that the separator 𝑄 of a piece 𝐻 separates two vertices 𝑢 and 𝑣 (in 𝐻 ) if any 𝑢-to-𝑣 path

in 𝐻 must touch the separator 𝑄 of 𝐻 or an apex of 𝐻 . I.e., if at least one of the following holds: (1)

𝑢 ∈ 𝑄 or 𝑢 is an apex of 𝐻 , or (2) 𝑣 ∈ 𝑄 or 𝑣 is an apex of 𝐻 , or (3) each of 𝑢 and 𝑣 is in one distinct

child of 𝐻 . Note that if 𝑄 separates 𝑢 and 𝑣 in 𝐻 then every 𝑢-to-𝑣 path in 𝐺 either touches 𝑄 or

touches the boundary of 𝐻 .

For a subgraph 𝐻 , a path 𝑃 and a vertex 𝑣 , let firstH (𝑣, 𝑃) denote the first vertex of 𝑃 that is

reachable from 𝑣 in 𝐻 , and let lastH (𝑣, 𝑃) denote the last vertex of 𝑃 that can reach 𝑣 in 𝐻 . If vertex

𝑢 appears before vertex 𝑣 on a path 𝑃 then we denote this by 𝑢 <𝑃 𝑣 (or simply 𝑢 < 𝑣 if 𝑃 is

clear from the context). Throughout the paper, we gradually describe the information stored in

the labels along with the explanations of why this particular information is stored (and why it is

polylogarithmic). To assist the reader, we highlight in gray the parts that describe the information

stored. For starters, we let every vertex 𝑣 ∈ 𝐺 store in its label, for every ancestor path 𝑃 of 𝑣 , the

identity of 𝑃 and, if 𝑣 ∈ 𝑃 , the location of 𝑣 in 𝑃 (so that given two vertices 𝑢, 𝑣 of 𝑃 , we can tell if

𝑢 < 𝑣). We denote 𝑃 [𝑢, 𝑣] the subpath of 𝑃 between vertices 𝑢 and 𝑣 .

Thorup’s non-faulty labeling. Using the above definitions and notations, it is now very simple

to describe Thorup’s non-faulty reachability labeling [33]. Consider any vertex 𝑣 . Let 𝐻 be the
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v

Fig. 2. Pieces in a recursive decomposition. The separators in this example alternate between horizontal and
vertical lines. All rectangular pieces that contain the gray piece 𝐻 are its ancestors. The boundary 𝜕𝐻 of 𝐻 is
shown in green. The maximal subpath of the cycle separator of 𝐻 that is internally disjoint from 𝜕𝐻 is shown
in blue. The vertex 𝑣 is an apex of 𝐻 because it is an endpoint of this maximal subpath. The separator of 𝐻 is
the blue path (without its endpoints).

rootmost piece in T in which 𝑣 belongs to the separator. The crucial observation is that 𝑣 is separated

from every other vertex in 𝐺 either by the separator of 𝐻 or by the separator of some ancestor

piece of 𝐻 . Hence, every vertex 𝑣 ∈ 𝐺 stores in its label firstG (𝑣, 𝑃) and lastG (𝑣, 𝑃) for every path 𝑃

of the separator of every ancestor of the rootmost piece in which 𝑣 belongs to the separator. Then,

given a query pair 𝑢, 𝑣 , there exists a 𝑢-to-𝑣 path in 𝐺 if and only if firstG (𝑢, 𝑃) < lastG (𝑣, 𝑃) for
one of the𝑂 (1) paths 𝑃 of the separator of an ancestor piece of the rootmost piece whose separator

separates 𝑢 and 𝑣 . Both 𝑢 and 𝑣 store the relevant information for these paths in their labels. We

note that in Thorup’s scheme we do not need to worry about apices since each vertex 𝑣 only stores

information in pieces above the first time 𝑣 appears on a separator.

3 THE LABELING
In this section, we explain our labeling scheme. I.e., what to store in the labels so that given the

labels of any three vertices 𝑠, 𝑓 , 𝑡 we can infer whether 𝑡 is reachable from 𝑠 in 𝐺 \ {𝑓 }. We call the

𝑠-to-𝑡 path 𝑅 in 𝐺 \ {𝑓 } the replacement path.
Let 𝐻̂ be the rootmost piece in T whose separator 𝑄 separates 𝑡 and 𝑓 . Let 𝐻 be a child piece

of 𝐻̂ that contains 𝑡 (if both children of 𝐻̂ contain 𝑡 then, if one of the children does not contain

𝑓 we choose 𝐻 to be that child). Note that by choice of 𝐻 , 𝑓 ∉ 𝐻 \ 𝜕𝐻 . We assume without

loss of generality that 𝑠 ∈ 𝐻̂ . We handle the other case by storing a symmetric label to the one

described here in the graph 𝐺 with all edges reversed (the reverse graph of 𝐺 has exactly the same

decomposition tree as 𝐺 , but there the roles of 𝑠 and 𝑡 are swapped, so the assumption does hold).

Observe that by definition of 𝐻 and of separation, 𝑓 ∈ 𝜕𝐻 iff 𝑓 ∈ 𝑄 . In what follows, we separately

handle the cases where 𝑓 ∉ 𝑄 and 𝑓 ∈ 𝑄 . The main challenge is in the latter case.
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3.1 When 𝑓 ∉ 𝑄 (and so, 𝑓 ∉ 𝜕𝐻 )
Consider first the case when the replacement path 𝑅 does not touch 𝜕𝐻 . i.e., 𝑠, 𝑡 and 𝑅 are all

contained in 𝐻 \ 𝜕𝐻 . We handle this case by having each vertex 𝑣 ∈ 𝐻 \ 𝜕𝐻 (and in particular 𝑠

and 𝑡 ) store the standard (non-faulty) labeling of Thorup for 𝐻 \ 𝜕𝐻 . Since each vertex 𝑣 ∈ 𝐺 is

non-boundary in 𝑂 (log𝑛) pieces of T , this contributes 𝑂̃ (1) to the size of the label at each vertex.

We next consider the case that 𝑅 touches 𝜕𝐻 . In this case, 𝑅 must have a suffix contained in 𝐻 ,

and this suffix is unaffected by the fault 𝑓 . More precisely, 𝑅 exists iff firstG\{f } (𝑠, 𝑃) < lastH (𝑡, 𝑃)
for one of the paths 𝑃 forming 𝜕𝐻 . It is easy to find lastH (𝑡, 𝑃); For every vertex 𝑣 in 𝐻 , if 𝐻 is an

ancestor piece of 𝑣 , then 𝑣 stores in its label lastH (𝑣, 𝑃) for each of the𝑂 (log𝑛) paths 𝑃 of 𝜕𝐻 . Since

each vertex has only 𝑂 (log𝑛) ancestor pieces, this contributes 𝑂̃ (1) to the size of the label. Notice

that by the rootmost choice of 𝐻̂ , 𝐻 is an ancestor piece of 𝑡 , so 𝑡 indeed stores lastH (𝑡, 𝑃). It thus
remains only to describe how to find firstG\{f } (𝑠, 𝑃) from the labels of 𝑠 and 𝑓 .

For every vertex 𝑠 ∈ 𝐺 , for every ancestor apex 𝑓 of 𝑠 and for every ancestor path 𝑃 of 𝑠 , 𝑠 stores

in its label firstG\{f } (𝑠, 𝑃). Similarly, for every vertex 𝑓 ∈ 𝐺 , for every ancestor apex 𝑠 of 𝑓 and for

every ancestor path 𝑃 of 𝑓 , 𝑓 stores in its label firstG\{f } (𝑠, 𝑃).
If either 𝑠 or 𝑓 stores firstG\{f } (𝑠, 𝑃), we are done. Otherwise, consider the set of leafmost pieces

in T that contain both 𝑠 and 𝑓 . Let 𝐻 ′′
be such a piece. It must be that 𝐻 ′′

is an ancestor piece of

both 𝑠 and 𝑓 or else one of 𝑠 and 𝑓 is an ancestor apex of the other and stores firstG\{f } (𝑠, 𝑃). It
follows that if neither 𝑠 nor 𝑓 store firstG\{f } (𝑠, 𝑃), then there are only 𝑂 (1) leafmost pieces that

contain both 𝑠 and 𝑓 . To avoid unnecessary clutter we shall assume there is a unique piece 𝐻 ′′
. In

reality we would have to apply the same argument for all𝑂 (1) such pieces. Since 𝐻 ′′
is an ancestor

piece of both 𝑠 and 𝑓 , we can find the piece 𝐻 ′′
by traversing the list of ancestors of 𝑠 (stored in 𝑠)

and of 𝑓 (stored in 𝑓 ) until finding the lowest common ancestor. Let 𝐻 ′
be the child piece of 𝐻 ′′

that contains only 𝑠 (if 𝐻 ′′
is an atomic piece then define 𝐻 ′ = 𝐻 ′′

). Recall that both 𝑠 and 𝑓 are in

𝐻̂ , so 𝐻̂ is a (possibly weak) ancestor of 𝐻 ′′
.

Notice that if firstG (𝑠, 𝑃) ≠ firstG (𝑓 , 𝑃) then the path in 𝐺 from 𝑠 to firstG (𝑠, 𝑃) does not go
through 𝑓 and so firstG\{f } (𝑠, 𝑃) = firstG (𝑠, 𝑃). To check this, every vertex 𝑠 in 𝐺 , for each of the

𝑂 (log𝑛) ancestor paths 𝑃 of 𝑠 , stores firstG (𝑠, 𝑃).
We handle the other case, where firstG (𝑠, 𝑃) = firstG (𝑓 , 𝑃) as follows. Consider a path in𝐺 from

𝑠 to firstG (𝑠, 𝑃). We can choose such a path that: (1) begins with a prefix that is contained in 𝐻 ′

from 𝑠 to firstH′ (𝑠, 𝑃 ′) where 𝑃 ′
is some path of 𝜕𝐻 ′

, then (2) continues along 𝑃 ′
until the last vertex

𝑢 of 𝑃 ′
s.t firstG (𝑢, 𝑃) = firstG (𝑓 , 𝑃), and (3) ends with a suffix 𝑆 in 𝐺 from 𝑢 to firstG (𝑓 , 𝑃). See

Figure 3. Notice that the set of vertices 𝑝 ∈ 𝑃 ′
s.t firstG (𝑝, 𝑃) = firstG (𝑓 , 𝑃) is a contiguous interval

𝐼 of 𝑃 ′
ending in 𝑢 (this is because any vertex of 𝑃 ′

earlier than 𝑢 can reach firstG (𝑓 , 𝑃) through 𝑢).
We think of all 𝑝 ∈ 𝐼 as reaching firstG (𝑢, 𝑃) in 𝐺 using the same suffix 𝑆 .

For every vertex 𝑓 of 𝐺 , for every pair of ancestor paths 𝑃 ′, 𝑃 of 𝑓 , for the maximal interval 𝐼

of vertices 𝑝 ∈ 𝑃 ′
such that firstG (𝑝, 𝑃) = firstG (𝑓 , 𝑃), if the path 𝑆 from the last vertex 𝑢 of 𝐼 to

firstG (𝑓 , 𝑃)5 goes through 𝑓 , we let 𝑓 store the indices of the endpoints of 𝐼 . Every vertex 𝑠 of 𝐺

stores firstA (𝑠, 𝑃 ′) for every ancestor piece 𝐴 of 𝑠 and every path 𝑃 ′
of 𝜕𝐴. This way, we can check

if firstH′ (𝑠, 𝑃 ′) is in the interval 𝐼 (the interval stored by 𝑓 for the pair of paths 𝑃 ′, 𝑃 ). If firstH′ (𝑠, 𝑃 ′)
is not in the interval 𝐼 , then the path in𝐺 from 𝑠 to firstG (𝑠, 𝑃) does not go through 𝑓 and therefore

firstG\{f } (𝑠, 𝑃) = firstG (𝑠, 𝑃) and we already have firstG (𝑠, 𝑃) stored in 𝑠 . Otherwise, firstH′ (𝑠, 𝑃 ′) is
in the interval 𝐼 and the path in𝐺 from 𝑠 to firstG (𝑠, 𝑃) does go through 𝑓 . Let 𝑆1 be the prefix of 𝑆

ending just before 𝑓 , and let 𝑆2 be the suffix of 𝑆 starting immediately after 𝑓 . Then, there are two

options regarding the path in 𝐺 \ {𝑓 } from 𝑠 to firstG\{f } (𝑠, 𝑃):

5
If there are multiple paths in 𝐺 from 𝑢 to firstG (𝑓 , 𝑃 ) we fix and use an arbitrary such path.
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Fig. 3. When 𝑓 ∉ 𝑄 : The (green) 𝑠-to-𝑡 path in 𝐺 first touches the (blue) separator path 𝑃 ′ ∈ 𝜕𝐻 ′, then
continues along 𝑃 ′ to 𝑢, then goes through 𝑓 to firstG (𝑢, 𝑃) on the (blue) separator path 𝑃 ∈ 𝜕𝐻 , and from
there to 𝑡 (without crossing 𝑃 again). The (brown) interval 𝐼 contains all vertices 𝑝 that can reach firstG (𝑝, 𝑃)
through 𝑢. When 𝑓 fails, the replacement 𝑠-to-𝑡 path in 𝐺 \ {𝑓 } either takes a (red) detour around 𝑓 (and
then 𝑓 stores this information) or is (purple) completely disjoint from the original (green) 𝑢-to-firstG (𝑢, 𝑃)
part (and then 𝑠 stores this information).

(1) The path intersects 𝑆2. In this case, the path can continue along 𝑆2 until reaching firstG (𝑓 , 𝑃),
so firstG\{f } (𝑠, 𝑃) = firstG (𝑓 , 𝑃) and we have it stored in 𝑓 . It only remains to check if this

is indeed the case. Consider all vertices 𝑝 ∈ 𝐼 that can reach firstG (𝑓 , 𝑃) in 𝐺 \ {𝑓 }. They
must constitute a (possibly empty) prefix of 𝐼 (since any such vertex 𝑝 ∈ 𝐼 can reach any later

vertex of 𝐼 by going along 𝐼 ). We therefore let 𝑓 store the index of the last vertex of the prefix

of 𝐼 that can reach firstG (𝑓 , 𝑃) in 𝐺 \ {𝑓 }. This way, we only need to check if firstH′ (𝑠, 𝑃 ′)
(that is already stored in 𝑠) is earlier than this vertex.

(2) The path is disjoint from 𝑆2. To handle this case, we will identify two valid candidates for

firstG\{f } (𝑠, 𝑃) and take the earlier in 𝑃 of these two candidates:

(a) The path is disjoint from 𝑆 . To handle this case, for every vertex 𝑠 of 𝐺 , for every pair of

ancestor paths 𝑃 ′
,𝑃 of 𝑠 , for the path 𝑆 defined by 𝑃 ′, 𝑃 and 𝑠6, 𝑠 stores firstG\S (𝑠, 𝑃) (i.e.,

the first vertex of 𝑃 that is reachable from 𝑠 in𝐺 using a path that is disjoint from 𝑆). Since

𝑓 ∈ 𝑆 then 𝑓 ∉ 𝐺 \ 𝑆 and so firstG\S (𝑠, 𝑃) is a valid candidate for firstG\{f } (𝑠, 𝑃).
(b) The path intersects 𝑆1, so it might as well go through 𝑢 (the last vertex of 𝐼 ). To handle this

case, 𝑓 stores firstG\{f } (𝑢, 𝑃), which is also a valid candidate for firstG\{f } (𝑠, 𝑃).
We summarize the case of 𝑓 ∉ 𝑄 with a general corollary that follows from the above.

Corollary 3.1. There is a (polylogarithmic-size) labeling to the vertices of𝐺 that returns firstG\{f } (𝑠, 𝑃)
given the labels of any two vertices 𝑠, 𝑓 and the identity of any path 𝑃 that (i) belongs to the boundary
of an ancestor of 𝐻 ′, and (ii) does not contain 𝑓 . Symmetrically, we can find lastG\{f } (𝑡, 𝑃) from the
labels of any two vertices 𝑡, 𝑓 .

6
To be clear, 𝑆 is the path from the last vertex 𝑢 of 𝑃 ′

s.t. firstG (𝑢, 𝑃 ) = firstG (𝑠, 𝑃 ) to firstG (𝑠, 𝑃 )
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Fig. 4. When 𝑓 ∈ 𝑄 : In the left example, the (green) replacement path 𝑅 touches only 𝑃 ∈ 𝑄 (the path on
which 𝑓 lies). In this case, 𝑏 is the first vertex of 𝑃2 that is reachable from 𝑠 in a path internally disjoint from𝑄 .
The path from 𝑏 to 𝑞 = firstG\{f } (𝑏, 𝑃1) is then found using the mechanism of Section 4. In the right example,
the (green) replacement path 𝑅 touches some other path 𝑃 ≠ 𝑃 (on which 𝑓 does not lie). In this case, using
Corollary 3.1 we check if firstG\{f } (𝑠, 𝑃) <𝑃

lastG\{f } (𝑡, 𝑃).

3.2 When 𝑓 ∈ 𝑄

Let 𝑃 be the path of𝑄 that contains 𝑓 . Consider first the case where the replacement path 𝑅 touches

some path 𝑃 ≠ 𝑃 of 𝑄 or of the boundary of some ancestor of 𝐻 . Since boundary paths are vertex

disjoint, 𝑓 ∈ 𝑃 implies 𝑓 ∉ 𝑃 . Hence, in this case we can use Corollary 3.1 twice, once to obtain

firstG\{f } (𝑠, 𝑃), and once (using the symmetric part of Corollary 3.1) to obtain lastG\{f } (𝑡, 𝑃). Then,
𝑠 can reach 𝑡 in 𝐺 \ {𝑓 } iff firstG\{f } (𝑠, 𝑃) <𝑃 lastG\{f } (𝑡, 𝑃). See Figure 4 (right). Therefore, in the

remainder of this paper we deal with the case where other than 𝑃 , 𝑅 does not touch any path of 𝑄

or any path of the boundary of an ancestor of 𝐻 . In this case, we cannot apply Corollary 3.1 since

𝑃 contains 𝑓 .

Let 𝑃1 be the prefix of 𝑃 ending just before 𝑓 , and let 𝑃2 be the suffix of 𝑃 starting immediately

after 𝑓 . Recall that 𝑠 is assumed to be in 𝐻̂ , the parent piece of 𝐻 . Consider the replacement

path 𝑅. Since 𝑅 does not touch any path on the boundary of an ancestor of 𝐻 , 𝑅 is contained in

𝐻̂ ◦ = 𝐻̂ \ 𝜕𝐻̂ . 𝑅 starts with an 𝑠-to-𝑏 prefix that is internally disjoint from𝑄 and 𝑏 = firstĤ◦\Q (𝑠, 𝑃1)
or 𝑏 = firstĤ◦\Q (𝑠, 𝑃2). Our first goal is to find these vertices 𝑏. Finding 𝑏1 = firstĤ◦\Q (𝑠, 𝑃1) is easy
since 𝑏1 = firstĤ◦\Q (𝑠, 𝑃) (or else 𝑏1 does not exist) so we let every vertex 𝑠 in𝐺 store firstĤ◦\Q (𝑠, 𝑃)
for each of the 𝑂 (1) paths 𝑃 of each separator 𝑄 of each of the 𝑂 (log𝑛) ancestor pieces 𝐻̂ of 𝑠 . It

therefore remains to find 𝑏2 = firstĤ◦\Q (𝑠, 𝑃2). We note that if 𝑠 ∈ 𝑃1 then we will not need 𝑏2, and

if 𝑠 ∈ 𝑃2 then 𝑏2 = 𝑠 .

If either 𝑠 or 𝑓 is an ancestor apex of the other, then we store 𝑏2 explicitly in either 𝑠 or 𝑓 . That

is, for every vertex 𝑠 (resp. 𝑓 ) of 𝐺 , for every ancestor apex 𝑓 of 𝑠 (resp. 𝑠 of 𝑓 ), for every ancestor

path 𝑃 of 𝑠 (resp. 𝑓 ), if 𝑓 (resp. 𝑠) lies on 𝑃 then 𝑠 (reps. 𝑓 ) stores in its label 𝑏2 = firstG\{f } (𝑠, 𝑃2),
where 𝑃2 is the suffix of 𝑃 starting after 𝑓 (resp. 𝑠).

Recall the definition of 𝐻 ′′
and 𝐻 ′

from Section 3.1. As in Section 3.1, since we handled the case

that 𝑠 or 𝑓 are apices, we can assume that 𝐻 ′′
and 𝐻 ′

are uniquely defined. Consider the 𝑠-to-𝑏2

path in 𝐻̂ ◦ \𝑄 . It consists of a prefix that is internally disjoint from 𝜕𝐻 ′
and ends at a vertex of one

of the 𝑂 (1) paths 𝑃 ′ ∈ 𝜕𝐻 ′
(by definition of 𝐻 ′

, 𝑓 ∉ 𝐻 ′
, so 𝑓 does not belong to this prefix nor to

𝑃 ′
). Let 𝑝 be the first vertex of 𝑃 ′

that is reachable in 𝐻̂ ◦
from 𝑠 with a path internally disjoint from

𝜕𝐻 ′
. Let 𝑧 be the first vertex of 𝑃 ′

. Let 𝑃 (𝑧) denote the set of vertices of 𝑃 that are reachable from

𝑧 in 𝐻̂ ◦
with paths that are internally disjoint from 𝑄 . Note that such paths in 𝐻̂ ◦ \𝑄 from 𝑧 to

the vertices of 𝑃 (𝑧) all enter 𝑃 from the same side (since they cannot touch 𝜕𝐻̂ nor the separator
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Fig. 5. When 𝑓 ∈ 𝑄 : The vertical (blue) separator path 𝑃 (in this example the separator 𝑄 consists of just
a single path 𝑃 ) is partitioned by 𝑓 into 𝑃1 and 𝑃2. The vertex 𝑧 is the first vertex of 𝑝’s (blue) path 𝑃 ′. The
brown paths are the ways that 𝑧 can reach 𝑃 in 𝐻̂◦ \𝑄 . The vertex 𝑏 is the first vertex of 𝑃2 that is reachable
from 𝑝 in 𝐻̂◦ \𝑄 . In the left image, 𝑓 lies inside the interval of vertices 𝑃 (𝑝) that are reachable from 𝑝 (𝑏 is
therefore stored in 𝑓 ). In the right image, 𝑓 lies outside the two intervals 𝑃 (𝑝) (and 𝑏 is therefore stored in 𝑠).
The shaded area is the cycle 𝐶 in the proof of Claim 3.1.

𝑄). Moreover, since anything reachable in 𝐻̂ ◦ \𝑄 from 𝑝 is also reachable from 𝑧, we have that

𝑃 (𝑝) ⊆ 𝑃 (𝑧). In fact, planarity dictates the following:

Claim 3.1. The set 𝑃 (𝑝) consists of at most two intervals of consecutive vertices of 𝑃 (𝑧).

Proof. Consider two vertices 𝑢, 𝑣 ∈ 𝑃 (𝑝) that belong to two disjoint intervals of 𝑃 (𝑧). Let 𝐶 be

the (undirected) cycle formed by the 𝑝-to-𝑣 path, the 𝑝-to-𝑢 path, and 𝑃 [𝑢, 𝑣] (see Figure 5). The
vertex 𝑧 must be enclosed by 𝐶 , otherwise, the path from 𝑧 to any vertex of 𝑃 [𝑢, 𝑣] must intersect

the 𝑝-to-𝑣 path or the 𝑝-to-𝑢 path (and is thus reachable from 𝑝 as well in contradiction to the two

intervals being disjoint). Since 𝑧 is enclosed by 𝐶 , any vertex of 𝑃 that is reachable from 𝑧 and does

not belong to 𝑃 [𝑢, 𝑣] is also reachable from 𝑝 (since the path to it from 𝑧 must intersect the 𝑝-to-𝑣

path or the 𝑝-to-𝑢 path). □

For every 𝑠 ∈ 𝐺 , for every pair of ancestor pieces 𝐻 ′, 𝐻̂ of 𝑠 , for every two paths 𝑃 ′ ∈ 𝜕𝐻 ′
, and 𝑃

of the separator 𝑄 of 𝐻̂ , 𝑠 stores the identities of the endpoints of the two intervals of 𝑃 (𝑝) in 𝑃 (𝑠)
(where 𝑝 and 𝑧 are as defined above). For every 𝑓 ∈ 𝐺 , for every pair of ancestor pieces 𝐻 ′, 𝐻̂ of 𝑓 ,

for every two paths 𝑃 ′
of the boundary of the sibling of 𝐻 ′

, and 𝑃 of the separator 𝑄 of 𝐻̂ , 𝑓 stores

the identity of the first vertex 𝑣 of 𝑃 (𝑧) that is after 𝑓 on 𝑃 ′
(where 𝑧 is the first vertex of 𝑃 ′

).

We can finally describe how to find 𝑏2 = firstĤ◦\Q (𝑠, 𝑃2): If the vertex 𝑣 stored in the label of 𝑓

falls inside one of the two intervals stored in the label of 𝑠 (for the common pair 𝑃 ′, 𝑃 ) then 𝑏2 = 𝑣

and we have it stored in 𝑓 . Otherwise, 𝑏2 is the earliest starting endpoint that is later than 𝑓 among

the two endpoints of the two intervals stored in the label of 𝑠 for 𝑃 ′
and 𝑃 (if both intervals are

before 𝑓 on 𝑃 then 𝑏2 does not exist).

We have therefore achieved our first goal: we found 𝑏1 = firstĤ◦\Q (𝑠, 𝑃1) and 𝑏2 = firstĤ◦\Q (𝑠, 𝑃2).
It remains to check if there is a replacement path 𝑅 [𝑏, 𝑡] in𝐺 \ {𝑓 } from some 𝑏 ∈ {𝑏1, 𝑏2}. We can

assume that such a path starts from 𝑏, continues to 𝑞 = firstG\{f } (𝑏, 𝑃1) or to 𝑞 = firstG\{f } (𝑏, 𝑃2),
continues from 𝑞 to lastG\{f } (𝑡, 𝑃1) (if 𝑞 ∈ 𝑃1) or to lastG\{f } (𝑡, 𝑃2) (if 𝑞 ∈ 𝑃2), and then finally

continues to 𝑡 . See Figure 4 (left). In Section 4 we present a labeling scheme that labels the vertices

of 𝑃 s.t. given the labels of any 𝑏, 𝑓 ∈ 𝑃 we can find both firstG\{f } (𝑏, 𝑃1) and firstG\{f } (𝑏, 𝑃2). A
symmetric labeling finds lastG\{f } (𝑡, 𝑃1) and lastG\{f } (𝑡, 𝑃2). We shall refer to this labeling as the

secondary labeling. The secondary labels are stored in the labels of 𝑠 and 𝑓 along with the identities

of the endpoints of the intervals (for 𝑠) and the first vertex 𝑣 (for 𝑓 ) as described above. This way,

10



Õptimal Fault-Tolerant Reachability Labeling in Planar Graphs

the secondary label of 𝑏1 is available in the label of 𝑠 and the secondary label of 𝑏2 is available in

the label of 𝑓 (if 𝑏2 = 𝑣 falls inside one of the two intervals stored in 𝑠) or of 𝑠 (if 𝑏2 does not fall

inside one of the two intervals). Recall that if 𝑠 or 𝑓 is an apex then we stored 𝑏2 explicitly (in either

𝑠 or 𝑓 ), in this case we additionally store the secondary label of 𝑏2.

Before moving on to describe the secondary labeling scheme, there is one delicate issue: This

labeling scheme requires that the two endpoints of the path 𝑃 lie on the same face. Recall that

we are working under the assumption that the replacement path 𝑅 does not touch any path of

the fundamental cycle separator used to separate 𝐻̂ other than 𝑃 . Hence, before computing the

secondary labels we make an incision along the edges of the cycle separator that do not belong to

𝑃 . Under our assumption the incision does not affect the replacement path, and now the endpoints

of 𝑃 indeed lie on a single face of 𝐻̂ .

4 WHEN THE QUERY VERTICES LIE ON A KNOWN PATH
In this section we present the secondary labeling scheme (with polylogarithmic-size labels), which

addresses the following problem: We are given a directed planar graph 𝐺 and a single path 𝑃 in

𝐺 whose endpoints lie on the same face. We need to label the vertices of 𝑃 such that given the

labels of any two vertices 𝑏, 𝑓 of 𝑃 we can find the first vertex 𝑝 < 𝑓 of 𝑃 that is reachable from 𝑏

in 𝐺 \ {𝑓 } and the first vertex 𝑝 > 𝑓 of 𝑃 that is reachable from 𝑏 in 𝐺 \ {𝑓 }.

4.1 An auxiliary procedure
We begin with an auxiliary procedure that will be useful for our labeling. In this procedure, we

wish to label the vertices of 𝑃 , such that given the labels of any two vertices 𝑏, 𝑓 such that 𝑓 is

before 𝑏 on 𝑃 (i.e., 𝑓 < 𝑏), we can find the first vertex 𝑝 > 𝑓 of 𝑃 that is reachable in𝐺 from 𝑏 using

a path that does not touch 𝑓 or any vertex before 𝑓 (i.e., does not touch any vertex 𝑣 ≤ 𝑓 of 𝑃 ).

Let 𝐻𝑃 be the graph composed of the path 𝑃 and the following additional edges: for every pair

of vertices 𝑢, 𝑣 ∈ 𝑃 where 𝑢 > 𝑣 , we add an edge (𝑢, 𝑣) iff (1) there exists a 𝑢-to-𝑣 path in 𝐺 that

does not touch 𝑃 before 𝑣 , and (2) there is no such𝑤-to-𝑣 path for any𝑤 > 𝑢. The following claim

shows that instead of working with 𝐺 , we can work with 𝐻𝑃 :

Claim 4.1. Given any 𝑓 < 𝑏, the first vertex 𝑝 > 𝑓 that is reachable from 𝑏 using a path that does
not touch 𝑓 or any vertex of 𝑃 before 𝑓 , is the same in 𝐺 and in 𝐻𝑃 .

Proof. Let 𝑆 be the corresponding 𝑏-to-𝑝 path in𝐺 for 𝑓 < 𝑝 < 𝑏. The path 𝑆 visits no vertex of

𝑃 before 𝑓 (by definition of 𝑆) and no vertex of 𝑃 between 𝑓 and 𝑝 (by definition of 𝑝). Hence, in

𝐻𝑃 there is an edge (𝑢, 𝑝) for some 𝑢 where 𝑢 = 𝑏 or 𝑢 > 𝑏, and so 𝑆 is represented in 𝐻𝑃 (by a path

composed of a 𝑏-to-𝑢 prefix along 𝑃 followed by the single edge (𝑢, 𝑝)). In the other direction, let 𝑅

be the corresponding 𝑏-to-𝑝 path in 𝐻𝑃 . The path 𝑅 visits no vertex of 𝑃 before 𝑓 (by definition

of 𝑅) and every edge (𝑢, 𝑣) of 𝑅 corresponds to a path in 𝐺 that visits no vertex of 𝑃 before 𝑣 (and

therefore visits no vertex of 𝑃 before 𝑓 ), hence 𝑅 is appropriately represented in 𝐺 . □

We call the edges of 𝐻𝑃 that are not edges of 𝑃 detours. We will use the fact that detours do not

cross (i.e., they form a laminar family):

Claim 4.2. If there is a detour (𝑢, 𝑣) then there is no detour (𝑤, 𝑥) with 𝑣 < 𝑥 < 𝑢 < 𝑤 .

Proof. By concatenating the (𝑤, 𝑥) detour, the 𝑥-to-𝑢 subpath of 𝑃 , and the (𝑢, 𝑣) detour, we
get a path in 𝐺 that does not touch 𝑃 before 𝑣 but starts at a vertex𝑤 > 𝑢 contradicting condition

(2) of the 𝐻𝑃 edges. □

We now explain what needs to be stored to facilitate the auxiliary procedure. We define the

size |𝑑 | of a detour 𝑑 = (𝑢, 𝑣) as the number of vertices of 𝑃 between 𝑣 and 𝑢. We say that a vertex
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of 𝑃 is contained in a detour 𝑑 = (𝑢, 𝑣) if it lies on 𝑃 between 𝑣 and 𝑢. We say that a detour 𝑑 ′
is

contained in detour 𝑑 if all vertices that are contained in 𝑑 ′
are also contained in 𝑑 . Notice that, from

Claim 4.1, the vertex 𝑝 sought by the auxiliary procedure is an endpoint of the largest detour 𝑑

that contains 𝑏 and does not contain 𝑓 . To find 𝑑 , every vertex 𝑣 of 𝑃 stores a set of𝑂 (log𝑛) nested
detours 𝑑𝑣

1
, 𝑑𝑣

2
, . . . where 𝑑𝑣

1
is the largest detour containing 𝑣 , and 𝑑𝑣𝑖+1 is the largest detour of size

|𝑑𝑣𝑖+1 | ≤ |𝑑𝑣𝑖 |/2 containing 𝑣 . By Claim 4.2, this set of nested detours is well defined. Additionally,

for each 𝑑𝑣𝑖 , 𝑣 stores the largest detour
ˆ𝑑𝑣𝑖 that is strictly contained in 𝑑𝑣𝑖 but does not contain 𝑑𝑣𝑖+1.

See Figure 6.
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Fig. 6. A nested system of 𝑂 (log𝑛) detours 𝑑 𝑓
1
, 𝑑

𝑓

2
, . . . of 𝑓 (in red) used in the auxiliary procedure. The

(green) detour 𝑑 is the largest detour that contains 𝑏 and does not contain 𝑓 . Either 𝑑 = ˆ𝑑
𝑓

𝑗
and is stored in 𝑓 ,

or 𝑑 = 𝑑𝑏
𝑖+1 and is stored in 𝑏.

Consider the smallest detour 𝑑
𝑓

𝑗
= 𝑑𝑏𝑖 that is saved by both 𝑏 and 𝑓 . If such a detour does not

exist then there is no detour that contains both 𝑏 and 𝑓 and so 𝑑 = 𝑑𝑏
1
is stored in 𝑏. If |𝑑 | > |𝑑 𝑓

𝑗
|/2

then 𝑑 must be the largest detour that is contained in 𝑑
𝑓

𝑗
but does not contain 𝑑

𝑓

𝑗+1. In other words,

𝑑 = ˆ𝑑
𝑓

𝑗
and is stored in 𝑓 . If on the other hand |𝑑 | ≤ |𝑑 𝑓

𝑗
|/2, then |𝑑 | ≤ |𝑑𝑏𝑖 |/2 and by the choice

of 𝑑𝑏𝑖 we have that 𝑑𝑏𝑖+1 does not contain 𝑓 and so 𝑑 = 𝑑𝑏𝑖+1 and is stored in 𝑏. This completes the

description of the auxiliary procedure.

4.2 The labeling
Equipped with the above auxiliary procedure, we are now ready to describe the secondary labeling

scheme. Recall that there are four cases to consider: Given 𝑏, 𝑓 ∈ 𝑃 where 𝑏 can be before/after 𝑓

we wish to find the first vertex 𝑝 before/after 𝑓 that is reachable from 𝑏 in 𝐺 \ {𝑓 }. There are four
cases to consider:

Given 𝒇 < 𝒃, find the first vertex 𝒑 < 𝒇 that is reachable from 𝒃 in 𝑮 \ {𝒇 }. Consider the
𝑏-to-𝑝 path 𝑅 in 𝐺 \ {𝑓 }. Let 𝑟 be the first vertex of 𝑅 that belongs to 𝑃 and 𝑟 < 𝑓 . Let 𝑟 ′ be the
vertex of 𝑃 that precedes 𝑟 on 𝑅. Note that 𝑟 < 𝑓 , that 𝑟 ′ > 𝑓 , and that the 𝑟 ′-to-𝑟 subpath of 𝑅

(which we call a bypass of 𝑓 and denote 𝑅 [𝑟 ′, 𝑟 ]) is internally disjoint from 𝑃 and it either emanates

to the left or to the right of 𝑃 . Moreover, since the endpoints of 𝑃 lie on the same face, then if 𝑅

emanates at 𝑟 ′ to the left (resp. right) of 𝑃 it must enter 𝑃 at 𝑟 from the left (resp. right) of 𝑃 . This

means that we can assume w.l.o.g that the bypass 𝑅 [𝑟 ′, 𝑟 ] is the largest such bypass (in terms of the

number of vertices of 𝑃 between 𝑟 and 𝑟 ′). This is because any smaller bypass that is on the same

side of 𝑃 as 𝑅 [𝑟 ′, 𝑟 ] is either contained in 𝑅 [𝑟 ′, 𝑟 ] (in which case we might as well use 𝑅 [𝑟 ′, 𝑟 ]) or
intersects 𝑅 [𝑟 ′, 𝑟 ] implying (in contradiction) that there is a larger bypass. See Figure 7.
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Fig. 7. A bypass 𝑅 [𝑟 ′, 𝑟 ] (in black) of 𝑓 . If there was an intersecting bypass (in green) that is larger than
𝑅 [𝑟 ′, 𝑟 ] then the green subpath before 𝑥 and the black subpath after 𝑥 would constitute a larger bypass.

We let each vertex 𝑓 ∈ 𝑃 store the endpoints of the largest bypass 𝐿𝑓 (resp. 𝑅𝑓 ) that is internally

disjoint from 𝑃 , emanates left (resp. right) of 𝑃 at a vertex that is after 𝑓 , and enters 𝑃 from the left

(resp. right) at a vertex that is before 𝑓 . The vertex 𝑓 ∈ 𝑃 also stores the first vertex 𝐿+
𝑓
(resp. 𝑅+

𝑓
) of

𝑃 that is before 𝑓 and is reachable in 𝐺 \ {𝑓 } from the endpoint of 𝐿𝑓 (resp. 𝑅𝑓 ) that is after 𝑓 .

In order to find 𝑝 , we first use the auxiliary procedure of Section 4.1 to find the first vertex 𝑝 ′ > 𝑓

that is reachable in 𝐺 from 𝑏 using a path that does not touch any vertex of 𝑃 before 𝑓 . Then, we

check whether 𝑝 ′
is contained in 𝐿𝑓 and if so we consider 𝐿+

𝑓
as a candidate for 𝑝 . Similarly, we

check whether 𝑝 ′
is contained in 𝑅𝑓 and if so we consider 𝑅

+
𝑓
as a candidate for 𝑝 . Finally, we return

the earlier of the (at most two) candidates.

Given 𝒇 < 𝒃, find the first vertex 𝒑 > 𝒇 that is reachable from 𝒃 in 𝑮 \ {𝒇 }. This case is very
similar to the previous case. The only differences are: (1) we let every vertex 𝑓 ∈ 𝑃 store the first

vertex 𝐿−
𝑓
(resp. 𝑅−

𝑓
) of 𝑃 that is after 𝑓 and is reachable in 𝐺 \ {𝑓 } from the endpoints of 𝐿𝑓 (resp.

𝑅𝑓 ), and (2) we add 𝑝 ′
itself as a third possible candidate for 𝑝 .

Given 𝒃 < 𝒇 , find the first vertex 𝒑 > 𝒇 that is reachable from 𝒃 in 𝑮 \ {𝒇 }. This case and
the next one are handled by small (but not symmetric) modifications of the previous two cases.

Consider the 𝑏-to-𝑝 path 𝑅 in 𝐺 \ {𝑓 }. Let 𝑟 be the first vertex of 𝑅 that belongs to 𝑃 and 𝑟 > 𝑓 .

Let 𝑟 ′ be the vertex of 𝑃 that precedes 𝑟 on 𝑅. The subpath 𝑅 [𝑟 ′, 𝑟 ] (which we call a byway of 𝑓 ) is

internally disjoint from 𝑃 , and if it emanates at 𝑟 ′ to the left (resp. right) of 𝑃 then it must enter

𝑟 from the left (resp. right) of 𝑃 . We can assume w.l.o.g that 𝑅 [𝑟 ′, 𝑟 ] is the smallest such byway

(because any larger byway that is on the same side of 𝑃 as 𝑅 [𝑟 ′, 𝑟 ] either contains 𝑅 [𝑟 ′, 𝑟 ] (in which

case we might as well use 𝑅 [𝑟 ′, 𝑟 ]) or intersects 𝑅 [𝑟 ′, 𝑟 ] implying (in contradiction) that there is a

smaller byway. See Figure 8.

We let each vertex 𝑓 ∈ 𝑃 store the endpoints of the smallest byway 𝐿𝑓 (resp. 𝑅𝑓 ) containing 𝑓

that is to the left (resp. right) of 𝑃 . The vertex 𝑓 ∈ 𝑃 also stores the first vertex 𝐿−
𝑓
(resp. 𝑅−

𝑓
) of 𝑃

that is after 𝑓 and is reachable in 𝐺 \ {𝑓 } from the endpoint of 𝐿𝑓 (resp. 𝑅𝑓 ) that is after 𝑓 .

In order to find 𝑝 , we begin by finding the first vertex 𝑝 ′ < 𝑓 that is reachable in 𝐺 from 𝑏 using

a path that does not touch any vertex of 𝑃 after 𝑓 . This is done by using a variant of the auxiliary

procedure of Section 4.1 with the following modification. In 𝐻𝑃 we add the detour (𝑢, 𝑣) iff (1) there

exists a 𝑢-to-𝑣 path in 𝐺 that does not touch 𝑃 before 𝑣 , and (2) there is no such 𝑢-to-𝑤 path for

any𝑤 < 𝑣 . After finding 𝑝 ′
using this mechanism, we check whether 𝑝 ′

appears on 𝑃 before the

starting point of the byway 𝐿𝑓 , and if so we consider 𝐿−
𝑓
as a candidate for 𝑝 . Similarly, we check

whether 𝑝 ′
appears on 𝑃 before the starting point of the byway 𝑅𝑓 and if so we consider 𝑅−

𝑓
as a

candidate for 𝑝 . Finally, we return the earlier of the (at most two) candidates.

Given 𝒃 < 𝒇 , find the first vertex 𝒑 < 𝒇 that is reachable from 𝒃 in 𝑮 \ {𝒇 }. This case is very
similar to the previous case. The only differences are: (1) we let every vertex 𝑓 ∈ 𝑃 store the first
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f

x
R[r′ , r]

r′ r

Fig. 8. Two byways of 𝑓 (in black), the top one is 𝑅 [𝑟 ′, 𝑟 ]. If there was an intersecting byway (in green) that
is smaller than 𝑅 [𝑟 ′, 𝑟 ] then the green subpath before 𝑥 and the black subpath after 𝑥 would constitute a
smaller byway.

vertex 𝐿+
𝑓
(resp. 𝑅+

𝑓
) of 𝑃 that is before 𝑓 and is reachable in 𝐺 \ {𝑓 } from the endpoints of 𝐿𝑓 (resp.

𝑅𝑓 ), and (2) we add 𝑝 ′
itself as a third possible candidate for 𝑝 .
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