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Abstract

We study the string-property of being periodic and having periodicity smaller than a given bound.
Let Σ be a fixed alphabet and let p, n be integers such that p ≤ n

2 . A length-n string over Σ, α =
(α1, . . . , αn), has the property Period(p) if for every i, j ∈ {1, . . . , n}, αi = αj whenever i ≡ j
(mod p). For an integer function g = g(n) ≤ n

2 , the property Period(≤ g) is the property of all strings
that are in Period(p) for some p ≤ g. The property Period(≤ n

2 ) is also called Periodicity.
An ε-test for a property P of length-n strings is a randomized algorithm that for an input α distin-

guishes between the case that α is in P and the case where one needs to change at least an ε-fraction
of the letters of α to get a string in P . The query complexity of the ε-test is the number of letter
queries it makes for the worst case input string of length n. We study the query complexity of ε-tests for
Period(≤ g) as a function of g, when g varies from 1 to n

2 , while ignoring the exact dependence on the
proximity parameter ε. We show that there exists an exponential phase transition in the query complexity
around g = log n. That is, for every δ > 0 and g ≥ (log n)1+δ , every two-sided, adaptive ε-test for
Period(≤ g) has a query complexity that is polynomial in g. On the other hand, for g ≤ log n

6 , there ex-
ists a one-sided error, non-adaptive ε-test for Period(≤ g), whose query complexity is poly-logarithmic
in g.

We also prove that the asymptotic query complexity of one-sided error non-adaptive ε-tests for Peri-
odicity is Θ(

√
n log n), ignoring the dependence on ε.

1 Introduction

Periodicity of strings plays an important role in several branches of Computer Science, engineering and
social sciences. It is used as a measure of ’self similarity’ in many string algorithms, computational biology,
data analysis and planning (e.g., analysis of stock prices, communication patterns etc.), signal and image
processing and others. Very large streams of data are now common inputs for strategy-planning or trend
detection algorithms. Typically, such streams of data are either too large to store entirely in the computer
memory, or so large that even linear processing time is not feasible. Thus it would be of interest to develop
very fast (sublinear time) algorithms that test whether a long sequence is periodic or approximately periodic,
and in particular, that test if it has a very short period. This calls for algorithms in the framework of streaming
(e.g., [8]) or combinatorial property testing [6]. In property testing, introduced by Rubinfeld and Sudan [13]
and formalized by Goldreich et al. [6], algorithms are randomized, they query the input at very few locations
and based on this information, decide whether the input has a given property or it is ’far’ from having the
property. Indeed questions related to periodicity have already been investigated [3, 8, 9], although the focus
here is somewhat different.

∗An initial report of these results was presented at Random05.
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In [5], the authors construct an algorithm that approximates the Discrete Fourier Transform of a finite
sequence in sublinear time. This is related but not equivalent to testing how close a sequence is to being pe-
riodic. In [3], the authors study some alternative parametric definitions of periodicity that intend to ’capture
the distance’ of a sequence to being periodic. Their main motivation is the comparison of different measures
of ’self-distance’ and approximate periodicity. Most relevant to us is that the paper asserts the existence of
a tolerant ε-test for periodicity. That is, it describes an algorithm that given, 0 ≤ ε1 < ε2 ≤ 1, decides
whether a sequence is ε1-close to periodic or ε2-far from being periodic, using O(

√
n ·poly(log n)) queries.

Other related work are on sequences sketching in the streaming model. E.g., in [8] the authors construct
an efficient sketching of a large string by a short vector, so that approximate ’trend’ can be estimated (a trend
is a small string that best resemble each of a given collection of substrings). Such sketches are also useful
for approximating distance to periodicity, but in `2 norm rather than the hamming norm that is used below.
As this requires the entire string to be read, this is less relevant for the property testing model.

Let Σ be a fixed alphabet and let p, n be integers such that p ≤ n
2 . The property Period(p) of length-n

strings over Σ contains a string α = (α1, . . . , αn) if for every i, j ∈ {1, . . . , n}, αi = αj whenever i ≡ j
(mod p). For an integer g ≤ n

2 the property Period(≤ g) is the union of Period(p) over all p ≤ g. The
property Period(≤ n

2 ) is also called Periodicity.
Let P be a property of length-n strings. An ε-test for P is a randomized algorithm that, for an input

α ∈ Σn, distinguishes between the case that α is in P and the case that one needs to change at least an
ε-fraction of the positions of α to get a string in P . The query complexity of the ε-test is the number of
letter-queries it makes for the worst case input string.

We study the query complexity of ε-tests for Period(≤ g) when g varies from 1 to n
2 . Our main focus

is the dependence of the query complexity on the input length n, and the period bound g. We state the
dependence of our tests on the distance parameter ε, but we don’t try to optimize it in this respect. We note,
though, that in all our tests, the dependence on 1/ε is polynomial .

1.1 Our Results

We show that there exists an exponential phase transition in the query complexity around g = log n. That
is, for every δ > 0 and for g ≥ (log n)1+δ, every two-sided, adaptive ε-test for Period(≤ g) has a query
complexity that is polynomial in g. On the other hand, for g ≤ log n

6 there exists a one-sided error, non-
adaptive, ε-test for Period(≤ g), whose query complexity is poly-logarithmic in g. We also prove that
the asymptotic query complexity of one-sided error, non-adaptive, ε-tests for Periodicity is Θ(

√
n log n),

ignoring the dependence on ε.
The results are summarized in the following theorems.

Theorem 1.1. For every large enough n and ε ≥ (256
9 · log g

g )
1
3 , there exists a one-sided error, non-adaptive

ε-test for Period(≤ g), whose query complexity is O

(√
g log g

ε

)
.

The following theorem implies that Theorem 1.1 is the best possible up to a logarithmic factor, for large
enough g.

Theorem 1.2. For every large enough n and g ≤ n
2 , any adaptive, two-sided error 1

32 -test for Period(≤ g)

has query complexity Ω
(√

g
(log g)·log n

)
.

The lower bound of Theorem 1.2 becomes irrelevant once g is approximately log n or less. The following
theorem states that if g ≤ log n

6 , then there is a much more efficient test for Period(≤ g), compared to that
implied in Theorem 1.1.
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Theorem 1.3. For every large enough n, g ≤ log n
6 and ε > 7e log3 g√

n
there exists a one-sided error,

non-adaptive, ε-test for Period(≤ g), that has query complexity O( (log g)6 log log g
ε ).

The following theorem implies that poly(log g) is the best query complexity we can get for Period(≤
g), even if g is significantly smaller than log n.

Theorem 1.4. For every large enough n and g ≤ log n
4 , any two-sided error 1

32 -test for Period(≤ g) has

query complexity Ω(
√

log g
log log g ).

Finally, the following theorem, together with Theorem 1.1 for g ≥ n
6 , imply that there is an exact

asymptotic bound of Θ(
√

n log n) for the one-sided error, non adaptive, query complexity of periodicity.

Theorem 1.5. For every large enough n any non-adaptive, one-sided error, 1
16 -test for periodicity has

query complexity Ω(
√

n log n).

Uniformity and time complexity of the tests: The test suggested by Theorem 1.1, is uniform, it can get
n and ε as inputs and decide on the position to query in poly(n, 1/ε) time. The test suggested by Theorem
1.3 is based on a certain subset of [n] whose existence is proved using a probabilistic argument (shown in
Claim 3.10). Thus, taken simply as suggested, the algorithm can be viewed either as non-uniform, namely,
asserts the existence of a test while not constructing it deterministically. Alternatively, it can be viewed as a
randomized uniform test that first chooses the needed object randomly (which its existence is asserted with
high probability), verifies that it is as needed (so to remain 1-sided error), which can be done in poly(n, 1/ε)
time.

The rest of the paper is organized as follows. In Section 2 we introduce the required preliminaries, and
in Section 3 we prove the upper Bound stated in Theorem 1.3. Section 4 contains the proof of Theorem 1.1.
In Section 5 we prove Theorems 1.2, 1.4 and 1.5.

2 Preliminaries

For two positive integers i ≤ j we denote [i, j] = {i, . . . , j}, and [n] = [1, n]. To simplify notations,
we denote [α] = [dαe] (namely, we use the [ ] notation for non integers too). In the following Σ is a fixed
size alphabet that contains 0, 1. A length-n string α is a sequence of n letters from Σ, α = (α1 . . . αn). Σn

denotes the set of all length-n strings over Σ. For i ∈ [n] we refer to αi as the ith letter of α. Given a subset
S ⊆ [n] such that S = {i1, i2, . . . , im} and i1 < i2 < . . . < im we denote the m-length string obtained by
restricting α to the positions in S as αS = (αi1αi2 . . . αim). Unless otherwise stated, a string has length n.

For two length-n strings α, β, we denote distn(α, β) = |{i| αi 6= βi}|. We omit the subscript in distn
when the length of the strings is clear from the context. For a property P ⊆ Σn and a string α ∈ Σn,
dist(α, P) = min{dist(α, β)| β ∈ P} denotes the distance from α to P . We say that α is ε-far from P if
dist(α,P) ≥ εn, otherwise we say that α is ε-close to P . For σ ∈ Σ we denote by σn = (σ, σ, . . . , σ) the
length-n string in which the letter in every position is σ.

We denote by lnn the natural logarithm of n and by log n the base-2 logarithm of n. For a number g
let Primes(g) be the set of all primes that are smaller than or equal to g. Let Π(g) = |Primes(g)|. The
Prime Number Theorem [7, 12, 11] states that limg→∞

Π(g)
g/ ln g = 1.

Definition 1. A string α ∈ Σn is called homogeneous if αi = αj for every 1 ≤ i < j ≤ n. Namely, α = σn

for some σ ∈ Σ.
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The string property of being homogeneous is denoted by Homogeneous.

Property Testing
An ε-test is a randomized algorithm that accesses the input string via a ‘location-oracle’ which it can

query: On an length-n string α, a query is done by specifying an index i ∈ [n] to which the answer is
αi. The complexity of the algorithm is the number of queries it makes for the worst case input. Such an
algorithm is said to be a “one-sided-error ε-test” for a property P ⊆ Σn if it satisfies the following:

• It accepts every string in P with probability 1.

• It rejects every string that is ε-far from P with probability at least 2
3 .

If the acceptance probability of strings in P is only guaranteed to be at least 2
3 instead of 1, then the test is

called a two-sided error ε-test. If an ε-test determines all queries it makes prior to asking them, then it is
said to be a non adaptive test, otherwise it is an adaptive test. For further material on property testing see
[6, 14, 4].

Periodicity

Definition 2. [Period(p)]
A string α ∈ Σn is in Period(p), if αi = αj for every i, j ∈ [n] such that i ≡ j (mod p).

Note that a string is homogeneous if and only if it is in Period(1).

Definition 3. [Period(≤ g)]
A string α is in property Period(≤ g) if there exists p ≤ g such that α ∈ Period(p). The property of
length-n strings Period(≤ n

2 ) is denoted by Periodicity.

Definition 4. A p-witness for a string α ∈ Σn is a pair (i < j), i, j ∈ [n] such that i ≡ j (mod p) and
αi 6= αj .

The following fact is a direct result of the definition of Period(≤ g).

Fact 2.1. A string α has a period p if and only if there is no p-witness for α.

Fact 2.2. Let α be a string in Σn and r = bg
2c + 1. If α 6∈ Period(p) for every p ∈ [r, g], then

α 6∈ Period(≤ g). If α is ε-far from Period(p) for every p ∈ [r, g], then it is ε-far from Period(≤ g).

Proof. Observe that if a string α ∈ Σn has period p ≤ g
2 then it also has period q for every q that is a

multiple of p. Note also that there always exist such q ∈ [r, g].

Definition 5. For p < n and 0 ≤ i ≤ p − 1, let Z(p, i) = {j ∈ [n]| j ≡ i (mod p)}. Z(p, i) is also
called the ith p-section of n. For an n-length string α, the string αZ(p,i) is called the ith p-section of α.

The following fact relates dist(α, Period(p)) and the distance of its p-sections from Homogeneous.

Fact 2.3. For each α ∈ Σn, dist(α, Period(p)) = Σp−1
i=0 dist(αZ(p,i),Homogeneous).

Using the above we can relate dist(α, Period(p)) to the number of p-witnesses for α.

Claim 2.4. Let α ∈ Σn and p ≤ n
2 , then there are at least n−p

2p · dist(α, Period(p)) distinct p-witnesses
for α.
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Proof. By the definition of a p-witness, every p-witness for α is a subset of some p-section Z(p, i). Let W
be the set of all p-witnesses for α, and let Wi be the set of p-witnesses for α that are subsets of Z(p, i). As
the p-sections are pairwise disjoint, we conclude that so are the Wi’s. Thus, |W| =

∑p−1
i=0 |Wi|.

Fix i and for every σ ∈ Σ, let mσ be the number of occurrences of σ in αZ(p,i). Let m′ = maxσ∈Σ mσ.
By the definition of a p-witness we get,

|Wi| =
1
2
·
∑
σ∈Σ

mσ · (|Z(p, i)| −mσ) ≥ 1
2
·
∑
σ∈Σ

mσ · (|Z(p, i)| −m′) =
|Z(p, i)| −m′

2
· |Z(p, i)| (1)

Set di = dist(αZ(p,i), homogeneous). Observe that the homogeneous string with minimum distance to
αZ(p,i) is σ|Z(p,i)|, where σ is the most frequent letter, that is, for which m′ = mσ. Thus di = |Z(p, i)|−m′

and hence |Wi| ≥ 1
2 · di · |Z(p, i)| for every i ∈ {0, 1, . . . , p− 1}. Hence,

di ≤
2 · |Wi|
|Z(p, i)|

≤ 2 · p · |Wi|
n− p

, (2)

where the last inequality is due to the fact that |Z(p, i)| ≥ n−p
p . Fact 2.3 and Equation (2) imply that

dist(α, Period(p)) = Σp−1
i=0 di ≤

2 · p
n− p

· Σp−1
i=0 |Wi| ≤

2 · p · |W|
n− p

.

It follows that |W| ≥ n−p
2·p · dist(α, Period(p)).

The following is an immediate corollary of Claim 2.4.

Corollary 2.5. Let p ≤ n
2 and α be ε-far from Period(p). Then, a random pair (i < j) for which i ≡ j

(mod p) is a p-witness with probability at least ε
3 .

Proof. There are at most p ·
(dn

p
e

2

)
≤ n(n+p)

2p = s pairs of the form i ≡ j (mod p). The probability that a
random pair is a p-witness is at least the bound on the number of p-witnesses asserted in Claim 2.4 divided
by s. Hence, it is at least ε · n−p

n+p ≥
ε
3 , where the last inequality is by the assumption that p ≤ n

2 .

3 An ε-test for Period(≤ g) for very small g

In this Section we prove Theorem 1.3. We first note that there is a one-sided error ε-test for Period(≤ g), of
complexity O(g log g/ε), for any g. This is by testing for every p ≤ g, that the input is ε-far from Period(p),
amplified so that the error probability is less than 1

3g . According to Corollary 2.5, for every fixed p, this can
be done using O(log g/ε) queries, implying a total as claimed. By the union bound, the error probability of
the whole test is bounded by g · 1

3g ≤ 1/3. In particular, this implies that for every constant g there is a one
sided error ε-test for Period(≤ g) making O(1/ε) queries. Hence, in the following, we assume that n and
g are large enough so that the function Π(g) (see Section 2 for the definition) satisfies: Π(g) < 1.5g

log g (while

g ≤ log n
6 as required by the theorem).

We first analyze the following naive idea that captures some of the intuition of the proof, while not being
part of it. Let α ∈ Σn. By definition, if t is divisible by p, then a t-witness for α is also a p-witness for α. Let
t = g!, and for the sake of simplicity assume that g ln g ≤ ln(n

2 ), so that t ≤ n
2 . Hence, a t-witness for α is a

witness that α 6∈ Period(≤ g). One might be tempted to think that an ε-test for Period(t) is also an ε-test
for Period(≤ g). However, this is not the case since α may be in Period(t) and far from Period(≤ g).
While this naive idea does not work the reason it does not work suggests the following notion that we call
an (ε, λ)-cover of g.
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Definition 6. [(ε, λ)-cover]
For ε, λ ≤ 1, a set I ⊆ [n] is called an (ε, λ)-cover of g if it satisfies the following. For every α ∈ Σn and
p ≤ g such that α is ε-far from Period(p), there exists t ∈ I such that p divides t and α is ελ-far from
Period(t).

In view of the observation above it should be clear why small (ε, λ)-covers are of interest: If α is ε-far
from Period(≤ g), α is ε-far from Period(p) for every p ≤ g. By the definition of (ε, λ)-cover, for every
p ≤ g there is some t in the cover for which α is ελ-far from Period(t). Thus, in order to test if α has
period(≤ g) it is enough to test α for Period(t) for every t in the cover. If the size of the cover is much
smaller than g, and ελ is not too small then this would imply an efficient test.

Note that [g] is always an (ε, 1)-cover for g. Our goal is to find a smaller cover when g is small, while
keeping λ large enough.

We first describe the generic algorithm for testing Period(≤ g) using an (ε, λ)-cover of g.

Algorithm 1.
Input: ε > 0, α ∈ Σn. Assumption: A set E that is an (ε, λ)-cover of g is given.

1. For each t ∈ E select uniformly at random and with repetitions qt = 6·(ln |E|+1)
ε·λ members from the

set Wt = {(x < y)| x, y ∈ [n], x ≡ y (mod t)}. Let Q be the union of all the sets selected.

2. Reject if for each p ∈ [g] the set Q contains a p-witness and otherwise accept.

Claim 3.1. Algorithm 1 is a one-sided error, non-adaptive ε-test for Period(≤ g). Its query complexity is
O( |E|·log |E|

ε·λ ).

Proof. The algorithm is clearly non-adaptive and its query complexity is as stated. The algorithm rejects
only if for every p ≤ g it finds a p-witness. Hence the algorithm has a one-sided error.

Let α ∈ Σn be ε-far from Period(≤ g). By the definition of a (ε, λ)-cover, for every p ≤ g there
exists t ∈ E such that p divides t and α is ελ-far from Period(t). Let E′ ⊆ E be the set of all such t’s.
By Corollary 2.5, for any fixed t ∈ E′ the probability that a random member of Wt is not a t-witness is
less than 1 − ελ

3 . Thus the probability that Q does not contain a t-witness is at most (1 − ελ
3 )qt ≤ 1

3|E|2 .
By the union bound, the probability that there exists t ∈ E for which Q contains no t-witnesses is at most
|E′|

3|E|2 ≤ 1
3 . As E is an (ε, λ)-cover of g, this is also the probability that there exists a p ≤ g for which Q

contains no p-witnesses.

In order to prove Theorem 1.3 it is enough to show how to construct a small and good enough (ε, λ)-
cover. Lemma 3.2 states that such a cover exists for ε > 7e log3 n√

n
and g ≤ log n

6 . This, in turn, ends the proof
of Theorem 1.3.

Lemma 3.2. Let g ≤ log n
6 and ε > 7e log3 g√

n
, then there exists a set E of size O((log g)3) that is an

(ε, 1
3·|E|)-cover of g.

To prove the lemma we need some additional machinery. For a set I ⊆ [n], gcd(I) denotes the greatest
common divisor of the numbers in I . We make use of the following notion.

Definition 7. [GCD-cover]
A GCD-cover of g is a set E ⊆ [n] such that: for every p ≤ g, there exists a subset I ⊆ E, for which
p = gcd(I).
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The next Lemma 3.3 and Corollary 3.4 imply that a suitable GCD-cover, E, of g is (ε, 1
3·|E|)-cover of

g as needed in Lemma 3.2. Lemma 3.5, shows that such a suitable GCD-cover can be constructed. This
will end the proof of Lemma 3.2. We next present these Lemmas and the formal proof of Lemma 3.2. The
proofs of Lemmas 3.3 and 3.5 appear later in the next two sections.

Lemma 3.3. Let I ⊆ [n
1
4 ], |I| ≤ ε

√
n

3 be such that p = gcd(I), and let α ∈ Σn be ε-far from Period(p).
Then there exists t ∈ I such that α is ε

3·|I| -far from Period(t).

Lemma 3.3 directly implies the following corollary.

Corollary 3.4. Let E ⊆ [n
1
4 ] be a GCD-cover of g with |E| ≤ ε

√
n

3 . Then E is an (ε, 1
3·|E|)-cover of g.

Lemma 3.5. Let g ≤ log n
6 , then there exists a subset E ⊆ [n

1
4 ] of size 1 + 2e log3 g that is a GCD-cover of

g.

Proof of Lemma 3.2: Lemma 3.5 asserts the existence of a set E of size 1 + 2e log3 g that is a GCD-cover
of g. For ε > 7e log3 g√

n
, |E| ≤ ε

√
n

3 , thus, Corollary 3.4 may be applied with E to imply the lemma.

3.1 Proof of Lemma 3.3

We first need the following claims.

Claim 3.6. Let s = p · q, then dist(α, Period(s)) = Σp−1
i=0 dist(αZ(p,i), P eriod(q)).

Proof. Fix i, 0 ≤ i ≤ p− 1. Fact 2.3 asserts that

dist(α, Period(s)) = Σs−1
j=0dist(αZ(s,j),Homogeneous) =

p−1∑
i=0

∑
j≤s−1, j≡i mod p

dist(αZ(s,j),Homogeneous) (3)

Let β(i) = αZ(p,i) be the ith p-section of α. Observe that the q-sections of β(i) are exactly
αZ(s,j), j ≤ s − 1, j ≡ i (mod p). Hence by Fact 2.3, for every fixed i, 0 ≤ i ≤ p − 1,∑

j≤s−1, j≡i (mod p) dist(αZ(s,j),Homogeneous) = dist(αZ(p,i), P eriod(q)). Plugging this into Equa-
tion (3) implies the claim.

Claim 3.7. Let α ∈ Σn, gcd(r, s) = 1 and r · s divides n. If α ∈ Period(r), then
dist(α, Homogeneous) = dist(α, Period(s)).

Proof. As r · s divides n and gcd(r, s) = 1, |Z(r, i) ∩ Z(s, j)| = n
r·s for every i ∈ {0, . . . , r − 1}

and j ∈ {0, . . . , s − 1}. Let α ∈ Period(r), Fact 2.3 implies that αZ(r,i) is Homogeneous for every
i ∈ {0, . . . , r − 1}. Let σ(i) be the unique symbol that appears in αZ(r,i). Thus for every fixed j, and every
i = 0, . . . r − 1, σ(i) appears n

r·s times in αZ(s,j). We conclude that for every σ ∈ Σ, the number of times
σ appears in αZ(s,j) is fixed and independent of j. In particular, let σ∗ be the letter that appears the largest
number of times in αZ(s,0), and let this number be m∗. Then σ∗ appears m∗ times in αZ(s,j) for every j.
Thus dist(αZ(s,j),Homogeneous) = n

s −m∗ for every j = 0, 1, . . . , s− 1, and β = (σ∗)
n
s is the closest

homogeneous string to each of αZ(s,j).
This implies that dist(α, Homogeneous) = s · (n

s − m∗) =
∑s

j=0 dist(αZ(s,j),Homogeneous) =
dist(α, Period(s)) where the last equality is by Fact 2.3.
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The following is a corollary of Claim 3.7, and could be viewed as a ’clean’ version of Lemma 3.3.
It implies that if dist(α, Period(p)) is large, and p = gcd(r, s) then if dist(α, Period(r)) = 0 then
dist(α, Period(s)) is large.

Claim 3.8. Let α ∈ Σn, p = gcd(r, s) and r · s divides n. If α ∈ Period(r), then

dist(α, Period(p)) = dist(α, Period(s)).

Proof. We first claim that for every i ∈ {0, . . . , p− 1},

dist(αZ(p,i),Homogeneous) = dist(αZ(p,i), P eriod(
s

p
)). (4)

Indeed, fix i ∈ {0, . . . , p − 1}. Since α ∈ Period(r), then αZ(p,i) ∈ Period( r
p). As gcd(r, s) = p,

gcd( r
p , s

p) = 1 and the fact that r · s divides n implies that r
p ·

s
p divides n

p = |αZ(p,i)|. Thus, Claim 3.7
implies Equation (4).

Claim 3.6 in addition to Equation (4) and Fact 2.3 imply the claim.

We can now present the proof of Lemma 3.3.

Proof. Let I ⊆ [n
1
4 ], |I| ≤ ε

√
n

3 be such that p = gcd(I). Let α ∈ Σn be ε-far from Period(p). We show
by induction on |I| that there exists t ∈ I such that α is ε

3·|I| -far from Period(t). This is trivial for |I| = 1.
We assume therefore, that |I| ≥ 2 and that the lemma holds for any I ′ of size smaller than |I|.

Let r ∈ I . If α is ε
3·|I| -far from Period(r) then we are done. Assume then that α is ε

3·|I| -close to
Period(r). Set s = gcd(I \ {r}). By definition, we have p = gcd({r, s}). Let m be the largest multiple of
r ·s that is smaller than n. The assumption that I ⊆ [n

1
4 ] implies that n−m ≤

√
n. Let β ∈ Period(r)∩Σm

be of minimum distance to α[m]. Using the triangle inequality we get

distm(β, Period(s)) ≤ distn(α, Period(s)) + distn(α, Period(r)). (5)

Claim 3.8 asserts that
dist(β, Period(p)) = dist(β, Period(s)).

Plugging this into Equation (5) implies

dist(α, Period(s)) ≥ dist(β, Period(p))− dist(α, Period(r)). (6)

Again by the triangle inequality

distn(α, Period(p)) ≤ distm(α[m], P eriod(p)) + n−m ≤ (7)

distm(β, Period(p))+(n−m)+distn(α, Period(r)) ≤ distm(β, Period(p))+distn(α, Period(r))+
√

n.

Plugging equation (7) into Equation (6) results in the following

dist(α, Period(s)) ≥ dist(α, Period(p))− 2 · dist(α, Period(r))−
√

n. (8)

Recall that dist(α, Period(p)) ≥ εn, dist(α, Period(r)) ≤ εn
3|I| and that |I| ≤ ε

√
n

3 . Plugging this into
Equation (8) implies that

dist(α, Period(s)) ≥ εn · (|I| − 1)
|I|

Finally, by the induction hypothesis on I \ {r}, there exists t ∈ I \ {r} such that α is ε·(|I|−1)
|I| · 1

3·(|I|−1) -far
from Period(t). That is, α is ε

3·|I| -far from Period(t) as required.
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3.2 Proof of Lemma 3.5

Definition 8. [Prime-cover of g]
We say that a collection of sets of primes, R is a Prime-cover of g if for every subset of primes S′ ⊆
Primes(g) with

∏
q∈S′ q ≤ g the following is satisfied: For every p ∈ Primes(g) there is an R ∈ R such

that p ∈ R and for every q ∈ S′ \ {p}, q /∈ R.

Claim 3.9. Let R be a Prime-cover of g. Then, there exists a set E that is a GCD-cover of g that satisfies
the following.

• z ≤ 21.5g for every z ∈ E.

• |E| ≤ 1 + |R| · log g.

Proof. For every prime p ∈ Primes(g) let κ(p) be the maximum integer such that pκ(p) ≤ g. Let R be a
Prime-cover of g. For each R ∈ R we define the following set of at most log g + 1 numbers.

yR(i) =
∏
r∈R

rmin{i,κ(r)} ·
∏

q∈Primes(g)\R

qκ(q), i = 0, 1, . . . , blog gc.

We set E = {yR(i)| i = 0, 1, . . . blog gc, R ∈ R}. To see that indeed E is a GCD-cover let t ∈ [g] and let
t =

∏
p∈Primes(g) pa(p) be the prime power decomposition of t. Let P (t) contain all the prime divisors of

t, namely these primes, p ∈ Primes(g) for which a(p) ≥ 1. Note that since t ≤ g,
∏

p∈P (t) p ≤ t ≤ g and
also a(p) ≤ log g for every p ∈ Primes(g).

By assumption R is a Prime-cover of g and thus checking the definition with respect to S′ = P (t),
we conclude that there are subsets Rp ∈ R for each p ∈ Primes(g) such that p ∈ Rp while for every
q ∈ P (t) \ {p}, q /∈ Rp. It is obvious that t = gcd({yRp(a(p))| p ∈ Primes(g)}). This is so as t clearly
divides each yRp(a(p)). On the other hand, for each p ∈ Primes(g), pa(p)+1 does not divide yRp(a(p)).
Thus for any prime p ∈ Primes(g), the largest power of p that divides all the numbers above is pa(p).

It remains to be shown that the bounds of the numbers in E and the size of E are as claimed. Indeed, by
definition |E| ≤ 1+ |R|· log g (note that i takes possibly (1+log g) values but for each p > 2, κ(g) < log g
and thus |E| is indeed as claimed). Note also that for every z ∈ E, z ≤ g|Primes(g)|, as each number in every

product expression is at most g. By our assumptions |Primes(g)| = Π(g) ≤ 1.5g
log g , thus z ≤ g

1.5g
log g = 21.5g

for every z ∈ E.

The following claim asserts that there is a small enough Prime-cover of g.

Claim 3.10. There exists a Prime-cover of g whose size is at most 2e(log g)2.

Proof. We show a probabilistic construction of a family of 2e(log g)2 sets, and prove that with strictly
positive probability it is a Prime-cover of g. This implies the existence of such a set.

Let R be a set of 2e(log g)2 random subsets of primes, each selected independently at random, as
follows. A set R is formed by selecting each prime p ≤ g, to be in R with probability 1

log g .
Fix S′ ⊆ Primes(g) with

∏
q∈S′ q ≤ g and a prime p ≤ g. Note that |S′| ≤ log g. A set R is good

for (S′, p) if p ∈ R while q 6∈ R for every q ∈ S′ \ {p}. The probability that a set R drawn as above is
good for (S′, p) is at least 1

log g (1 − 1
log g )|S

′| ≥ 1
log g (1 − 1

log g )log g ≥ 0.9
e log g (for large enough g). As the

sets are drawn independently, the probability that none of the 2e log2 g sets is good for (S′, p) is at most
(1 − 0.9

e log g )3e(log g)2 ≤ 1
g3 . However, there are at most g2 pairs (S′, p), as above, since for any such S′,∏

q∈S′ q ∈ [g] and distinct S′ results in distinct products. Hence, by the union bound, with probability at
least 1− 1

g for every such (S′, p) there is a set in R that is good for (S′, p).
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We can now conclude the proof of Lemma 3.5.

Proof. Claim 3.10 asserts that there is a Prime-cover of g of size 2e(log g)2. In turn, Claim 3.9 asserts that
there is a GCD-cover of g of size 1 + 2e(log g)3 and in which every member is at most 21.5g. For g ≤ log n

6

the bound on each member in the cover is 21.5g ≤ n
1
4 .

A final note on how to efficiently construct a small prime cover: The proof of Claim 3.10 uses a
randomized argument to show the existence of a small prime cover. We note that verifying that a collection
of O(log2 g) sets is a prime-cover of g (for g ≤ log n

6 ) can be done in poly(n) time. This is by checking the
conditions for all O(g2) pairs (S′, p) as in the proof of the claim. Thus Claim 3.10 suggests a 1-sided error
randomized algorithm for constructing efficiently a prime cover. Making this 1-sided error algorithm part of
the ε-test does not change its query complexity but makes the whole test a uniform, 1-sided error test, that
runs in polynomial time.

4 An ε-test for Period(≤ g) for large g

Algorithm 1, described in Section 3, is an efficient test only when g ≤ log n
6 , implying that there is a

polylog size GCD-cover. Here we prove Theorem 1.1 by constructing a test for larger g’s. We therefore
assume in the following that g > log n

6 (although the correctness of the algorithm will not depend on this).
Conceptually, the test here will be much simpler. As our goal is to find a p-witness for every p ∈ [g]

we select a random subset Q ⊆ [n] by picking each member of [n] independently with some predetermined
probability. If the set contains a p-witness for every p ≤ g the test rejects, otherwise it accepts.

We next formally describe the algorithm and prove its correctness. Let ε ≥ (256
9 · log g

g )
1
3 .

Algorithm 2.
Input: ε > 0, α ∈ Σn.

Let ν = 4
√

g·log g
ε .

1. Select a random subset Q ⊆ [n] by selecting each member of [n] independently with probability ν
n .

2. If |Q| > 2 · ν then accept and terminate.

3. Query α on each index in Q.

4. Reject if for every g
2 ≤ p ≤ g the set Q contains a pair that is a p-witness. Otherwise accept.

Obviously the algorithm is non-adaptive, it has a one sided error and query complexity 2 · ν =

O(
√

g·log g
ε ). The following claim asserts that the error probability is at most 1

3 and thus completes the
proof of Theorem 1.1.

Claim 4.1. Let log n
6 < g ≤ n

2 . If α is ε-far from Period(≤ g) then Algorithm 2 rejects with probability at
least 2

3 .

Proof. Let α ∈ Σn be ε-far from Period(≤ g) and let Q be the set selected by the algorithm at Step 1.
Let G be the event that Q contains a p-witness for every g

2 ≤ p ≤ g. Let B be the event that |Q| > 2 · ν.
By definition Algorithm 2 rejects α if and only if G occurs and B does not. Thus it is enough to show that
Pr(B) ≤ 1

9 and Pr(G) ≥ 8
9 .
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Let Xi be the indicator function for the event i ∈ Q and set X =
∑n

i=1 Xi. By definition, Pr(B) =
Pr(X > 2 · ν). Since the events Xi are independent, Chernoff inequality [2] implies that Pr(X > 2 · ν) ≤
( e
4)ν ≤ 1

9 .
Let Gp be the event that the set Q does not contain a pair of two elements that form a p-witness for α.

By the union bound we get that Pr(G) ≥ 1−
∑

p∈[ g
2
,g] Pr(Gp). Thus, to conclude the statement of the claim

it is sufficient to show that Pr(Gp) ≤ 1
g2 for every p such that g

2 ≤ p ≤ g.
Fix p such that g

2 ≤ p ≤ g. Let T = {Ti = (xi < yi)| i = 1, . . . , t} be the set of all the p-witnesses for
α. Claim 2.4 asserts that |T | = t ≥ εn(n−p)

2p . For each i ∈ [t] let Ai be the indicator function for the event
xi, yi ∈ Q and let Ai be its complement. Let µ be the expectation of

∑t
i=1 Ai. For distinct i, j let Ti ∼ Tj

if {xi, yi} ∩ {xj , yj} 6= ∅, namely, that Ti, Tj share an element. Let ∆ =
∑

Ti∼Tj
Pr(Ai ∧ Aj). Then by

Janson inequality (see, e.g., [2] Chapter 8),

Pr(Gp) = Pr(∧t
i=1 Ai) ≤ e−µ+∆

2

Obviously, Pr(Ai) = ν2

n2 for every i ∈ [t]. Hence, using that p ≤ g ≤ n
2 , we conclude that

µ =
ν2 · t
n2

≥ εn · (n− p)
2p

· ν2

n2
≥ εν2

4p

Observe that for i 6= j, Ti ∼ Tj if and only if |{xi, yi, xj , yj | = 3. Consequently, we get that for
Ti ∼ Tj , Pr(Ai ∧Aj) = ( ν

n)3. Note that if Ti ∼ Tj then xi, yi, xj , yj are all elements of the same p-section
of n. Any fixed subsection Z(p, k) contains

(|Z(p,k)|
3

)
≤ n(n+p)(n−p)

6p3 such pairs. Thus there are, all together,

at most n(n+p)(n−p)
6p2 such pairs. Hence

∆ ≤ (n + p)(n− p)ν3

6p2n2
≤ ν3

6p2
.

Our choice of ν and ε implies that µ ≥ ∆ and hence Pr(Gp) ≤ e−
µ
2 ≤ e−2 log g ≤ 1

g2 (where the
inequality comes from substituting g for p as p ≤ g ≤ n/2).

5 Lower Bounds

We prove here the lower bounds stated in Theorem 1.2, 1.4 and 1.5. All the lower bounds are shown for the
case that Σ = {0, 1}, which implies the same lower bound for any alphabet that contains at least two letters.

Let Un denote the uniform distribution over {0, 1}n. The following claim will be used repeatedly.

Claim 5.1. Let n ≥ 29 and g ≤ n
2 . Let α be a string drawn from Un. Then α is 1

16 -far from Period(≤ g)
with probability at least 8

9 .

Proof. We shall show that for every integer p ≤ g the string α is 1
16 -close to Period(p) with probability

at most 2
9·n . This is sufficient since by the union bound and Fact 2.2, the probability that α is 1

16 -close to
Period(≤ g) is at most 1

9 .
Fix p ≤ n

2 . Then the number of strings that are 1
16 -close to Period(p) is at most 2p ·

(
n

n/16

)
, as there are

2p ways to choose the periodic string. Using
(

n
βn

)
≤ 2H2(β)n, where H2(x) = −x log x−(1−x) log(1−x)

is the entropy function, we conclude that the number of strings that are 1
16 -close to Period(p) is at most

2n/2 · 2H2(1/16)n = o(2n/n).
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5.1 A Lower Bound on the One-Sided Error Non-Adaptive Query Complexity of Periodicity

This subsection is devoted to the proof of Theorem 1.5. Let m =
√

n log n
50 . Yao’s principle [16], adapted

for one-sided error, asserts that to prove a lower bound of m on the query complexity of a one-sided error,
non-adaptive test for Periodicity, it is sufficient to show the following: For every large enough n, and
ε = 1

16 there exists a distribution D that is concentrated on strings that are ε-far from Periodicity such that
for an α chosen according to D, any fixed set Q ⊆ [n] with |Q| < m (Q is thought as the query set of the
non adaptive deterministic test) contains no p-witness for some p, bn

4 c+ 1 ≤ p ≤ n
2 , with probability more

than 1
3 .

Let U = Un be the uniform distribution on {0, 1}n, and Far be the event that the string chosen according
to U is ε-far from Periodicity. Let D = (U| Far), that is, the uniform distribution conditioned on Far.
By definition, D is concentrated on ε-far inputs. We note that U well approximates D in the following sense.
For every event A, PrD(A) ≥ PrU (A∩Far) ≥ PrU (A)− (1−PrU (Far)) ≥ PrU (A)− 1

9 , where the last
inequality is by Claim 5.1. In the following, unless specifically stated, all probabilities will be with respect
to U .

For Q ⊆ [n], |Q| < m, let W be the set of all unordered pairs {i, j} ⊆ Q. For every p ∈ [bn
4 c + 1, n

2 ]
let Wp ⊆ W be the set of all {i, j} ∈ W such that i ≡ j (mod p) and let Qp be the union of all the
members of Wp. Observe that if there exists a Qp such that αi has the same value for every i ∈ Qp then no
pair of elements of Q is a p-witness for α. Thus, we only need to show that for α drawn according to D this
happened with probability more than 1

3 . However, by the note above, it is enough to show that this is true
with probability more than 4

9 for an α drawn according to U . Indeed this is shown in the following.
For every p ≤ g let Ap be the event that αi has the same value for every i ∈ Qp. We next show that

there exists a subset J ⊆ [bn
4 c + 1, . . . , bn

2 c] such that: (1) |J | ≥ 4 · n
1
3 , (2) |Qp| ≤ log n

3 for every p ∈ J,
and (3): the sets Qp, p ∈ J are pairwise disjoint. Assuming the existence of such J , for every p ∈ J ,
Pr(Ap) ≥ 2−|Qp| ≥ n−

1
3 , where the last inequality is by (2). Since the events Ap, p ∈ J are independent

by property (3) above, we get,

Pr
α∈D

(∪p∈JAp) ≥ 1−
(
1− n−

1
3

)4·n
1
3

≥ 8
9
.

Thus, it only remains to be shown that such a set J exists. Observe that for every i, j ∈ W there are at
most two distinct integers p, q ∈ [bn

4 c+ 1, n
2 ] such that i ≡ j (mod p) and i ≡ j (mod q). Since there

are at most
(
m
2

)
≤ n log n

100 unordered pairs in W , then, by averaging, there exists a set I ⊆ [bn
4 c + 1, n

2 ] of
size at least n

8 such that for every p ∈ I the set Wp has size at most log n
6 . Note that if |Wp| ≤ log n

6 then
|Qp| ≤ log n

3 . Let J ⊆ I be the set that is constructed as follows. We pick an arbitrary p ∈ I and add it to J,
then we remove p from I and we also remove from I any q such that Qp ∩Qq 6= ∅. We repeat this until I
becomes empty. Obviously, for every p, q ∈ J, Qp ∩Qq = ∅ as required by (3) above. Thus, we only need
to show that J is large enough.

Observe that for every p that is inserted into J , every i ∈ Qp may result in a deletion of at most 2m q’s
from I since for each j ∈ Q, {i, j} could belong to at most two Wq’s. Consequently, since |Qp| ≤ log n

3 for
every p ∈ J , it follows that for every p that is inserted to J at most log n

3 · 2m = o(n
2
3 ) potential members

are removed from I. Since at the beginning |I| ≥ n
8 we get that the size of J is as required.
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5.2 Lower Bounds on the Query Complexity of adaptive two sided error tests for Period(≤
g)

In this subsection we prove Theorem 1.2 and 1.4. Both lower bounds deal with adaptive two-sided error
ε-tests. Yao’s principle [16] in this case states the following: To prove that any 2-sided error ε-test for a
property P requires more than m queries, it is enough to show that there exists a distribution D over inputs
in P , and inputs that are ε-far from P , such that any deterministic ε-test for P that uses m queries, fails on
an input drawn from D with probability greater than 1

3 .
For both proofs we use a distribution D that is constructed out of two separate distributions DP and DN .

The distribution DP is over strings in Period(≤ g) and the distribution DN is over strings that are ε-far
from Period(≤ g). A string is drawn from D by first selecting uniformly at random one of the distribution
DP ,DN and then returning a string drawn from the selected distribution. Thus formally D = 1

2DP + 1
2DN .

We may assume without loss of generality, that any test making m queries in the worst case, is making
m queries in every run (otherwise just add dummy queries). Thus such a test is a deterministic decision tree
that all its leaves are at depth m.

Let α ∈ {0, 1}n be an input to the ε-test, let M ⊆ [n] be the set of queries used by the ε-test on α, and
let η ∈ {0, 1}|M | be the set of answers, that is αM = η. The tuple (M,η) is denoted as the interaction of
the tree with α. Thus, if the interaction of the decision tree with α is (M,η) then for every β ∈ Σn such that
βM = η, the interaction with β will also be (M,η), and in particular, β will arrive to the same leaf of the
decision tree and will be classified (either reject or accept) the same as α. Let A be the set of all accepting
interactions (these that end in an accepting leaf) and R the set of all rejecting interactions (these that end in
a rejecting leaf).

The proof of both lower bounds uses the following claim.

Claim 5.2. Let Alg be a deterministic adaptive ε-test for Period(≤ g), whose query complexity is m. Let
D be a distribution as described above. Assume that for every interaction (M,η) of Alg, Prα∈DN

[αM =
η] > 2

3·2|M| and Prα∈DP
[αM = η] > 2

3·2|M| . Then, Alg errs with probability greater than 1
3 on a random α

that is chosen according to D.

Proof. The test Alg errs on a string α if it was drawn from DP and there exists (M,η) ∈ R such that
αM = η, or if it was drawn from DN and there exists (M,η) ∈ A such that αM = η. Hence,

Pr
α∈D

( Alg errs ) ≥ 1
2
·

∑
(M,η)∈A

Pr
α∈DN

[αM = η] +
1
2
·

∑
(M,η)∈R

Pr
α∈DP

[αM = η].

Using the lower bound assumed in the claim and the fact that |A|+ |R| = 2|M | we get,

Pr
α∈D

( Alg errs ) >
1
2
· |A| · 2

3 · 2|M | +
1
2
· |R| · 2

3 · 2|M | =
1
3
.

For this section let Far be the event that contains all strings that are 1
32 -far from Period(≤ g) and let

U = Un be the uniform distribution over {0, 1}n. In the proofs of Theorems 1.2 and Theorem 1.4, the same
distribution DN is used (but with different n). It is defined as DN = (U| Far), that is, DN is uniform
distribution over all strings α ∈ {0, 1}n conditioned on the event Far. Claim 5.3 below asserts that the
distribution DN meets the assumptions in Claim 5.2 regarding DN .
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Claim 5.3. Let g ≤ n
2 and let (M,η) be an interaction such that |M | ≤ n

32 . Then,

Pr
α∈DN

[αM = η] >
2

3 · 2|M |

Proof. For any event A let Pr[A] = PrU [A]. By Bayes rule,

Pr
α∈DN

[αM = η] = Pr[(αM = η) | Far] = Pr[Far | (αM = η)] · Pr[αM = η]
Pr[Far]

. (9)

Since Pr[αM = η] ≥ 1
2|M| and Pr[Far] ≤ 1 we get that Prα∈DN

[(αM = η)] ≥ 1
2|M| ·Pr[Far | (αM = η)].

Thus to complete the proof we only need to show that Pr[Far | (αM = η)] > 2
3 .

One way of selecting a string uniformly from the set of all strings α ∈ {0, 1}n such that αM = η, is to
first uniformly choose α ∈ {0, 1}n according to U and then to change the letters in α whose indices are in
M so that αM = η. By Claim 5.1, with probability greater than 2

3 , a string drawn according to U is 1
16 -far

from Period(≤ g). By the triangle inequality if we change at most n
32 letters of a string that is 1

16 -far from
Period(≤ g) we get a string that is ( 1

16 −
1
32)-far from Period(≤ g). Thus, Pr[Far | (αM = η)] > 2

3 .

5.2.1 Proof of Theorem 1.2

Fix g ≤ n
2 , ε = 1

32 and let Alg be a deterministic adaptive, two sided error, ε-test for Period(≤ g). Assume

that Alg has query complexity m = 1
4 ·

√
g

log g·log n . The distribution DN was already defined above. We
next describe the distributions DP .

Recall that Primes(g) is the set of all primes that are smaller or equal to g and Π(g) = |Primes(g)|. A
string is chosen according to DP by uniformly selecting p ∈ Primes(g), then uniformly and independently
choosing ω ∈ {0, 1}p and finally setting α to be the concatenation of ω to itself enough times until a total
length of n is obtained (possibly concatenating a prefix of ω at the end if p does not divide n).

Fix (M,η) to be any interaction of Alg. Let Bad(M) = {q ∈ Primes(g)| ∃i, j ∈ M, i ≡ j
(mod q)}. If p 6∈ Bad(M)) then the αi’s are independent for every i ∈ M . Hence, in this case αM = η
with probability 1

2|M| . Consequently, Prα∈DP
[αM = η] is at least the probability that the prime is selected

from Primes(g) \Bad(M) times 1
2|M| . Thus, we only need to show that |Primes(g)\Bad(M)|

|Primes(g)| > 2
3 .

For every q ∈ [n] there are at most log n different primes that divide it. Thus the size of Bad(M) is at
most log n ·

(
m
2

)
< g

32·log g . As noted in Section 2, Π(g) −→ g
ln g and hence Π(g) ≥ g

log g for large enough

g. This implies that |Primes(g) \Bad(M)| > 2·Π(g)
3 .

5.2.2 Proof of Theorem 1.4

Fix g ≤ log n
4 . Since the theorem is asymptotic, we may assume that g is large enough so that e0.9 log g ≥ 2g

and so that r = Π(2 log g) − Π(log g) ≥ 0.9 log g
ln log g . The first assumption is obviously correct for large

enough g, while the second is by substituting Π(2 log g) with (1 − δ) times its limit formula, as given in
Section 2, and Π(log g) by 1 + δ times the limit formula, for small enough δ.

Let Alg be a potential deterministic adaptive, two-sided error, (1/32)-test for Period(≤ g), that has

query complexity m ≤
√

2
3 ·

1+log g
1+log log g . Let p1, p2, . . . be the sequence of prime numbers in increasing

order. The assumptions on r, g above imply that

Πpi∈[log g,2 log g]pi ≥ (log g)r ≥ er ln log g ≥ e0.9 log g ≥ 2g. (10)
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Let z be the largest integer such that pz ≤ 2 log g and let y be the largest integer such that κ =∏
i∈[y,z] pi > 2g. Observe that such a y ≥ 2 exists by Equation (10).

Note also that κ ≤ (2 log g)z−y+1 which implies that z − y + 1 ≥ 1+log g
1+log log g . In addition, by the

definition of κ and y it follows that κ ≤ 2g · 2 log g which by our assumption on g implies that κ ≤ n/2.
Let S = { κ

pj
, j ∈ [y, z]}, thus |S| ≥ z − y + 1. Note that by our assumption on m we get(

m

2

)
< m2/2 ≤ |S|/3 (11)

We next describe the distributions DP ,DN .
Both distributions DP and DN , are over strings in Period(κ). Each will be constructed by choosing

w ∈ {0, 1}κ according to the corresponding distributions D∗
P and D∗

N that are defined below, and then
concatenating w to itself enough times to form a string of length n. Note that if w ∈ Period(≤ g), then the
resulting length-n string is in Period(≤ g) w.r.t. {0, 1}n. Also, if w is ε-far from Period(p), for any p ≤ g,
or from Period(≤ g), then the corresponding length-n string is ε-far from Period(p), or Period(≤ g),
respectively. Consequently, we may assume that Alg uses only queries in [κ]. This enables us to simplify
notations by treating the input string as if it had length κ.

For this section let Far be the event that w ∈ {0, 1}κ is 1
32 -far from Period(≤ g). The distributions

D∗
N , D∗

P are defined as follows: D∗
N = (Uκ | Far), where Uk is the uniform distribution on length-κ strings.

The distribution D∗
P is defined by: first a random s ∈ S is chosen, then a random w ∈ {0, 1}s is chosen.

Finally, w is concatenated to itself enough times so to form a word of length κ. Thus, as explained before,
we may restrict ourselves to the words of length κ generated according to D∗

N and D∗
P .

Since κ > 2g we may apply Claim 5.3 which asserts that for any interaction (M,η) of Alg,
Prα∈D∗

N
[(αM = η)] > 2

3·2|M| .
Fix (M,η) to be any possible interaction of Alg. Let Bad(M) be the set of all t for which there exists

i, j ∈ M such that i = j (mod t). If s 6∈ Bad(M) then the αi’s are independent for every i ∈ M . Hence,
in this case αM = η with probability 1

2|M| . Consequently, Prα∈D∗
P
[(αM = η)] is at least the probability of

selecting s ∈ S \Bad(M)) times 1
2|M| .

Observe that each member of Bad(M) is divisible by at most one member of S, since the lowest
common multiplier of any two elements in S is κ. Thus |Bad(M)| ≤

(
m
2

)
which by Equation (11) implies

that |Bad(M) ≤ 1
3 · |S|. Thus Pr[s ∈ Bad(M)] < 1

3 which implies that Prα∈D∗
P
[(αM = η)] > 2

3 ·
1

2|M| .
Claim 5.2 ends the proof of the Theorem.
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[1] N. Alon, O. Goldreich, J. Håstad and R. Peralta, Simple Construction of Almost k-wise Independent
Random Variables. Random Struct. & Algorithms, 3(3) 289-304, 1992, and Addendum at same journal
4(1) 119–120, 1993.

[2] N. Alon and J. H. Spencer, The Probabilistic Method, Second Edition, Wiley, New York, 2000.

[3] F. Ergun, S. Muthukrishnan, and C. Sahinalp. Sub-linear methods for detecting periodic trends in
data streams. In LATIN 2004, Proc. of the 6th Latin American Symposium on Theoretical Informatics,
16–28, 2004.

15



[4] E. Fischer, The art of uninformed decisions: A primer to property testing, Current Trends in Theoret-
ical Computer Science: The Challenge of the New Century, G. Paun, G. Rozenberg and A. Salomaa
(editors), World Scientific Publishing (2004), Vol. I 229-264.

[5] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss, Near-optimal sparse Fourier
representations via sampling. In STOC 2002, Proceedings of the thirty-fourth annual ACM symposium
on Theory of computing, 152–161, 2002.

[6] S. Goldwasser O. Goldreich and D. Ron, Property testing and its connection to learning and approxi-
mation. Journal of the ACM, 45:653–750, 1998.
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