Edge Intersection Graphs of Single Bend Paths on a Grid

Martin Charles Golumbic
Caesarea Rothschild Institute
University of Haifa

Joint work with: Marina Lipshteyn and Michal Stern (2007)
Additional results: Andrei Asinowski, Bernard Ries and Andrew Suk (2008)
and New results by: Therese Biedl and M. Stern (2009)
Daniel Heldt, Kolja Knauer and Torsten Ueckerdt (2010)
Motivation

VLSI layout problem has two phases:

1. **Placement**: a circuit has a set of nets, each net represented by terminals on the planar layout (grid) connected by a wire (path). The wires are edge-disjoint but not vertex-disjoint.

2. **Wiring**: convert two-dimensional edge-disjoint layout into three-dimensional vertex-disjoint layout. A vertical connection between levels is called a via and is used at each level change.
Edge Intersection Graphs of Paths on a Grid (EPG)

Graph $G = (V, E)$

Paths on a grid Γ

Each vertex v in $V(G)$ corresponds to a path P_v in Γ such that $(x, y) \in E(G) \iff$ paths P_x and P_y share at least one edge in Γ
First Results

Theorem. Every graph has an EPG representation on an $n \times 2n$ grid.

Figure 3: The graph G and an EPG representation of G.
First Results, cont.

Theorem. Every graph has a monotone EPG representation on an $n \times (n+e)$ grid.
So we will look at a specific, interesting special subclass of EPG

Restrict the number of bends allowed in a path.
Bends of Wires on a Layout

- In chip manufacturing, each bend requires a transition hole.
- High number of such holes may increase the layout area and the cost of the chip.
- A lot of research is done to minimize the number of bends in a layout.
Single Bend: B_1-EPG

Definition: Only one bend (per path)

Theorem: Every tree is B_1-EPG.
Single Bend: \(B_1 \)-EPG

Definition: Only one bend (per path)

Theorem: Every tree is \(B_1 \)-EPG

Figure 5: A \(B_1 \)-EPG representation of a tree.
Some Examples of the Chordless Cycle C_4

True Pie

False Pie

C_4

Various types of Frames
Some Examples of the Chordless Cycle C_4

True Pie

False Pie

C_4

Various types of Frames
The Structure of Representations of Cycles

The case of C_4:

Theorem: Let P be a B_1-EPG representation of a chordless 4-cycle C_4.

Then P is either a true pie or a false pie or a frame.
Representations of Longer Cycles

The case of $C_n \ (n > 4)$:

Theorem: Chordless cycles of all sizes have B_1-EPG representations; they all use an even number of bends.
Anti-holes

• The graphs \overline{C}_5 and \overline{C}_6 are B_1-EPG

Bernard Ries (2009): The remaining anti-holes \overline{C}_n ($n \geq 7$) are not B_1-EPG

Proof. Three cases: true pie, false pie and frames on $\{1, n-1, 2, n-2\}$.
The Complete Bipartite Graphs

- The graph $K_{3,3}$ has no B_1-EPG representation
- For any m, $K_{m,\infty}$ is B_{2m-2}

Asinowski and Suk (2008):

- $K_{2,n}$ is B_1 if and only if $n \leq 4$
 (hence $K_{2,5}$ is not B_1)
- $K_{m,\infty}$ is not B_{2m-3}
- $K_{m,n}$ is $B_{\max\{\lceil m/2 \rceil, \lceil n/2 \rceil\}}$ (hence $K_{m,m}$ is $B_{m/2}$)
- more to say about $K_{m,n}$ later ...
Theorem. Cliques have exactly two possible B_1-EPG representations:

- **“edge-clique”**: all paths share a common grid edge
- **“claw clique”**: each path contains two of the three grid edges of a claw

Example: Representations of K_6
Theorem:

Let \mathbf{P} be a \mathbf{B}_1-EPG representation of G. Every clique in G corresponds to either an edge-clique or a claw-clique.

Proof. If no path bends, we have an interval graph.

If some \mathbf{P}_u bends, using legs e_1 and e_2, then all paths that share only e_1 or e_2 must share some other edge – namely a common leg e_3.
The Helly Property for B_1-EPG Graphs

Single bend paths on a grid do **NOT** satisfy the Helly property.

Example: \[P_1 \cap P_2, P_1 \cap P_3, P_2 \cap P_3 \neq \emptyset \]

But \[P_1 \cap P_2 \cap P_3 = \emptyset \]
But B_1-EPG do have the following property:

Theorem: Let \mathcal{P} be a B_1 representation with $P_1, \ldots, P_m \in \mathcal{P}$.

(1) If P_i and P_j share an edge $\forall i, j$, then $P_1 \cap \ldots \cap P_m \neq \emptyset$.

AND Strong Helly Number 4 of B_1 representations:

(2) There exist paths P_i, P_j, P_k, P_l such that

$$P_i \cap P_j \cap P_k \cap P_l = P_1 \cap \ldots \cap P_m$$

This is best possible:

(any three intersect in a point, but the intersection of all four is empty.)
The Hermann Grid
Branch Graphs

Definition: Let C be a subset of vertices of G. The branch graph $B(G/C)$:

- **vertices:** $V - C$
- **edges:** (x,y) is an edge in $B(G/C)$ iff
 1. $(x,y) \notin E(G)$ and
 2. x,y have a common neighbor in C, and both have private neighbors in C.

![Diagram of a branch graph](image)
Example. The 4-sun S_4:

Choosing the clique K_4
Example. The 4-sun S_4:

Choosing the clique K_4, the branch graph $B(S_4/K_4)$ is the chordless cycle C_4.

S_4
Example. The 4-sun S_4:

Choosing the clique K_4, the branch graph $B(S_4/K_4)$ is the chordless cycle C_4.

$B(S_4/K_4)$
Example. The 4-sun S_4:
Choosing the clique K_4, the branch graph $B(S_4/K_4)$ is the chordless cycle C_4.

Example. The graph A_4 (below):
Choosing the clique K_6, the branch graph $B(A_4/K_6)$ is the clique K_4.

Branch Graphs
Branch Graphs

Example. The 4-sun S_4:

Choosing the clique K_4, the branch graph $B(S_4/K_4)$ is the chordless cycle C_4.

Example. The graph A_4 (below):

Choosing the clique K_6, the branch graph $B(A_4/K_6)$ is the clique K_4.
Example. The 4-sun S_4:

Choosing the clique K_4, the branch graph $B(S_4/K_4)$ is the chordless cycle C_4.

Example. The graph A_4 (below):

Choosing the clique K_6, the branch graph $B(A_4/K_6)$ is the clique K_4.

Branch Graphs
Theorem: Let K be a maximal clique of a B_1-EPG graph G.

1. If K is an edge-clique, then the branch graph $B(G/K)$ can be 2-colored.
2. If K is a claw-clique, then $B(G/K)$ can be 3-colored.

Corollary. The graph A_4 is not B_1-EPG.

Proof: $B(A_4/K_6)$ requires 4 colors.
More Forbidden Subgraphs

These graphs are not B_1-EPG, but they are B_2-EPG.

- $K_{3,3}$ (Golumbic, Lipshteyn, Stern)
- $K_{2,5}$ (Asinowski)
- W_k ($k \geq 5$) (Ries)
B_k-EPG Graphs Hierarchy

- B_0-EPG graphs \equiv interval graphs

 C_4 is not interval, but is B_1-EPG,

 so B_0-EPG $\subset B_1$-EPG

 $K_{3,3}$ is not B_1-EPG, but is B_2-EPG,

 so B_1-EPG $\subset B_2$-EPG

QUESTION:

Is $B_0 \subset B_1 \subset B_2 \subset \cdots \subset B_k \subset B_{k+1} \cdots$?

Andrei Asinowski proved this for odd k.

Heldt, Knauer and Ueckerdt have proven this for all k.
More Motivation
Open Questions

Characterization:

- What are the B_1-EPG graphs?
- What are the B_k-EPG graphs? ($k = 2, 3, \ldots$)

Monotonic Representations:

The 4-wheel W_4 is not “monotonic-B_1”

but it is B_1-EPG (Bernard Ries)

So $\text{monotonic-}B_1 \subset B_1$-EPG

- Is $\text{monotonic-}B_k \subset B_k$-EPG? ($k = 2, 3, \ldots$)
Computational Complexity

Theorem (Heldt, Knauer and Ueckerdt (2010))

Recognizing B_1-EPG graphs is NP-complete.

Open Complexity Questions

- Coloring of B_1-EPG graphs
- Finding maximum independent sets
The bend number of a graph

• What is the minimum number of bends to represent a given graph G? That is,

Define the **bend number**

$$b(G) \equiv \text{the smallest } k, \text{ such that } G \text{ has a } B_k\text{-EPG representation}$$
The bend number of a graph

<table>
<thead>
<tr>
<th>b(G)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>trees</td>
<td>1</td>
</tr>
<tr>
<td>planar</td>
<td>(\leq 5)</td>
</tr>
<tr>
<td>outerplanar</td>
<td>2</td>
</tr>
<tr>
<td>bipartite planar</td>
<td>2</td>
</tr>
<tr>
<td>line graphs</td>
<td>2</td>
</tr>
<tr>
<td>(K_{m,n}) ((m \leq n))</td>
<td>(\leq \left\lceil \frac{n}{2} \right\rceil) *</td>
</tr>
<tr>
<td></td>
<td>(\geq 2m - 2) **</td>
</tr>
</tbody>
</table>

* bound is tight for \(m=n \)
 Heldt, K. Knauer and Ueckerdt

** bound is tight for \(n \geq m^4 - 2m^3 + 5m^2 - 4m \)
 Heldt, K. Knauer and Ueckerdt
A Different Famous Grid

$S_{\delta^0 k_u}$
Yet More Open Questions

Several minimization problems:

- What is the minimal size of a grid for specific B_k-EPG graphs?

Theorem: The minimum size of a universal grid – one that can represent every graph on n vertices – is $\Theta(n^2)$.

Proof: (upperbound): Our original $n \times 2n$ grid construction
(lowerbound): Pach&Suk observation: $K_{n/2,n/2}$ requires a grid with $n^2/4$ edges.

- Does Monotonic-B_1-EPG require larger grid size than an unconstrained B_1-EPG representation?
- By how much?
The Story Began on Trees
Bell Labs in New Jersey (Spring 1981)

John Klincewicz: Suppose you are routing phone calls in a tree network. Two calls interfere if they share an edge of the tree. How can you optimally schedule the calls?
The Story Begins

Bell Labs in New Jersey (Spring 1981)

John Klincewicz: Suppose you are routing phone calls in a tree network. Two calls interfere if they share an edge of the tree. How can you optimally schedule the calls?

An Olive Tree Network
John Klincewicz: Suppose you are routing phone calls in a tree network. Two calls interfere if they share an edge of the tree. How can you optimally schedule the calls?

An Olive Tree Network

• A call is a path between a pair of nodes.
• A typical example of a type of intersection graph.
• Intersection here means “share an edge”.
• Coloring this intersection graph is scheduling the calls.
(EPT-Graphs) Edge Intersection Graphs of **Paths** in a Tree

Golumbic and Jamison [1985]

Each vertex v in $V(G_{EPT})$ corresponds to a path P_v in T.

$$(x,y) \in E_{EPT} \iff \text{paths } P_x \text{ and } P_y \text{ intersect on at least one edge in } T.$$
Known Results on EPT Graphs

Theorem (Golumbic & Jamison, 1985):

\[\text{chordal } \cap \text{ EPT } \equiv \text{ deg3Tree EPT} \]

where \textit{chordal} means no induced \(C_m \) for \(m \geq 4 \).

Theorem (Golumbic, Lipshteyn & Stern, 2005):

\[\text{weakly chordal } \cap \text{ EPT } \equiv \text{ deg4Tree EPT} \]

where \textit{weakly chordal} means no induced \(C_m \) and no induced \(\overline{C}_m \) for \(m \geq 5 \).
What about chordal B_1-EPG?

Results by Andrei Asinowski and Bernard Ries (2009)

Theorem 1.
Every claw-free, chordal graph is B_1-EPG.

Theorem 2.
Every diamond-free, chordal graph is B_1-EPG.

Theorem 3.
Every split graph with maxclique at most 3 is B_1-EPG.
What about chordal B_1-EPG?

Results by Andrei Asinowski and Bernard Ries (2009)

Theorem 4.

A bull-free, chordal graph is B_1-EPG if and only if every vertex neighborhood $N(v)$ is T_2-free.
Conclusion

We have presented the families of B_k-EPG graphs and posed many Open Questions – especially for the class B_1-EPG.

We hope it will be a source of much interesting work in the coming years.
References

• M.C. Golumbic, M. Lipshteyn and M. Stern,
 Edge intersection graphs of single bend paths on a grid. *Networks* 54 (2009), 130-138.

• A. Asinowski and A. Suk,

• T. Biedl and M. Stern,

• A. Asinowski and B. Ries,
 Some properties of edge intersection graphs of single bend paths on a grid, manuscript, 2010.

• D. Heldt, K. Knauer and T. Ueckerdt,
 Edge-intersection graphs of grid paths: the bend-number, manuscript, 2010.
More on Algorithmic Graph Theory
Thank You!