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We show that the vertices of an edge-weighted undirected graph can be labeled with labels
of size O(n) such that the exact distance between any two vertices can be inferred from
their labels alone in O (log*n) time. This improves the previous best exact distance labeling
scheme that also requires O (n)-sized labels but O (loglogn) time to compute the distance.
Our scheme is almost optimal as exact distance labeling is known to require labels of
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1. Introduction

A distance labeling scheme of a graph G is a way of
assigning unique labels to the vertices of G so that the
distance between any two vertices can be inferred from
their labels alone. The scheme is composed of a marker
algorithm for labeling the vertices with (hopefully short)
labels, coupled with a (hopefully fast) decoder algorithm
for extracting a distance from two labels. In this paper we
focus on exact distance labeling for edge-weighted undi-
rected general graphs.

One can clearly label every vertex with its vector of
distances to all other vertices in G. For n-node graphs,
this leads to O(nlogn) bit labels with O(1) time to de-
code the distance. Graham and Pollak [4] showed how to
reduce the label length to ®(n) at the prohibitive cost
of ®(n) query time to decode the distance. This follows
from the Squashed Cube Conjecture that was proved by
Winkler [7] and states that we can label each vertex by
n — 1 symbols such that the distance between two ver-
tices corresponds to the Hamming distance of the two
labels. Gavoille et al. [3] presented ©® (n)-sized labels re-
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quiring only O (loglogn) time for decoding the distance.
They also showed that general undirected graphs require
labels of length §2(n) (regardless of the distance decod-
ing time). This lower bound holds even if we relax the
requirement for exact distances and settle for an approx-
imate distance with stretch bounded by 3. In this paper,
we show how to improve the labeling scheme of Gavoille
et al. to ©(n)-sized labels requiring O (log*n) time for de-
coding the distance.

Our results are mainly of theoretical interest as @ (n)-
sized labels are typically too long. In practice, there are
two ways of overcoming the ©(n) lower bound. The
first is to design specific schemes for restricted graph
families: Gavoille et al. presented © (log®n)-sized labels
for trees, O(/nlogn)-sized labels for planar graphs, and
0(r(n)log®n)-sized labels for any graph with separator
r(n). In terms of lower bounds, they showed a lower bound
of §£2(n'/3) for planar graphs and £2(y/n) for bounded de-
gree graphs. The other option of overcoming the lower
bounds is to settle for approximate distances. There have
been many results exhibiting short approximate distance
labels, see for example [1,2,5,6].

2. Preliminaries

Our labeling scheme is a modification of the Gavoille et
al. scheme. We now give a slightly simplified presentation
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of their scheme which we can later modify. In particular,
we first discuss their use of p-dominating sets.

A p-dominating set for a graph G is a set S C V(G)
such that for every vertex u € V(G) there is a vertex ve S
at distance at most p from it. The vertex v is called the
dominator of u and denote v = doms(u). It is easy to show
that for every n-vertex connected graph G and integer p >
0, there exists a p-dominating set of cardinality at most
n/p.

Given an undirected connected graph G with positive
edge-lengths, we denote by d(x, y) the length of the short-
est path between vertices x and y in G.

Lemma 1. (See [3].) For every two nodes x, y € V(G):

d(doms (x), doms(y)) —2p
<d(x, y) <d(doms(x), doms(y)) + 2p.

The above Ilemma implies that knowing p,
d(x,y) mod (4p + 1), and d(doms(x),doms(y)), one can
compute d(x,y). Indeed, the lemma shows there are
4p + 1 consecutive possible values for d(x, y), exactly one
of which can be congruent to d(x,y) modulo 4p + 1.
This fact is crucial in both the Gavoille et al. scheme as
well as in ours. Gavoille et al. considered a collection of
k = [loglogn] dominating sets Sop,...,Sk so that S; is
a 2i-dominating set of G. In this way, |S;| < n/2{, and
So=V(G).

Consider the vertices of Si. There are only O(n/logn)
such vertices, so each one can afford to store in its label
the vector of distances to all other vertices in Si. This
would imply a label of length logn - O(n/logn) = O (n)
for every vertex in Si, and the distance between two ver-
tices in S; can be decoded in O(1) time. The Gavoille et
al. scheme proceeds inductively. The label of every ver-
tex u in S; is composed of two fields: The first field is
a copy of the label of doms,, ,(u), and the second field
is the list {d(u,v) mod (4-2! + 1D}ves;. This way, when
we want to compute the distance between two vertices
u,u’ that are both in S;, we first recursively compute
d(doms,,, (u), doms, , (u')) from the first field of u’s label.
We then compute d(u, u’) mod (42! + 1) from the second
field of u’s label in O (1) time. From the above discussion,
these two values are enough to decode d(u, u’). The cor-
rectness of the scheme follows from the fact that every
two vertices belong to So = V(G). The time to decode a
distance is bounded by O (k) = O(loglogn). The size of a
label is bounded by

k

0(m)+ Y _ISi|log(4-2' +1)
i=1

2

k .
+1
<om+ny. S~ =0m.
i=1
In the next section we show a simple modification of
the label so its size remains O (n) but decoding a distance
reduces from O (loglogn) to O (log* n).

3. Our labeling scheme

We take a closer look at the Gavoille et al. scheme.
Consider a vertex u € S; and let the jth dominator of u,
denoted by dom’(u), be defined as follows: The first dom-
inator of u is doml(u) =doms,,, (u), the second dominator
is domz(u) = domg,, (doms,, (1)), the third is dom3(u) =
doms, , (doms,_,(doms,,, (1)), and so on. The following is
a simple extension of Lemma 1.

Lemma 2. For every two nodes x, y € S; and every j > i, one
can compute d(x, y) from d(x, y) mod (4(2' + 240
2J) + 1) and d(dom’ (x), dom’ (y)).

Proof. As we mentioned before, Lemma 1 shows that one
can compute d(x,y) out of d(x,y) mod (4-2!+ 1) and
d(doms, , (x), doms,,, (¥)). This implies correctness for the
case j=1i. We prove correctness for the case j =1+ 1,
a similar argument works for larger values of j. By
Lemma 1 we know that

d(doms,,, (x), doms,,, (y)) —2-2'

<d(x, y) <d(doms,,, (x), doms,,, (y)) +2-2'.

Applying Lemma 1 on doms,,, (x) and doms,,, (y) (rather
than x and y) we get that

d(dom?(x), dom?(y)) — 2 - 2!
< d(doms,,, (x), doms,, , (x))
< d(dom?(x), dom?(y)) +2 - 2'*1.
Combining these equations we get that
d(dom®(x), dom?(y)) — 2(2"" +27)
<d(x, y) <d(dom?(x), dom?(y)) +2(2"+! +2).

This means that there are 4(2*1 +21) +1 consecutive pos-
sible values for d(x, y), exactly one of which can be con-
gruent to d(x, y) modulo 42t1 +20+1. O

We modify the labeling scheme according to Lemma 2
in the following way.

The label of every vertex u in S; is composed of
two fields: The first field is a copy of the label of
dom’ (u) where j =2/2, and the second field is the list
{d(u,v) mod (4(2" + 21 4+ ... +2J) + 1)},cs;. This way,
when we want to compute the distance between two ver-
tices u, u’ that are both in S;, we first recursively compute
d(dom’ (u), dom’ (u’)) from the first field of u’s label. We
then compute d(u, u’) mod (421 +2i+1 ... 4+2/)+1) from
the second field of u’s label in O(1) time. By Lemma 2,
these two values are enough to decode d(u, u’).

We are thus left with showing that the size of a label is
0 (n) and that a distance can be decoded in O (log* n) time.
Letting k = [loglogn], the size of a label is bounded by

k .
0m + YISl log(4(2' +271 + - +22) 1)

i=1

k
4
< 0(n)+nzzi7 =0(n).
i=1
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To establish the distance decoding time, define the func-
tion f(i) = 2/2. The time to decode a distance is pro-
portional to the number of times we need to apply the
function f starting with O in order to get to loglogn. This
is bounded by O (log* n). In fact, it is even a bit better and
bounded by O (log*(loglogn)).

4. Conclusions

In this paper, we have improved the query-time in the
labeling scheme of [3] for general graphs from O (loglogn)
to O(log*(loglogn)). The size of our labels is ®(n) which
is known to be optimal for exact distances [3]. There are
no known lower bounds on the query-time and the gap
between our query-time and O(1) thus remains as an
open problem.
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