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AN APPROXIMATE SOLUTION FOR THE STEINER PROBLEM
IN GRAPHS

Hiromitsu TAKAHASHI* and Akira MATSUYAMA*

(Received April 19, 1979)

Abstract. An O(kn?) time algorithm finding an approximate solution for the Steiner problem
in graphs is considered, where n is the number of vertices in a given graph and & is the number of
vertices that must be connected. The worst case cost-ratio of the obtained solution to the optimal
solution is tightly 2-(1 —1/k).

1. Introduction. Let G = (V, E) be a connected, undirected graph with a cost
function ¢, where V is a finite set of vertices, E is a set of unordered pairs of distinct
vertices in ¥ called edges, and ¢ maps each edge (v;,v;) of E toa positive number
c(v;, v;) called the cost of edge (v;,v)). A subgraph G' =", E") of G=(V,E) is
a graph such that V' C ¥ and E' CE. The cost of a subgraph G' is the sum of the
cost of edges in G'. The Steiner problem in graphs is: given graph G = (V,E) and a
subset § of ¥, find a subgraph with the minimum cost among all connected subgraphs
that contain S. It is evident that the subgraph which is a solution of this problem must
be a tree. We briefly call it an optimal tree.

Let |V |=n, and |S|=k (k>2) (| X| denotes the number of elements in set
X). The Steiner problem in graphs is reduced to the “shortest path problem” when
k=2, and to the “minimum-cost spanning tree problem” when k =n. These two
problems are solved effectively by many authors [2], [3], [6], [7],etc. Dreyfus and
Wagner [4] gave an algorithm solving the Steiner problem in graphs which requires
time proportional to n*/2 +n? -(Qk_l— E—1)+n -(3‘ic —1_9k 4+ 3)/2. But this method
is useful only for small values of k. No polynomial time algorithms of solving the
Steiner problem in graphs are likely to exist, since Karp [5] showd that this problem
is NP-complete. Hence it is of practical importance to obtain approximation methods
which find trees whose costs are close to optimal.

Let H = (S, E') be the complete graph on the vertices S, and let the cost of edge
(u,v) in H be the length of a shortest path between « and v in G. It pointed out in
[9] that a minimum-length spanning tree in A is an approximate solution of the
Steiner tree problem for G whose worst case cost-ratio to an optimal trees is less than
orequal to 1/2.
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In this paper we propose a more practical and reasonable algorithm to find an ap-
proximate solution for the Steiner problem in graphs and analyze it to bound the worst

case cost-ratio of the obtained tree to an optimal tree.

2. An approximation algorithm. In this section we give an algorithm for finding
an approximate solution for the Steiner problem in graphs.

At each step in this algorithm, a tree containing a subset of § has been built up,
and a new vertex in S is inserted together with a shortest path connecting the tree and
the vertex. Let PATH(W,v) denote a path whose cost is minimum among all shortest
paths from vertices in W to vertex v where WC V and v § W. Denote by é(W,v)
the cost of PATH(W, v). Then the algorithm to find an approximate solution T may
be described as follows:

Step 1. Start with subgraph Ty = (V1,E}) consisting a single vertex, say vy, in
S, thatis, set Vy = {v,} and E; =0.

Step 2. For each i=2,3,---,k do: Findavertex in = V4. say ¥, such
that é(¥V;_,,v;) = min {e(Vi_y ) 1V E S — V;_, }. Construct tree T;= (Vi E})
by adding PATH(V;_,,¥;) tO T;_y,ie., set Vi=Vi_, Y { vertices in PATH(V;_,
v)} and E;=E;_, U { edges in PATH(V;_,, )}

We assume that when there are ties in step 1, they can be broken arbitrarily.

We note that this algorithm requires at most O(kn?) time, since PATH(V;_,. %)
can be computed in time complexity O(n?*) by Dijkstra’s algorithm [3].

Let d(u,v) be the cost of the path between vertices u and v in an optimal tree.
We use OPTIMAL to represent the cost of an opttmal tree.

Lemma 1. There exists a permutation ty, 1, " g of 1,2,-00,k such that
d(l’rJ ’vf;) 4o +d(vfk—1’vfk) +d(vfk’vf|)= 2.0PTIMAL
and

d(v,, ,v; ) >(2[k)-OPTIMAL.

Proof. Suppose that v;. in S is visited after v, _ in S for each 2< <k bya
I_,’ 1’!__1

Tootl

Fig. 1. An example of 2 preorder
traversal of an optimal tree

(d(v, v, )= max {d(v; ,v; ).
oo, d(y;,, vfs), d(l:f5 ,vl-l)} ¥
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preorder traversal [I, p. 54] of an optimal tree from an arbitrary vertex (see Fig. 1).
Then d(v; , Vi tine +d(v- )+d(v, Vi )=2-OPTIMAL. Assume d(v; _ vl-r)

3 Ik
—max{d‘(vI Vi, v ), - d(v,k VR )} forsome r, 2<r<k. Then sett-
lﬂg tl = Irs % ] ILk-—.f'+l lk: tk—.l"+2 Ils ] tk If'—l) we have d(l’r}_l,Vt])‘H

d(vy,, vy ) forall 2<j<k. Hence d(ve, vy, )?(2/k)-OPTIMAL. O

Let APPROXIMATE be the cost of the obtained tree T} by the algorithm. Then
APPROXIMATE is equal to i ,&(V;_,, ;).

Theorem 1. Forall n and k(2<k<n-—1),

APPROXIMATE / OPTIMAL < 2-(1 — 1/k).

Moreover if k =n, APPROXIMATE is equal to OPTIMAL.

Proof. If k =n, the algorithm is Prim’s algorithm [7] computing a minimum-
cost spanning tree. Hence the latter half of the theorem is proved.

Since the cost of PATH(V;_,, v;) is minimum among all paths between vertices

in V;_, and verticesin § —V;_,, we have

(1) Vi1, v)<d(p,vq) forall 2<i<k

if 1<min{p,g} <i—1 and i<max{p,q}< k. By Lemma 1 there is a permu-
tation #;,%,,---,fx of 1,2,---,k such that

2) AWy, vy )+ +dg,_,,Ve,) + A0y, vy, ) = 2-OPTIMAL

and

(3) d(vs,., v1, )> (2/)-OPTIMAL.

We can construct a one-to-one correspondence between numbers i,i=2,3,---,k and

pairs (#;_y.1), j=2,3,---,k, such that

e(Vipv)<d(vg_,, V).

i
Such a correspondence can be established by the method which Rosenkrantz, et al. used
in more general case [8, Proof of Lemma 3]. Foreach i with i = 2, consider the

longest subsequence L) Lp@yets =+~ e slgtny—15Lg(0) including i of sequence
ty, b, -+, tp such that fpy) <i, 5y <1 and ¢;>1i foreach j,j=p p+1,-
q(i) — 1. In other words, subsequence ¢y, - - - , fg(;) includes i, and all the inter-

mediate numbers except for i in that subsequence are larger than #. The critical

number i* for i is defined by

Ip (i if tyay =1,
i*= Iq (i) if Ipi) = i,
max { fp(f), fq(,') } otherwise.

-

The critical pair for i is defined to be
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(Ep(i)s Ip(iy+1) if 1% = tpay,
(tqay-15 1q() if 1% = tq0).

Next we show that no two numbers can have the same critical pair. Assume to the
contrary that i and j (i <j) have the same critical pair (f;; _;, ;). Assume that
tm <tm—_1. Then t,, iscritical for i and j, and m = q (i) = q(/j). Since all the inter-
mediate numbers in the subsequence from j to t,, of subsequence f,,2,,---,f; are
larger than j, number i can not be in that sequence. This implies number j is in the
sequence from i to f,. Since f,; <i, all the numbers in the sequence from 7 to j
are larger than t,,. Thus f,(;) > tm = t4(;). This contradicts the assumption that ¢,
is critical for j. The same contradiction is concluded when ¢,; > £, _1-

Let [fj(i)—1» tm(i)] be the critical pair for i, then from (1) we have, since

min { f (iy—1, Im @) } < i < max { tmgiy—1>tm @) } holds,
(4) é(V;‘_la V;)gd(vrm(f)_lavrm(,-))-
From (2), (3) and (4), we have
k
APPROXIMATE = ‘EQE(VI-_“V:-)
l‘—‘& )

k
< ;‘zzd(vim (f)—l > vtm (I)) =p§2 d(v:pf 1’ vtp

= 2-OPTIMAL —d (v, , Vs, )
<2-(1 —1/k)-OPTIMAL. O
If k<n—1, we can construct graphs for which the ratio is equal to 2-(1 — 1/k).
Theorem 2. Forall n &nd k(2<k<n), thege exists a graph for which
APPROXIMATE / OPTIMAL = 2-(1 — 1/k).

Proof. Let V be the set of integers, {1,2,---,n}, E betheset {(i, j)ii=1,
2,--+,n,j=1,2,---,n}, and S betheset {1,2,---,k}. Suppose that

1 =il e il =k Ly
c(i, j)= 2 p=ilett. k—1,7=1+1,;
10 otherwise

(see Fig. 2). It is evident that the tree (SU {k+1}, {Gk+D)i=1,2.---,k})

Fig. 2.

-~
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is obtainable by the algorithm and the cost of this tree is 2-(k —1). The ratio is then
established by dividing 2-(k—1) by OPTIMAL. U

By Theorems 1 and 2, the worst case ratio of APPROXIMATE to OPTIMAL
fen2a (1 —1lk).

The authors have studied two other types of approximate solutions which can be
computed in time complexity Q(n?); (1) a tree obtained from a minimum-cost spann-
ing tree for G = (V, £) by deleting edges not essential in order to connect vertices in S,
and (2) a union of k—1 shortest paths from a single vertex in S. We have been able
to show that cost ratios for these solutions are tightly bounded by n —k + 1 and
k — 1, respectively. It follows that there is little reason to consider these types of ap-

proximations further.

Acknowledgment. Sincere thanks are due to Professor E. L. Lawler for his sug-

gestion of a simple proof technique in Theorem 1.
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