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Abstract

An induced matching in a graph G is a set of edges, no two of which meet a common
node or are joined by an edge of G; that is, an induced matching is a matching which forms
an induced subgraph. Induced matchings in graph G correspond precisely to independent sets
of nodes in the square of the line-graph of G, which we denote by [L(G)]2. Often, if G has
a nice representation as an intersection graph, we can obtain a nice representation of [L(G)]2

as an intersection graph. Then, if the independent set problem is polytime-solvable in [L(G)]2,
the induced matching problem is polytime-solvable in G. In particular, we show that if G is
a polygon-circle graph, then so is [L(G)]2, and the same holds for asteroidal triple-free and
interval-4lament graphs. It follows that the induced matching problem is polytime-solvable in
these classes. Gavril’s interval-4lament graphs include cocomparability and polygon-circle graphs,
and the latter include circle graphs, circular-arc graphs, chordal graphs, and outerplanar graphs.
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A matching is a set of edges, no two of which meet a common node. An induced
matching M in a graph G is a matching such that no two edges of M are joined by
an edge of G; that is, an induced matching is a matching which forms an induced
subgraph.
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Fig. 1. The bold edges of G form a claw in [L(G)]2.

In this paper, I consider the problem of 4nding a largest induced matching in a
graph G. This problem is NP-hard for bipartite graphs [4,30], and for planar graphs
[20].
The line-graph, L(G), of graph G has node-set E(G), and an edge joining two nodes

exactly when the edges of G they correspond to meet a common node. The square, G2,
of graph G has node-set V (G), and two nodes are joined in G2 exactly when they are
joined by an edge or a path of two edges in G. A set of nodes is called independent
if no two of them are joined by an edge.

Remark 1. For any graph G, every induced matching in G is an independent set of
nodes in [L(G)]2, and conversely.

Thus, to 4nd the largest induced matching in a graph G, we can 4nd the largest
independent set of nodes in [L(G)]2.
Note that line-graphs are claw-free, and there is a polytime algorithm for 4nding

a largest independent set of nodes in a claw-free graph [24,28]. However, squares of
line-graphs need not be claw-free as can be seen from the graph of Fig. 1.
A strong edge-colouring of a graph is a partition of its edges into induced match-

ings, and the strong chromatic index of a graph is the minimum size of strong
edge-colouring. The chromatic number of a graph is the minimum size of a partition
of the nodes into independent sets. By Remark 1, it follows that the strong chromatic
index of G equals the chromatic number of [L(G)]2.
Given a family F of non-empty sets, the intersection graph I(F) of F has

node-set F and an edge between u and v exactly when u ∩ v �= ∅. There are many
well-studied classes of intersection graphs including the following. Interval graphs are
the intersection graphs of a set of intervals on a line; chordal graphs are the inter-
section graphs of a set of subtrees of a tree; circular-arc graphs are the intersection
graph of a set of arcs of a circle; circle graphs are the intersection graphs of a set
of chords of a circle; polygon-circle graphs are the intersection graphs of a set of
convex polygons inscribed on a circle. Polygon-circle graphs include chordal graphs
[18], circular-arc graphs [18], circle graphs, and outerplanar graphs (see [22]).
Cocomparability graphs are the complements of comparability graphs, which are

graphs which have a transitive orientation. Cocomparability graphs can be characterized
as the intersection graphs of a set of curves between two parallel lines, L1 and L2, in
the plane, each curve having one endpoint on L1 and the other on L2 [17].
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Recently, Gavril [11] has introduced a new class of graphs which he calls interval-
4lament graphs. A graph is an interval-5lament graph if it is the intersection graph of
a set of curves C (called interval-4laments) in the xy-plane with left endpoint, l(C),
and right endpoint, r(C), lying on the x-axis such that C lies in the plane above and
within the interval [l(C); r(C)]. Interval-4lament graphs include polygon-circle graphs
and cocomparability graphs [11].
The following idea was used in [4] to prove that if G is chordal, then [L(G)]2 is

chordal.

Proposition 1. Let G=I(F), be the intersection graph of a family F. Then [L(G)]2

is the intersection graph of the family

F′ = {u ∪ v : u; v∈F; u �= v; u ∩ v �= ∅};
that is, [L(G)]2 =I(F′).

Proof. Let u ∪ v, w ∪ x∈F′. Then

u ∪ v and w ∪ x are joined by an edge in I(F′)
⇔ at least one of u; v intersects at least one of w; x
⇔ u or v ∈{w; x}, in which case uv and wx meet a common node in G,

or u; v; w; x are all distinct, and say v ∩ w �= ∅, in which
case uv; vw; wx forms a path of three edges in G

⇔ uv and wx are joined by an edge in [L(G)]2.

Note that if u and v are two intersecting subtrees of a tree T , then u ∪ v is also
a subtree of T . Similarly, if u and v are two intersecting intervals on a line L, then
u ∪ v is also an interval on L, and, if u and v are two intersecting arcs of a circle C,
then u ∪ v is also an arc of C. These observations, together with Proposition 1 give
the following corollaries.

Corollary 1 (Cameron [4]). If G is a chordal graph, then so is [L(G)]2.

Corollary 2. If G is an interval graph, then so is [L(G)]2.

Corollary 3 (Golumbic and Laskar [15]). If G is a circular-arc graph, then so is
[L(G)]2.

In Fig. 2, I give an example of a circle graph G for which [L(G)]2 is not a circle
graph. It is easily checked and also is proved in [2] that the partial wheel G is a
circle graph. However, the subgraph of [L(G)]2 induced by the bold edges of G is the
5-wheel, which is not a circle graph [2], so [L(G)]2 is not a circle graph.

I now prove that for the classes of polygon-circle graphs, cocomparability graphs,
and interval-4lament graphs, if G is in the class, then so is [L(G)]2.
These results are more diKcult than for interval, chordal, and circular-arc graphs,

because the union of two intersecting polygons inscribed on a circle is not generally
another polygon inscribed on a circle, the union of two intersecting curves between



4 K. Cameron /Discrete Mathematics 278 (2004) 1–9

Fig. 2. A circle graph G for which [L(G)]2 is not a circle graph.

two parallel lines is not generally another such curve, and the union of two inter-
secting interval-4laments is not generally another interval-4lament. Thus, we cannot
apply Proposition 1 directly. Rather, we show that in each case, if G is the intersection
graph of a family F, then [L(G)]2 is the intersection graph of a family F′′ = {S(z) :
z ∈F′}= {S(u ∪ v) : u; v∈F, u �= v, u ∩ v �= ∅}, where S has the properties that for
u ∪ v, w ∪ x∈F′,

1. (u ∪ v) ∩ (w ∪ x) �= ∅ ⇒ S(u ∪ v) ∩ S(w ∪ x) �= ∅,
2. S(u ∪ v) ∩ S(w ∪ x) �= ∅ ⇒ (u ∪ v) ∩ (w ∪ x) �= ∅.

Then, since [L(G)]2 is the intersection graph of F′, it is also the intersection graph
of F′′.

Theorem 1. If G is a polygon-circle graph, then so is [L(G)]2.

Proof. Let CH(z) denote the convex hull of z. For S=CH, property (1) above clearly
holds since a set is contained in its convex hull. We will prove (2) by showing:

Claim. If u and v are two intersecting polygons inscribed on a circle C, and if P is
another polygon inscribed on C, then CH(u∪ v)∩P �= ∅ ⇒ [u∩P �= ∅] or [v∩P �= ∅].

Then (2) follows by applying the claim twice, once with P = CH(w ∪ x), and then
a second time, replacing CH(u ∪ v) with CH(w ∪ x) and replacing P by the one of
u and v which intersects CH(w ∪ x). (We know that either u or v does by the 4rst
application.)

Proof of the claim. Assume CH(u∪ v)∩P �= ∅. CH(u∪ v) and P are convex, so since
they intersect, they intersect in a boundary point B of each. Now B is either a vertex
of P or lies on an edge E of P. In the 4rst case, B lies on the circle C, and it follows
that B must be a vertex of u or of v. In the second case, edge E is a chord of the
circle. Since E is a chord of the circle C which intersects CH(u ∪ v) and since u and
v are polygons inscribed on C, E must intersect either u or v.
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Note that not all nice subclasses of polygon-circle graphs have the property that for
G in the subclass, [L(G)]2 is also in the subclass—as mentioned above, this is not true
for circle graphs, and it is not true for the outerplanar graph C5, the circuit on 4ve
nodes, for instance, since [L(C5)]2 is the complete graph on 4ve nodes, which is not
outerplanar.

Theorem 2. If G is an interval-5lament graph, then so is [L(G)]2.

Proof. Let G be the intersection graph of a set C of interval-4laments on a horizontal
line L. Consider two intersecting members of C, say C1 and C2. Consider a plane
(multi)graph H , whose nodes are the endpoints and intersection points of C1 and C2,
and whose edges are the pieces of C1 and C2 between these points. All nodes of H
except the endpoints of C1 and C2 have even degree. Let l∗ be the leftmost of the left
endpoints of C1 and C2, and let l∗ be the other left endpoint; and let r∗ be the rightmost
of the right endpoints of C1 and C2, and let r∗ be the other right endpoint. Find a path
P in H between l∗ and r∗. Create a plane graph H ′ from H by doubling the edges of
P in H , (that is, for each edge of P, add a new edge parallel to it), keeping each new
edge “close” to the original, so that a copy of a piece of Ci intersects only 4laments
that Ci does. H ′ is a plane graph with exactly two nodes of odd degree, l∗ and r∗,
thus there is a planar Eulerian walk W of H ′ from l∗ to r∗. Let S(C1 ∪ C2) = W .
Then it is clear that (1) and (2) hold, and thus [L(G)]2 is also an interval-4lament
graph.

This idea can also be used to prove:

Theorem 3 (Golumbic and Lewenstein [16]). If G is a cocomparability graph, then
so is [L(G)]2.

This result was proved by Golumbic and Lewenstein [16] in a diPerent way. They
proved that if G is a k-trapezoid graph, then so is [L(G)]2. Cocomparability graphs
are the union over all k, of k-trapezoid graphs.

Proof of Theorem 3. Let cocomparability graph G be the intersection graph of a set
C of curves between two parallel vertical lines, L1 and L2, in the plane, each curve
having one endpoint on L1 and the other on L2. Consider two intersecting members of
C, say C1 and C2. Consider a plane (multi)graph H , whose nodes are the endpoints and
intersection points of C1 and C2, and whose edges are the pieces of C1 and C2 between
these points. All nodes of H except the endpoints of C1 and C2 have even degree.
Find a path P in H between one of the endpoints on L1 and one of the endpoints on
L2. Create a plane graph H ′ from H by doubling the edges of P in H , keeping each
new edge “close” to the original, so that a copy of a piece of Ci intersects only curves
that Ci does. H ′ is a plane graph with exactly two nodes of odd degree, and thus there
is a planar Eulerian walk W of H ′, with one endpoint on L1 and the other on L2. Let
S(C1 ∪ C2) = W . Then it is clear that (1) and (2) hold, and thus [L(G)]2 is also a
cocomparability graph.
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Polytime algorithms have been given for 4nding a largest independent set of nodes
in chordal graphs [9], in circular-arc graphs [10], and in interval-4lament graphs [11],
and one is well known for cocomparability graphs (4nd a transitive acyclic orientation
of the complement [12,13], and then 4nd a largest clique). By Corollaries 1, 3 and
Theorems 2, 3, these provide polytime algorithms for 4nding a largest induced matching
in these classes.
Polytime algorithms have also been given for 4nding a minimum colouring (that

is, partition of the nodes into independent sets) of chordal graphs [9], and of cocom-
parability graphs (see for example, [6] or [5]). Again, by Corollary 1 and Theorem
3, these provide polytime algorithms for 4nding a minimum strong edge-colouring in
these classes. However, this approach does not help in the case of circular-arc graphs
(or more generally for polygon-circle or interval-4lament graphs), as chromatic num-
ber is NP-hard for circular-arc graphs [8]. In [8], a polytime algorithm is given for
determining for 4xed k, if a circular-arc graph is k-colourable; this then provides a
polytime algorithm for determining for 4xed k, if a circular-arc graph has a strong
edge-colouring with at most k colours.
Gavril’s algorithm for 4nding a largest independent set of nodes in an interval-

4lament graph requires as input the interval-4lament representation. It follows that the
approach given by Theorem 2 for 4nding a largest induced matching in an interval-
4lament graph also requires such a representation. Given the interval-4lament represen-
tation of G, a representation of [L(G)]2 can be constructed in polytime as described in
the proof of Theorem 2, and then Gavril’s algorithm can be applied to 4nd a largest
independent set of nodes in [L(G)]2.
So far, the only polytime algorithm known for the independent set problem in

polygon-circle graphs is Gavril’s algorithm for the more general class of interval-
4lament graphs. For the other classes of graphs mentioned, namely, chordal graphs,
cocomparability graphs, and circular-arc graphs [14], polytime algorithms exist for the
independent set problem, and thus for the induced matching problem, which do not
require any representation but simply the adjacency information.
An independent set of three nodes is called an asteroidal triple (AT) if between each

pair in the triple there exists a path that avoids the neighbourhood of the third. A graph
is asteroidal triple-free (AT-free) if it contains no asteroidal triple. AT-free graphs are
not yet known to be the intersection graphs of some nice family, however they contain
several classes of intersection graphs including interval graphs [23] and cocomparability
graphs [7]. Chordal graphs may have asteroidal triples. Note that although powers of
AT-free graphs are AT-free [26], line-graphs of AT-free graphs need not be AT-free;
Jou-Ming Chang pointed out that K6, the complete graph on six nodes, is AT-free, but
its line-graph is not.

Theorem 4. If G is AT-free, so is [L(G)]2.

Theorem 4 was proved independently in [19]. In [3,21], polytime algorithms are
given for 4nding a largest independent set of nodes in AT-free graphs. Thus these al-
gorithms provide polytime algorithms for 4nding a largest induced matching in AT-free
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graphs. The complexity of chromatic number in AT-free graphs has not yet been
determined.
To prove Theorem 4, I will prove the following.

Proposition 2. If [L(G)]2 has an asteroidal triple, then G has an asteroidal triple.

Proof. Where e is an edge of G, let v(e) denote the corresponding node of [L(G)]2.
Suppose {v(x); v(y); v(z)} is an AT in [L(G)]2. Let v(x)=v(e1); v(e2); : : : ; v(ek)=v(y)
be the nodes of a chordless path P in [L(G)]2, which avoids the neighbourhood of
v(z). Since v(ei)v(ei+1) is an edge of [L(G)]2, ei and ei+1 either meet a common node
in G or are joined by an edge of G. If three of the ei’s either met a common node in
G or formed a path of three edges in G, then the corresponding v(ei)’s would induce
a triangle in [L(G)]2, so P would not be a chordless path in [L(G)]2. It follows that
the subgraph of G formed by the ei’s consists of paths of one or two edges. Let’s call
these paths p1; p2; : : : ; pm where p1 is either e1 or e1e2 and the others follow in order
as in P. There must be an edge of G between pj and pj+1; choose one such edge for
each j and call them the suppressed edges.
Now, if pj = eiei+1 is a path with two edges, and u is its middle node, then there

cannot be an edge f of G from u to pj+1, because then where ek ⊆ pj+1 meets f,
v(ek) is joined to both v(ei) and v(ei+1) in [L(G)]2, so P would have a chord. Thus
the 4rst node of pj is joined to pj−1 and the last node of pj is joined to pj+1 (unless
pj is the 4rst or last path).
Now, if pj = ei is a path with one edge, then ei is met by two suppressed edges,

one joining it to pj−1 and one joining it to pj+1. These two suppressed edges may
meet either one or both ends of ei.
Let P′ consist of all suppressed edges, the two-edge paths pj, and the one-edge

paths ph both of whose ends are met by suppressed edges, and x and y (if not already
listed). P′ is a path in G starting with x= e1 and ending with y. Note that every node
of P′ is met by some ei.
Let x′ be an end of x, y′ an end of y, and z′ an end of z. I claim that {x′; y′; z′} is an

AT in G. Since {v(x); v(y); v(z)} is independent in [L(G)]2, {x′; y′; z′} is independent
in G. P′ contains an x′y′-path P′′ in G. P′′ does not contain any neighbours of z′ in
G because if node v of P′′ is a neighbour of z′ in G, and v meets edge ei of P′,
then v(ei) and v(z) are joined in [L(G)]2, contradicting the choice of P. It follows that
{x′; y′; z′} is an AT in G.

In [4], a set N of edges in a graph G was de4ned to be neighbourly if every
pair of edges of N either meet a common node or are joined by an edge of G. For
any graph G, neighbourly sets of edges correspond precisely to cliques in [L(G)]2.
Polytime algorithms have been given for 4nding a largest clique in chordal graphs [9],
circular-arc graphs [10], interval 4lament graphs [11], and in cocomparability graphs
(for example, [6] or [5]), and thus by Corollaries 1, 3 and Theorems 2, 3, these provide
polytime algorithms for 4nding a largest neighbourly set in these classes. Also, polytime
algorithms have been given for 4nding a minimum partition of the nodes of a graph into
cliques (that is, to 4nd a minimum clique cover) in chordal graphs [9] and circular-arc
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graphs [10], and is well-known for cocomparability graphs (4nd a transitive acyclic
orientation of the complement [12,13], and then 4nd a minimum colouring), so these
provide polytime algorithms for 4nding a minimum partition of the edges of a graph in
these classes into neighbourly sets (that is, to 4nd a minimum neighbourly set cover).
An NC-algorithm is one which uses polynomially many parallel processors and

whose running time is polynomial in the logarithm of the length of the input. As
noted in [4], it is straightforward to design an NC algorithm to 4nd [L(G)]2 for graph
G. Thus, as noted in [4], the NC algorithms in [25] provide NC algorithms for 4nding
a maximum induced matching, minimum strong edge-colouring, maximum neighbourly
set, and minimum neighbourly set cover in chordal graphs. Similarly, NC algorithms
for maximum independent set [1,29], maximum clique [1], and minimum clique cover
[29] in circular-arc graphs provide NC algorithms for maximum induced matching,
maximum neighbourly set, and minimum neighbourly set cover in this class. Also, the
NC algorithm for minimum clique cover in cocomparability graphs [27] provides an
NC algorithm for minimum neighbourly set cover in this class.
Please note that when I have mentioned a polytime or NC algorithm for a prob-

lem, I have generally only mentioned the 4rst such algorithm found. Often, improved
algorithms also exist.
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